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BIFURCATION OF SOLUTIONS OF ELLIPTIC PROBLEMS:
LOCAL AND GLOBAL BEHAVIOUR

José L. Gámez — Juan F. Ruiz

Abstract. Here we study the local behavior of the continua in the case
of Neumann boundary conditions, pointing out some qualitative differences

with the Dirichlet case. We also combine local and global behavior of the
bifurcating sets to obtain existence of solutions and study of their sign for
some related problems.

1. Introduction

In this paper we describe the local and global behavior of the continua of
solutions of some nonlinear elliptic problems when bifurcation occurs. Let Ω be
a smooth bounded domain in R

N , let g: Ω×R → R be a Carathéodory function
(i.e. measurable in x ∈ Ω and continuous in s ∈ R) and consider the boundary
value problem:

(1.1)

{ −∆u = λu + g(x, u) if x ∈ Ω,

B.C.

where B.C. means either Dirichlet boundary conditions or Neumann boundary
conditions.
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In order to apply bifurcation from infinity, we will asume the hypothesis:

(H1) lim|s|→∞ g(x, s)/s = 0 uniformly for x ∈ Ω.

Under the hypothesis

(H2) there exists r > N and h ∈ Lr(Ω) such that |g(x, s)| ≤ h(x)(1+ |s|), for
all (x, s) ∈ Ω × R,

the weak solutions of (1.1) lie in the space W 2,r(Ω) continuously embedded
in X = C1(Ω). We will study bifurcation of solutions (λ, u) ∈ R × X . P will
be the cone of positive functions of X and π: R × X → R will be the projection
of pairs (λ, u) over their first variable, π(λ, u) = λ.

The Global Bifurcation Theorem of Rabinowitz (see [5]) ensures that:
Under hypotheses (H1) and (H2), every eigenvalue λk of odd algebraic mul-

tiplicity is a bifurcation point from infinity, i.e. there exists a sequence (λn, un)
of solutions of (1.1) such that λn → λk and ‖un‖ → ∞.

Consider the set of nontrivial solutions of (1.1) along with the bifurcation
point (λk,∞). If Σ is the closed connected component of previous set containing
(λk,∞), then either:

(a) π(Σ) is unbounded, or
(b) Σ meets a bifurcation point from zero, or
(c) Σ meets a bifurcation point from infinity different from (λk,∞).

It is well known that for any bifurcating sequence (λn, un) → (λk,∞) there
exists a subsequence (λnj , unj ), such that

unj

‖unj‖
→ φ in X,

where φ is an eigenfunction associated to λk with ‖φ‖ = 1.
In the particular case of bifurcation from infinity at the principal eigenvalue

λ1, both φ ≡ φ1 and φ ≡ −φ1 have sequences as above. Since φ1 lies in the
interior of the C1-cone of positive functions P , we deduce that, near the bifur-
cation points, the solutions have constant sign. Consequently, we denote Σ+

the closed connected component bifurcating from (λ1,∞) and Σ− the closed
connected component bifurcating from (λ1,−∞).

The behavior of continua bifurcating from infinity at the first eigenvalue
with Dirichlet boundary condition has been widely studied by several authors.
In [1] the authors prove that the bifurcation from ∞ is locally to the left pro-
vided that lim infs→∞ g(x, s) ≥ ε > 0 and locally to the right provided that
lim sups→∞ g(x, s) ≤ −ε < 0. In [2] the authors consider the possibility of g

approaching zero near infinity, or even changing sign. They point out that the
local behavior of the bifurcation is decided by the sign of the integral

∫
Ω

Aαφ1−α
1



Bifurcation of Solutions of Elliptic Problems 205

where

Aα(x) = lim
s→∞ g(x, s)sα, for some α ≤ 2.

Here we study the local behavior of the continua in the case of Neumann
boundary conditions, pointing out some qualitative differences with the Dirichlet
case. We also combine local and global behavior of the bifurcating sets to obtain
existence of solutions and study of their sign for some related problems.

The paper is organized as follows: in Section 2 the local behavior of bifur-
cation from infinity at the first eigenvalue with Neumann boundary condition is
studied. We give an example to point out the differences in the local behavior
from infinity when different boundary conditions are considered.

In Section 3 we study the global behavior of the continua bifurcating from
infinity, when g(x, 0) has constant sign.

