
& Modern Logic CO

REFLECTIONS ON THE INTERPLAY

BETWEEN MATHEMATICS AND LOGIC

Department of Mathematics and Statistics
McMaster University

Hamilton, Ontario L8S 4K1, Canada

1. Introduction.
Van Heijenoort has rightly stressed that, in the work of Frege and

Russell, logic is universal; neither logician made use of partial universes of
discourse, as did Boole and De Morgan, but only the universe of
everything. One central consequence of this universality, he has stressed as
well, is that neither Frege nor Russell raised any metalogical or meta-
mathematical question - nothing about the consistency or independence of
the axioms of logic, or about their completeness (van Heijenoort 1967a,
326).

Let us give an example, one not mentioned by van Heijenoort, of
Russell and Whitehead's assertion that it is not possible to stand outside
logic. The authors of Principia Mathematica insisted that the Principle of
Mathematical Induction cannot be used to prove theorems about their
system of logic (Whitehead and Russell 1910, 135J. This is in utter contrast
with work in logic for the last fifty years. A great variety of different
kinds of induction (e.g. on the length of formulas, on the kinds of
formulas, etc.) are now standard textbook devices for proving theorems
about first-order logic, particularly since terms and formulas are given by
recursive definitions.

Van Heijenoort contrasts the approach of Frege and Russell with that
of Löwenheim (1915), who belongs to the Peirce-Schröder tradition, and
notes that the latter tradition used universes of discourse. It is precisely the
metalogical questions that Löwenheim considers (van Heijenoort 1967a,
327; 1977, 183). But let us be clear that the metalogical notions which
Löwenheim uses are those of validity and satisfiability, not those of con-
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sistency or completeness. Löwenheim does consider independence, but only
from a semantic rather than a syntactic perspective.

What van Heijenoort mentions in passing, but does not stress, is that
Hubert's work in logic was intermediate to that of Frege and Russell on the
one hand and that of Peirce, Schröder, and Löwenheim on the other (van
Heijenoort 7977,185). That is, Hilbert made use of a formal system, fol-
lowing the lead of Frege and Russell. (Indeed, beginning in his lecture
course of 1917, Hilbert used the theory of types as his basic logical system,
though this is not well known.) And, like the mathematician that he was,
Hilbert did not let his quantifiers vary over every object, but only over
some restricted universe of discourse given in advance. Here we must stress
that it was Hilbert who brought questions of consistency and completeness
to the fore.

Another eminent historian who, like van Heijenoort, has emphasized
the differences between the Peirce-Schröder tradition and the Frege-Russell
tradition, is Grattan-Guinness. In an article of 1988, Grattan-Guinness sur-
veyed the interactions between logic and mathematics during the period
from the French Revolution to the First World War. He followed Schröder
in referring to the logic of Boole, Peirce, and Schröder as the algebra of
logic, and identified the logic of Peano and Russell with mathematical
logic. His article concluded by lamenting the lack of contact between
mathematics and logic, both during that period and today:

The eclipse of algebraic logic by mathematical logic has left
rather forgotten the links that algebraic logic forged with
certain algebras and with probability theory .... So logic [in
1914] still lived rather apart from mathematics, even though
one branch of it was now "mathematical" .... The situation has
continued until today, and to a significant degree because of
the (lack of) reception of Principia Mathematica. Logicians ...
are more often found today in departments of philosophy or
computing than of mathematics .... The two communities of
logicians and mathematicians largely live apart .... (Grattan-
Guinness 1988, 79).
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To those familiar with mathematical logic as it exists in 1992,
Grattan-Guinness's claims will sound rather odd. Whatever the inter-
actions between mathematics and logic in the work of Boole and
Whitehead, and they were considerable, today the interactions between
mathematics and logic are very rich indeed. It is the interactions between
algebra and logic which merit most attention. In addition, thanks to
category theory, there are today substantial interactions even between logic
and geometry. Finally, in recent years nonstandard analysis has proved to
be a very fruitful area of interaction between logic, analysis, probability,
and applied mathematics.

In sum, since the the 1940's mathematics and logic have been inter-
acting more than they ever did before. The present paper discusses some of
the most significant ways in which logic and mathematics have affected
each other, and examines how closely those interactions are related to the
metalogical and metamathematical concerns discussed by van Heijenoort.
The paper begins in the 1920's, but it concentrates on the period shortly
after the Second World War when model theory crystallized as a discipline
and when substantial interactions developed between logic and algebra.

2. Applications to Algebra, 1925-1940: Langford, Tarski, and
Maltsev.

Any kind of logic, mathematical or otherwise, can be developed in
one of three ways. First, its philosophical or mathematical foundations can
be investigated. Second, it can be developed as a system in its own right,
possibly undergoing extensions or restrictions in the process, and possibly
evolving into a family of systems rather than a single system. Third, it can
be applied to other areas of knowledge. Interactions between mathematics
and logic will be used here to refer only to the second and third categories,
not to foundational considerations.1

1 If, in this context, we understood interactions between logic and mathematics to include
the first category, then we would need to add an extensive discussion of intuitionism. In
particular, we would need to examine the formalization of intuitionistic logic by Heyting,
and the later rise of topos theory (within category theory) as an important part of
mathematics that made use of intuitionistic logic. We would also need to examine the
interactions between intuitionism and recursive function theory, as embodied in the work
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Eventually the most seminal figure in promoting interactions be-
tween logic and mathematics was to be Alfred Tarski. At the beginning,
however, he developed mathematical logic in its own right, rather than
applying it to some area of mathematics or borrowing concepts from
mathematics. His doctoral dissertation at Warsaw (1923) was formulated in
the theory of types, and showed that all the propositional connectives
("and", etc.) can be defined from the sole connective "if and only if,
together with the quantifiers. Yet he already cited the work of Schröder as
well. Thus, even at the start of his career, Tarski showed the eclectic
approach to problems in logic that was to prove so fruitful in his later
work.

The third category - the use of logic to gain information about
particular mathematical theories - first became prominent in the work of
the philosopher C.H. Langford (1927). Using propositional functions that
were first-order, in the sense of Principia Mathematica, Langford treated
"a form of the problem of categoricalness ... for types of dense series"
(1927, 16). In effect, he gave a decision method for dense linear orders by
using the method of elimination of quantifiers, a method whose essentials
had already been discovered by Löwenheim (1915, §3) and Skolem (1919,
§4). Langford, who worked in the tradition of Principia, gave no indi-
cation in his paper of being aware of their work.

Around 1927-1928 Tarski used elimination of quantifiers to extend
Langford's work on dense linear orders, but these results were not
published until 1936.2 In the interim, there appeared Tarski's article on
definable subsets of R, the set of real numbers (1931). This article was
formulated in the simple theory of types, and consequently was concerned
not only with subsets that were first-order definable, but also those that
were second-order definable, third-order definable, and so on. His prin-
cipal concern was to combine mathematics with metamathematics and, in
particular, to express metamathematical notions (such as definability) in
mathematical terms:

of Kleene. For reasons of space, as well as for more substantive reasons, we leave such
questions to one side in the present article.

2 Tarski 1936,374-383. Here, as with all his translated articles, we use the page numbers
in the 1983 translation.
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The distrust of mathematicians towards the notion [of defin-
ability] is reinforced by the current opinion that this notion is
outside the proper limits of mathematics altogether.... In this
article I shall try to convince the reader that the opinion just
mentioned is not altogether correct .... I believe that I have
found a general method which allows us to construct a rigor-
ous metamathematical definition of this notion. Moreover, by
analyzing the definition thus obtained it proves to be possible
... to replace it by a definition formulated exclusively in
mathematical terms. Under this new definition the notion of
definability ... can be discussed entirely within the domain of
normal mathematical reasoning. (1931, 110-111)

Tarski proceeded to mathematize the notion of definability over a struc-
ture. In particular, he discovered that a set M is first-order definable in the
structure (R,+,X) if and only if M is a finite union of intervals with

algebraic endpoints (or ± °°). First-order definability in a structure was

reduced, in mathematical terms, to the closure of a class of given relations

under the Boolean operations and the "geometric" operation of projection.

When Tarski published his results on dense and isolated linear orders

in 1936, he also formulated some of his results, obtained by 1930,3 in a

way that presaged his work on model theory twenty years later. In 1936 he

introduced the notion of T(oc), the set of all first-order sentences true of an

order type a, where the only non-logical symbol was for a binary relation.