2. Local behavior of the continua

Local behavior of the bifurcation from infinity with Dirichlet boundary con-
dition has been studied in [1] and [2]. In this section, we will center our attention
in equation (1.1) with Neumann boundary condition and we will find some dif-
ferences between two cases.

Consider the problem

(2.1)

{ −∆u(x) = λu(x) + g(x, u(x)) if x ∈ Ω,

∂u

∂n
(x) = 0 if x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded regular domain.

The eigenvalue problem { −∆u = λu in Ω,

∂u

∂n
= 0 on ∂Ω,

has a sequence of positive eigenvalues 0 = λ1 ≤ . . . ≤ λn ≤ . . . → ∞. It is
well-known that λ1 = 0 is simple and its eigenspace is spanned by the positive
function φ1 ≡ 1.

In [2] the authors prove that, with Dirichlet boundary conditions, the sign of
g(x, s) near s = ∞ does not decide the local behavior of the set of solutions near
the bifurcation. In particular, they prove that if, as s goes to infinity, g tends
to zero (roughly) like the function a/sα (a ∈ R), then the sign of a decides the
behavior of the bifurcation from infinity only if α ≤ 2.

Here we use similar ideas to prove that, in the Neumann case, the sign of
g(x, s) near s = ±∞ does decide the local behavior of the set of solutions near
the bifurcation point.
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Theorem 2.1. Assume one of the following two conditions, either

(a) there exists g(x,∞) = lims→∞ g(x, s), such that
∫
Ω g(x,∞) > 0 (resp.

< 0), or
(b) there exists a(x) such that

∫
Ω

a(x) = 0, and there exists M > 0 such
that if s ≥ M then g(x, s) > a(x) (resp. < a(x)).

Then the bifurcation of solutions of (2.1) from (λ1,∞) = (0,∞) is locally to the
left (resp. to the right).

Proof. Multiplying in (2.1) by φ1 ≡ 1 and integrating by parts,

(2.2) −λ

∫
Ω

u =
∫

Ω

g(x, u).

Moreover, there exists a sequence (µn, un) of solutions of (2.1) such that µn →
λ1 = 0, ‖un‖ → ∞, and a subsequence still denoted by (µn, un) such that

vn =
un

‖un‖ → φ1 ≡ 1 in X.

In particular, un → ∞ uniformly in Ω. Consequently, for n sufficiently large,∫
Ω

un > 0, and from (2.1) we conclude that for all (λ, u) near the bifurcation
from (0,∞)

sgn(λ) = −sgn
( ∫

Ω

g(x, u)
)

.

Using the uniform convergence of un to ∞ and the hypotheses of this theorem,
we conclude that

∫
Ω g(x, u) > 0 (resp. < 0), and the proof is concluded. �

Remarks 2.2. (1) Observe that if
∫
Ω

g(x,∞) = 0, then (a) cannot be ap-
plied, but one can take a(x) = g(x,∞) and apply (b), provided that g approaches
such limit “from one side”.

(2) In the case (b), one can also consider the weaker condition for all s ≥ M ,
g(x, s) ≥ a(x). Then the same argument concludes that the bifurcation is locally
to the left, but “not strictly”. Explicitly, every bifurcating sequence (λn, un) →
(0,∞), will satisfy that λn ≤ 0 for n large enough.

(2) In [1] the authors prove that the bifurcation is locally to the left provided
that lim infs→+∞ g(x, s) ≥ ε > 0. Here we improve that condition by allowing
g(x,∞) to change sign, or even g to approach zero.

(3) Of special interest are the problems with mixed-type boundary conditions,
and nonlinearities satisfying (b). As one can see in previous proof, as well as
in the corresponding result in [2], the qualitative behavior of the bifurcation is
determined by the type of convergence of solutions to ∞. This convergence will
be uniform if and only if the eigenfunction associated to the first eigenvalue is
strictly positive in Ω. In such a case, previous theorem applies. On the other
hand, if the eigenfunction vanishes somewhere in the boundary, the results and
counterexample of [2] can be adapted to this special case.
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Examples 2.3 (Difference between Neumann and Dirichlet boundary con-
ditions). Note that usually the hypotheses to decide the behavior of local bifur-
cation are referred to the non-linearity g function. However, these two examples
emphasize that, using the same g, the boundary conditions can determine the
local behavior of the continua.