He next introduced the notion that two order types, a and ß, are
elementarily equivalent, i.e. T(a) = T(ß).4 He noted that, thanks to the
Löwenheim-Skolem Theorem, there can be only 2**° types that are not
elementarily equivalent. As for dense linear orders, there can only be four
types that are not elementarily equivalent, depending merely on endpoints.
In particular, the order type of the rational numbers and that of the real
numbers are elementarily equivalent. Hence properties of order types such

3 Tarski 1936,383.

4 At this time he introduced the notion of being elementarily equivalent ("elementar
äquivalent"). See footnotes 12 and 16 on later changes of terminology.
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as being denumerable or being continuous are not expressible in the first-
order theory of linear order. Further, he showed that the notion of well-
ordering is not expressible in that first-order theory, since T(co) =
T(w+*(0+co). In conclusion, he looked to the future:

It seems that a new, wide realm of investigation is here
opened up. It is perhaps of interest that these investigations can
be carried out within the framework of mathematics itself
(e.g. set theory) and that the concepts and methods of meta-
mathematics are essentially superfluous: all concepts which
occur in these investigations (e.g. the concept of an elementary
property of an order type ...) can be defined in purely
mathematical terms. (1936, 382)

This desire to replace a metamathematical notion by one that was equi-
valent, but formulated in purely mathematical terms, remained a central
feature of his approach to logic in the decades that followed.

Tarski's approach can be clarified by comparing it with Godei's.
Tarski was concerned both with general logical notions ant with their
application to particular mathematical structures. These dual concerns
recur many times in his career. By contrast, Godei was concerned almost
solely with general logical notions, and almost never with their application
to specific mathematical structures.5 Perhaps that is why Godei did not
apply his Compactness Theorem (1930, Theorem X) to obtain any results
about algebra, although, to later logicians, it cried out for such appli-
cations.

The first work applying the Compactness Theorem to get results
about specific mathematical structures was due to the Russian logician
Anatolii Maltsev (1941). Already in 1936 he had extended the Compactness
Theorem, which Godei (1930) used only for a countable first-order
language, to the corresponding theorem for a language whose set of

5 This was trae despite the fact that Godei worked on geometry around 1933 (see Gödéi
1986,272-281).
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primitive symbols had any infinite cardinality whatever.6 Maltsev's 1936
paper was the first to introduce such an uncountable language for first-
order logic,7 but the use of uncountable first-order languages was not
pursued further until the work of Henkin and Robinson late in the 1940's
(see §3 below).

In his 1941 paper, Maltsev applied the Compactness Theorem to
group theory. He noted that quite a few theorems in algebra were of the
following form: If a certain property P holds for all the finitely generated
subalgebras of a given algebra (group, ring, etc.), then P holds for the
algebra itself. His aim was to give new, and simpler, proofs for many of
these theorems by showing that they were immediate consequences of the
Compactness Theorem for an uncountable language. His first example was
a theorem originally proved by Chernikov: If every finite subgroup of a
locally finite group has a Sylow sequence, then so does the group itself.
The second was a theorem due to Fuks-Rabinovich, whose original proof
was quite complicated: Every locally free group is not simple.

3. Applications to Algebra, 1945-1955: Robinson, Henkin, and
Tarski.

One of the main ways in which logic and mathematics have inter-
acted in the recent decades can be conveyed by a metaphor: logic is to
mathematics as mathematics is to applied mathematics. That is, logic can be
applied to give specifically mathematical results about mathematical sys-
tems. As events unfolded, one of the essential tools of these applications
was the use of a symbolic language with uncountably many symbols and the
use of the Compactness Theorem, or the Strong Completeness theorem, for
such languages. In other words, this tool was an extension of Godei's Com-
pleteness Theorem for first-order logic to an uncountable language.

6 Henkin and Mostowski later questioned the validity of Maltsev's proof. See Henkin and
Mostowski 1959,56-57.

7 Earlier, Godei had briefly considered a language for propositional logic that could be
countable or uncountable (1932). Zermelo (1931, 1935) had considered infinitary
languages with uncountably many primitive relations. Maltsev did not appear to be aware
of these three articles in his 1936 or 1941.
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Besides Tarski in Poland and Maltsev in the Soviet Union, one of the
principal figures who turned this metaphor into a reality, by initiating the
application of mathematical logic to algebra, was Abraham Robinson.
While he was an undergraduate at the Hebrew University of Jerusalem, and
a student of Fraenkel's, Robinson published his first paper in the Journal of
Symbolic Logic (1939). He spent the war years in England, where his
research was on aerodynamics. After the war, his interests returned to
logic, and he did his Ph.D. at the University of London with the disser-
tation "The Metamathematics of Algebraic Systems" (1949). A report that
he gave on his dissertation in February 1948 illustrates his conception of
the role of logic in mathematics: "Time and again in the development of
Mathematical Logic there arose a desire to use the new science not only to
clarify and crystallise the conquests of Mathematics proper, but as a tool
for the discovery and demonstration of actual mathematical theorems." As
two examples, he cited work by Leibniz and, early in this century,
Poincaré's disdain for Peano's logic. Robinson concluded: "Conditions have
changed in the last thirty years, and Symbolic Logic now receives a good
deal of attention even in purely mathematical circles."8