(1) Let us denote by φ1 the first eigenfunction of the Laplace operator with
Dirichlet boundary conditions. Now take a nonlinearity g(x, s) such that∫

Ω

g(x,∞)φ1 < 0 <

∫
Ω

g(x,∞).

Applying the results in [2], the bifurcation from (λ1,∞) is locally to the right for
the Dirichlet case. However, for Neumann boundary condition previous theorem
ensures that bifurcation from infinity at the first eigenvalue is to the left.

(2) Now we avoid the use of spatial dependence and fix our attention on how
function g approaches zero as s goes to infinity. Consider

(2.3)

{ −∆u = λu + g(u) in Ω,

u = 0 on ∂Ω,

where Ω = (0, π), K > 0 and

g(s) =




−K for −∞ < s ≤ 1,

K(s − 2) for 1 ≤ s ≤ 2,

(s − 2)/s4 for 2 ≤ s.

In [2] the authors prove that if K large enough (for example K > 64) the
bifurcation of (2.3) from (λ1,∞) is locally to the right.

On the other hand, consider (2.3) with Neumann boundary condition,

(2.4)

{ −∆u = λu + g(u) in Ω,

∂u

∂n
= 0 on ∂Ω.

Using Theorem 2.1 we obtain that the bifurcation of (2.4) is locally to the left
against the Dirichlet case.

3. Global behavior of the continua

Consider the problem

(3.1)

{ −∆u(x) = λu(x) + g(x, u(x)), if x ∈ Ω,

B.C.

where Ω is a regular, bounded domain.
In order to decide the global behavior of the continua in problem (3.1) we

will add the next hypotheses:

(G1) g is L-Lipschitz in the second variable.
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(G2) g(x, 0) does not change its sign and is not identically 0 in Ω.

We denote the possibilities by:

(G2+) g(x, 0) ≥ 0, for all x ∈ Ω and g(x, 0) is not identically 0 in Ω.
(G2−) g(x, 0) ≤ 0, for all x ∈ Ω and g(x, 0) is not identically 0 in Ω.

Theorem 3.1. Assume (H1), (H2) and (G1). Then we have

(a) If (G2+) holds, then
(i) Σ+ ⊂ R× int(P )
(ii) Σ− ∩ (R × P ) = ∅,

(b) If (G2−) holds, then
(i’) Σ− ⊂ R× int(−P ),
(ii’) Σ+ ∩ (R × (−P )) = ∅.

Consequently, if (G2) holds, then Σ+ ∩ Σ− = ∅.
Proof. We will prove item (a). Proof of item (b) is similar.
From [3] using (G1) if u subsolution (no solution) and u ∈ C1(Ω) solution of

(3.1), then u − u /∈ ∂P .
In this case, u ≡ 0. Hypothesis (G2+) implies u is subsolution but no solution

and then u /∈ ∂P .
Consider the projection T : R × C1(Ω) → C1(Ω) given by T (λ, u) = u.

(i) Since T is continuous, T (Σ+) is a connected set and T (Σ+) ∩ ∂P = ∅.
It’s known that if (λ, u) ∈ Σ+ and (λ, u) near the bifurcation point then
u ∈ P , therefore T (Σ+) ⊂ int(P ).

(ii) In the same way, if (λ, u) ∈ Σ− and (λ, u) near (λ1,−∞) then u < 0
(u /∈ P ) and T (Σ−) ∩ ∂P = ∅. Consequently, T (Σ−) ∩ P = ∅. �

We have proved that the hypothesis (G2) implies the continua bifurcating
from λ1 are disjoint. Now, we will describe the global behavior of them.

Theorem 3.2 (Figure 1). Under hypotheses (H1), (H2), (G1) and (G2+),
Σ+ does not meet another bifurcation point neither from infinity nor from zero.
Moreover, π(Σ+) is bounded from above and unbounded from below. Explicitly,

]−∞, λ1[ ⊂ π(Σ+) ⊂ ]−∞, λ1 + L].