Robinson's dissertation was published in 1951 as a book, On the
Metamathematics of Algebra. It opened by explicitly advocating the appli-
cation of logic to modern abstract algebra:

The principal object of the present work is the analysis and
development of Algebra by the methods of Symbolic Logic. In
fact, in view of their transparent logical character, the alge-
braic theories of fields, rings, and of similar structures appear
to be eminently suited to such treatment, more perhaps than
any other branch of Mathematics ....

Instead of formulating and proving individual theorems
as in orthodox Mathematics, we may consider statements about
theorems in general. In particular, we may be able to show
that any theorem (of a certain class) which is true for one type
of mathematical structure is also true for another type of
mathematical structure. An instance of such a metamathe-

8 This passage is from a page of manuscript printed in his Selected Papers (1979, xii).
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matical statement is provided by the classical principle of

duality in Projective Geometry. (1951,1)

Robinson then offered three examples of such statements about theorems in
general, including the following:

1. Any theorem of the first-order theory of fields that is true
for all non-Archimedean ordered fields is true for all ordered
fields.

2. Any theorem of the first-order theory of fields that is true

for the field of all algebraic numbers is true for any other al-

gebraically closed field of characteristic 0. (1951, 3)

He concluded his discussion by noting that

the above examples will suffice to show that Symbolic Logic

can be an effective tool for the discovery and proof of

mathematical theorems: while on the other hand the analysis of

the procedures used in a highly developed mathematical

discipline throws light on points of Symbolic Logic which

might be overlooked in purely abstract investigations. (1951,

6)

The main tool in Robinson's dissertation was the Strong Com-

pleteness Theorem, whereby every consistent set of first-order sentences

has a model. He employed this theorem in a way that amounted to applying

the Compactness Theorem for an uncountable language. At this time he was

apparently not aware of the work of Maltsev, where the latter theorem was

used directly. Later, Robinson very much admired Maltsev's work.9

In order to define the satisfaction of a sentence by a structure,

Robinson extended the symbols in the language by introducing a new

constant symbol for each element in the structure. Thus, if the structure

9 See Robinson 1962.
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was uncountable, he did not see how such one could avoid using un-
countably many symbols (1951, 21). In this he was mistaken.10 Where the
use of uncountably many symbols was unavoidable, it seems, was in
proving the Strong Completeness Theorem for uncountable sets of sen-
tences and in proving its corollary, the Compactness Theorem.

Shortly before Robinson wrote his dissertation in London, Leon
Henkin completed his own at Princeton, where it was accepted in October
1947. Directed by Alonzo Church, Henkin's dissertation shared a number
of concerns with Robinson's. One of those concerns was the use in logic of
uncountably many symbols (1947, 21) and another was the importance of
applying logic to algebra. In his introduction, Henkin described the general
situation in logic as he saw it:

From one point of view formal logic is the application
of mathematics to the analysis of the way in which symbols are
used in scientific discourse. When the language of mathematics
itself becomes the object of investigation, we can expect three
general types of result:

1. Insight into the foundations and philosophy of
mathematics;

2. Discovery of limitations imposed by the nature of
mathematical tools on the kinds of problem which can be
stated or proved; and

3. The development of new and improved methods to
strengthen the attack on problems in the various branches of
mathematics.

Historically, problems of the first category were princi-
pally responsible for the development of modern logic ....

As for the third class of results, it must be admitted that
these are most meager. Whereas the methods and results of

10 It was possible to avoid the use of uncountably many constant symbols, in the definition
of satisfaction, by using valuations. These were functions whose domain was the countable
sequence of free variables and which assigned an element of the structure to each free
variable. See, e.g., Mendelson 1964,50. Nevertheless, Robinson's definition of satisfaction
was entirely correct. It was used, for example, in Shoenfield's textbook for logic (1967,
18) and in Sacks's textbook for model theory (1972,20).
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algebra, geometry and analysis are richly intertwined,
mathematical logic has held a rather isolated position within
the family of mathematical disciplines .... Boole's original
development of the algebraic structures now named after him
is perhaps as prominent an example as any. (1947,1-2)

Despite the limited success which Henkin saw in past attempts to apply logic

to mathematics, he was more optimistic for the future: "Our conjecture is

that the potential aid ... which mathematical logic can render to older

branches of mathematics is abundant and accessible, and that a rich harvest

lies just below the surface" (1947, 4). As a contribution to that harvest, he

applied his logical results to obtain a new and shorter proof of the

Representation Theorem for Boolean algebras (due to Marshall Stone) and

for distributive lattices (due to Garrett Birkhoff). Henkin relied on both the

Strong Completeness Theorem and the Compactness Theorem for his

algebraic results (1947, 26-31). To do so, he needed those theorems as ex-

pressed for a language with uncountably many constant symbols (1947,

21).
Robinson's dissertation gave no indication of the importance of

Henkin's work or that of Tarski. But when Robinson spoke to the Inter-
national Congress of Mathematicians in 1950, he stated that "we may
mention the names of K. Godei, L. Henkin, and A. Tarski as representative
of those who either directly or indirectly contributed towards the establish-
ment of symbolic logic as an effective tool in mathematical research"
(1952, 686). Robinson's lecture was primarily based on his dissertation,
and used the Strong Completeness Theorem to obtain various algebraic
results.

One of the striking features of this period from 1947 to 1950 is the
independent discovery, by Henkin, Robinson, and Tarski, that the Strong
Completeness Theorem can be used to prove theorems about classes of
algebraic structures.11 This situation led to some duplication of results. In
particular, Robinson's theorem 2 above, about algebraically closed fields,

1 1 A detailed discussion of these independent discoveries can be found in Henkin 1953,
All.
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had been found independently by Tarski, as Robinson acknowledged {1952,
686).

Tarski's first thorough discussion of such uses came in the paper
which he gave to the same session of the 1950 International Congress that
Robinson had addressed. In the paper, "Some Notions and Methods on the
Borderline of Algebra and Metamathematics", Tarski introduced the notion
of an arithmetical class of structures. In general, he allowed a structure 21
to consist of a non-empty set A together with a finite number of operations
on A, relations on A, and distinguished elements of A. However, in order
to simplify his definitions and theorems, he restricted himself in the paper
to structures of the form 21 = (A,+), where A was a set and + was a binary
operation on A. Two such structures 21 and 8 were said to arithmetically
equivalent, i.e. 21 = 23, if precisely the same first-order sentences were true
in 21 and in 8. 1 2 Then a class Л of systems was defined to be an
arithmetical class if, for some 21, Л was the class of all models of some
finite set of sentences in the language of 21. In a statement reminiscent of
that quoted above from his 1931 paper, Tarski observed:

The notion of an arithmetical class is of a metamathematical
origin; whether or not a set of algebraic systems is an arith-
metical class depends upon the form in which its definition can
be expressed. However, it has proved to be possible to
characterize this notion in purely mathematical terms and to
discuss it by means of normal mathematical methods. The
theory of arithmetical classes has thus become a mathematical
theory in the usual sense of this term, and in fact it can be
regarded as a character of universal algebra.13

1 2 In 1936, as we saw above, he used "elementarily equivalent" instead of "arithmetically
equivalent". By the 1960's, "elementarily equivalent" became the common term. Cf.
footnote 16.

1 3 Tarski 1952, 705. Although the name "universal algebra" had originated with
Whitehead (1898), the subject only began its continuous development in the 1930's with
the work of Garrett Birkhoff.
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Tarski obtained this mathematical definition of an arithmetical class by
using the same general technique that he had employed in 1931 to math-
ematize the notion of definability in a structure £L Namely, he replaced the
operations on Л by the corresponding relations, and treated the relations as

sets of sequences of elements of A. He then closed under the Boolean

operations of union, intersection, and complement, as well as projection.14

The result was called CL(2l). Then a set С of structures was defined to be

an arithmetical class if С = CL(2l) for some 21. The notion of arithmetical

class, defined in this way, made use of standard mathematical notions, not

metamathematical ones.

In the same vein, Tarski introduced the notion of arithmetical type.