Proof. Suppose Σ+ meets (λk,∞) (k �= 1). Then there exists a sequence
(λn, un) such that λn → λk, ‖un‖ → ∞ and un/‖un‖ → φk. That is not posible
because it is known that φk changes sign and Σ+ ⊂ R × int(P ). Therefore, Σ+

does not bifurcate from any (λk,∞), k �= 1.
Since g(x, 0) is not identically zero the function u ≡ 0 is not a solution of (3.1)

for any value of λ, and then bifurcation from zero does not occur.
Thus, Σ+ does not meet another bifurcation point different from (λ1,∞).
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Now consider (λ, u) ∈ Σ+ a solution of (3.1). Multiplying by φ1 and inte-
grating by parts, ∫

Ω

∇u∇φ1 = λ

∫
Ω

uφ1 +
∫

Ω

g(x, u)φ1.

Multiplying −∆φ1 = λ1φ1 by u and integrating by parts,∫
Ω

∇u∇φ1 = λ1

∫
Ω

uφ1,

we obtain

(λ1 − λ)
∫

Ω

uφ1 =
∫

Ω

g(x, u)φ1.

From (G1) and (G2+), g(x, s) ≥ g(x, 0)−Ls ≥ −Ls, for all s > 0, and using
Σ+ ⊂ R × int(P )

(λ1 − λ)
∫

Ω

uφ1 =
∫

Ω

g(x, u)φ1 ≥ −L

∫
Ω

uφ1 and
∫

Ω

uφ1 > 0,

then,

(3.2) λ ≤ λ1 + L.

Since Σ+ does not meet another bifurcation point different of λ1, then, taking
into account the Global Bifurcation Theorem of Rabinowitz given in the intro-
duction of this paper, we have proved that Σ+ does not satisfy neither (b) nor
(c) options. Then Σ+ satisfies option (a) and by (3.2) we deduce π(Σ+) is lower
unbounded. �

Figure 1. (H1), (H2), (G1), (G2+)
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Next theorem refers to the global behavior of Σ−.

Theorem 3.3 (Figure 1). Assume (H1), (H2), (G1) and (G2+). Then,

]λ1, λ2[ ⊂ π(Σ−) ⊂ [−L,∞[.

Proof. It is known that if λ < −L the function s 
→ λs+g(x, s) is decreasing
and then using the maximum principle one has the solution of problem (3.1) is
unique. By previous theorem, there are solutions (λ, u) ∈ Σ+ for any λ < −L.
Therefore, π(Σ−) ⊂ [−L,∞[.

Using the Global Bifurcation Theorem of Rabinowitz, either π(Σ−) is un-
bounded (from above), or Σ− meets another bifurcation point from infinity dif-
ferent from (λ1,∞). In both cases ]λ1, λ2[⊂ π(Σ−). �

Figure 2. (H1), (H2), (G1), (G2−)

Remarks 3.4. (a) Using the hypothesis (G2−) instead of (G2+) we obtain
similar results changing Σ+ by Σ− (see Figure 2).

(b) Roughly speaking, under (H1), (H2), (G1) and (G2), globally, one of the
two continua goes to the left and the other one goes to the right.

We have seen the global behavior of Σ+ and Σ−. Now, we can use those
results to study the resonant case. The next result has been proved in [2]. We
add this result in this paper because it is a direct consequence of Theorems
3.1–3.3 and Remarks 3.4. We also point out that our solutions of the resonant
problem belong to the continua bifurcating from infinity.

Consider the problem

(3.3)

{ −∆u = λ1u + g(x, u) if x ∈ Ω,

B.C.
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Corollary 3.5. Assume (H1), (H2), (G1) and (G2+).

(a) If the bifurcations from (λ1,±∞) in (3.1) are both locally to the right
or both locally to the left, then (3.3) admits at least one solution u.
Furthermore, u ∈ P if bifurcations are both locally to the right and
u /∈ P if bifurcations are both locally to the left (see Figures 3 and 4).

(b) If the bifurcation from (λ1,∞) is locally to the right and the bifurcation
from (λ1,−∞) is locally to the left in (3.1), then (3.3) admits at least
two solutions u1 and u2 with u1 ∈ P and u2 /∈ P (see Figure 5).

Figure 3. Solution u ∈ P

Figure 4. Solution u /∈ P

Remark 3.6. Note that the corollary hypotheses refer to the local behavior
of the bifurcation from (λ1,±∞) which either was studied in [2] with Dirich-
let boundary conditions or in Section 2 of this paper with Neumann boundary
conditions.
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Figure 5. Solutions u1 ∈ P , u2 /∈ P
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