A class Л of structures is an arithmetical type if it is the class of all models

of some set, finite or infinite, of first-order sentences. Equivalently, since

his language was countable, Л is an arithmetical type if it is the intersection

of countably many arithmetical classes.15 In view of the previous para-

graph, this notion of arithmetical type was defined in mathematical, rather

than metamathematical, terms.

Every arithmetical class is an arithmetical type.16 The applications to

algebra came from the failure of the converse, i.e. the existence of arith-

metical types that are not arithmetical classes. In particular, Tarski proved

that the class of all fields of characteristic zero is an arithmetical type that

is not an arithmetical class. He noted that the same was true for the class of

all algebraically closed fields and for the class of all torsion-free groups

(i.e. those without elements of finite order greater than 1).

1 4 Strictly speaking, he now spoke not of the geometric operation of projection (as he had
in 1931), but of "outer cylindrification". This was an algebraic analogue of the existential
quantifier. He also used "inner cylindrification", which was an algebraic analogue of the
universal quantifier.

1 5 Henkin pointed out in his 1953 that these two definitions of arithmetical type are not
equivalent, in general, if the language is uncountable.

1 6 Tarski's terminology of "arithmetical class" and "arithmetical type" (the latter in the
sense of a class of the models of a set of sentences) was varied considerably by later
researchers; cf. Lyndon 1959, 144. Tarski himself replaced "arithmetical type" by
"arithmetical class in the wider sense" (1954, 576-577). In place of "arithmetical class"
and "arithmetical type", Grätzer used "elementary class" and "axiomatic class"
respectively (1968, 256), while Chang and Keisler used "basic elementary class" and
"elementary class" (1973,173).
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Finally, Tarski considered the notion of being "arithmetically
closed". A class A of structures is arithmetically closed if, whenever it
contains 21, it contains every 8 such that 21 = 23. Thus if A is an
arithmetical type, then A is arithmetically closed, but in general not con-
versely.

Tarski was particularly concerned to determine whether or not
various classes of structures were arithmetical. Sometimes the most
convenient way to show that a class failed to be arithmetical was to prove
that it was not even arithmetically closed. This was the case, he pointed out,
for the class of all Archimedean ordered rings. It followed that for every
ordered ring there was an arithmetically equivalent ring which was non-
Archimedean. By considering the real numbers, this provided an easy
proof for the theorem, previously shown by more complicated methods,
that there exists a non-Archimedean ordered field. Likewise, it had re-
cently been established that the class of all simple groups was not
arithmetically closed.

Something of Tarski's hopes for these methods, which made essential
use of the Strong Completeness Theorem (but only for a countable lan-
guage), was apparent in the conclusion to his paper: "At first sight the
mathematical theory of arithmetical classes seems to be merely a translation
of the metamathematics of arithmetical formalism; actually this theory
paves the way for constructions and derivations which go far beyond
purely metamathematical procedures" (1952, 719).

In fact, Tarski had in mind a general research program whose roots
lay in his 1931 work on definable sets of real number. As in that earlier
work, the elimination of quantifiers was an essential technique.17 For a
given class A of algebras, he wished to give a complete description of all
arithmetical classes relative to A. In the cases where he or his co-workers
had succeeded in obtaining such a complete description, they had generally
done so by eliminating quantifiers from the theory whose models were A.
These classes A were those of all Abelian groups, of all algebraically
closed fields, all Boolean algebras, and all well-orderings. The aim was to

17 On Tarski's use of elimination of quantifiers, see Doner and Hodges 1988. On Tarski's
work of 1931, see van den Dries 1988.
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classify the structures of the class Л of algebras up to arithmetical equi-
valence (or, as we would say now, up to elementary equivalence).

The other half of Tarski's research program came into effect when
the elimination of quantifiers could not be applied to a class Л of algebras.
Then he aimed to prove that the corresponding theory was undecidable. By
extending the methods of Godei, it had been possible to prove the undecid-
ability of all groups, all fields, and all lattices {1952, 716). This second half
of Tarski's program was visible in the book, Undecidable Theories, that he
published with Andrzej Mostowski and Raphael Robinson (1953), where
there was some discussion of Julia Robinson's result that the theory of the
rational numbers, that of all fields, and that of all ordered fields are
undecidable.

Julia and Raphael Robinson were at Berkeley, and they formed part
of the group of logicians that, in the late 1940's, began to expand there
under his tutelage. In a reminiscence decades later, John Kelley described
the environment in which this occurred:

It is very easy to describe the Berkeley math department of
that period: very strong in analysis, statistics, set theory and
the foundations of mathematics, and not strong in other
areas.... There was also occasionally a little nervous hostility
toward the work in foundations .... This hostility has now
pretty well vanished. (Kelley 1989, 485^86)

4. Preservation Theorems.
One fundamental kind of interaction between logic and algebra that

developed during the 1950's can be described as follows: Consider an
algebraic procedure, such as taking the direct product of two algebras or
applying a homomorphism to an algebra; determine a syntactic form F
such that a class of algebras is closed under that algebraic procedure if and
only if the class can be axiomatized by sentences of form F. A general
problem of this sort would not have arisen prior to the formulation of
certain procedures of abstract algebra that occurred in the 1920's and were
codified, to a considerable extent, in van der Waerden's Moderne Algebra
1930), where the notions of direct product, homomorphism, and isomor-
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phism of groups (and some other structures) were prominent. As van der
Waerden was aware, the direct product of two groups is a group.

The earliest instance of this kind of interaction can be found in
Birkhoff s paper "On the Structure of Abstract Algebras" (1935). He
defined an "abstract algebra" to be an ordered pair A = (Ê,F) such that
each member of F is an operation on the set S.18 In particular, any group,
ring, field, lattice, or Boolean algebra was an abstract algebra. The species
(or, as we would say now, the arity) of an abstract algebra was an w-tuple
of integers, the integer in the ith place being the number of arguments of
the function./?. He called a "law", for an algebra A, any equation between
functions / and g of A holding for every substitution of elements of A for
the primitive symbols. More generally, a "law" for a set of algebras E (of
a given species) is a law holding for every algebra in the set. Thus, in this
sense, the associative law was a law for groups. As a direct consequence of
his definitions, he noted that if P is a law for a set 2L of algebras, then P is
a law for any subalgebra (or any homomorphic image) of any member of
£1 and for any finite direct product of members of E. In other words, P is
preserved by subalgebras, homomorphisms, and direct products. This
simple statement was later regarded as the beginning of equational logic
(i.e. no relations other than identity occur). It was also the beginning of the
study of such preservation properties.

Birkhoff s notion of abstract algebra was taken up by the logician J.
C.C. McKinsey in a paper of 1943 devoted to decision problems for
universal sentences in a class Л of algebras, particularly lattices. He was
interested in the case when Л was closed under finite direct product. By
way of example, he noted that the class of all groups is closed under finite
direct product, as is the class of all Boolean algebras. But, he added, the
class of all fields is not closed under finite direct product, since the direct
product of two fields is not in general a field. He observed that a class Л of
algebras is closed under finite direct product if the class can be defined by
a set of axioms having a certain form. In particular, this was true if the
axioms were all equations or were the negation of a conjunction of
equations (1943, 65).

1 8 He does not appear to have allowed O-ary functions, i.e. constants.
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In the spring of 1947 Tarski posed in his seminar the problem of
ascertaining which sentences are preserved by direct products of algebras.
It was there that Alfred Horn learned of the problem. Like Birkhoff and
McKinsey, Horn made use of equational logic. McKinsey had considered
what are now known as Horn sentences, i.e. sentences in prenex normal
form whose propositional part is of the form "if p, then q", where q is an
equation and/? is a conjunction of« equations, for some n (McKinsey 1943,
65). Horn proved that a universal sentence is preserved by direct products
if and only if it is equivalent to some universal Horn sentence. He also
showed that Horn sentences are the largest class of prenex sentences
preserved by direct products, provided that the form of propositional part
of the sentence is considered (1951). Questions surrounding the connection
between Horn sentences and direct products proved to be quite com-
plicated, and were the subject of research for a number of years.

When reviewing Horn's paper that same year in the Journal of
Symbolic Logic, R.C. Lyndon noted that one of Horn's theorems could be
strengthened as follows. Horn had shown that if a sentence in equational
logic is positive19 and is true in a direct product, then the sentence is true in
each component of the product. Lyndon claimed that this theorem may be
strengthened to the following: A positive sentence, true in an algebra, is
true in any homomorphic image of the algebra (Lyndon 1951, 217).

By the time that Lyndon published his proof of this theorem in 1959,
he had strengthened it to apply not only to algebras but to structures in
general. That is, the structure could have relations as well as functions and
distinguished elements. He had also strengthened it to an equivalence: A
first-order sentence is preserved under homomorphisms if and only if it is
equivalent to a positive sentence. Lyndon acknowledged discussions about
this theorem with Tarski, Henkin, and Robinson, all of whom improved
aspects of the proof.

At that time Lyndon also published a preservation theorem about
subdirect products, i.e. those which are substructures of direct products

19 A sentence is positive if it is built up from conjunctions, disjunctions, and quantifiers
only.
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(1959a): A first-order sentence holds in a subdirect product of structures if
and only ifit is equivalent to a special Horn sentence.20

Meanwhile, building on the ideas in his 1950 Congress paper
discussed above, Tarski had heralded the emergence of "a new branch of
metamathematics ... the theory of models " (1954, 572). One of the
questions at the heart of this new theory was the following, which was
really a general formulation of the notion of preservation theorem:

Knowing some structural (formal) properties of a set £ of
sentences, what conclusions can we draw concerning mathe-
matical properties of the correlated class К of models?
Conversely, knowing some mathematical properties of a class
К of mathematical systems, what can we say about structural
properties of a set L which constitutes a postulate system for
K? (1954, 572)

In this spirit, Tarski analyzed the simplest kind of arithmetical types, those
that are classes of models for some set E of prenex sentences sentences
whose quantifiers are universal. Calling such classes universal he proved a
preservation theorem about them: If a class К of structures is an
arithmetical type, then К is universal if and only if К is closed under sub-
structures (1954, 584).

Stimulated by Tarski's paper and by Robinson's 1951a, Henkin
proved an analogous preservation theorem for existential sentences, i.e.
those prenex sentences all of whose quantifiers are existential: If К is an
arithmetical class, then К consists of all the models of some existential
sentence if and only if is closed under extensions (1956, 31).

Similar activity had been under way in Poland, especially by Jerzy
Los at Torun. In his 1953 work on extending models, Los was influenced
by earlier researches of Tarski, Robinson, and Maltsev. As part of his
work, Los independently discovered Tarski's result, mentioned above, on

2 0 A special Horn formula is a formula having the form "if/?, then qn, where/? is positive
and q is an atomic formula, or is obtained from a formula of that form by conjunction and
universal quantification. A special Horn sentence is a special Horn formula with no free
variables.
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universal classes. More generally, Los shared with Robinson a desire to
find conditions under which a model of a certain set Л of sentences was
also a model of an additional set С of sentences.21 Such a condition, Los
noted, was familiar for the extension of a commutative ring to a field, and
had been found by Maltsev for the extension of a semigroup to a group.
Los solved the problem for the extension of a group to an ordered group,
and emphasized the open problem of extending a semigroup to a ring.

Los, together with R Suszko at Warsaw, continued to pursue related
questions on extending models. They gave a condition for extending a
family of models (1955a). That same year they announced a generalization
for earlier preservation theorems by considering universal-existential
sentences, i.e. those prenex sentences such that all universal quantifiers
precede all existential ones: If К is an arithmetical type, then К consists of
all the models of some set of universal-existential sentences if and only if К
is closed under unions of chains in K.22 At Berkeley, this theorem of Los
and Suszko was extended by Chang (1956,1959).

In 1955 Los also introduced the important notion of ultraproduct. He
based it on his earlier reduced products ("champs logiques"), which were
like quotient algebras. His most important result, later known as Los's
Theorem, was that ultraproducts preserve first-order sentences.23

Ultraproducts quickly led to a great deal of research, largely stimu-
lated by Tarski. This began when he recognized that a special case of direct
product, one used by Chang and Morel (1956,1958) to show that if a class
К of structures is closed under direct product, then К need not be defin-
able by Horn sentences, yielded a proof of the Compactness Theorem for a
certain classes of sentences. Т.Е. Frayne and Dana Scott formulated a
better definition of reduced product, which they announced with Tarski
(1958). Frayne and Scott came close to expressing elementary equivalence

2 1 Los 1955aJFor this phenomenon Los borrowed the term "persistent" from Robinson
1951a, where it had been applied to Abelian groups and fields.

2 2 Los and Suszko 1955. A detailed proof was given in their 1957.

2 3 L o s t 1955, 105. Kochen recognized that Skolem's construction of a nonstandard
model of arithmetic (1934) used, in effect, a special case of the ultraproduct construction;
cf. Frayne, Morel, and Scott 7952,195.
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in algebraic terms by showing that if two structures 21 and 8 are ele-
mentarily equivalent, then some ultrapower of 21 is isomorphic to some
elementary extension of 8 (1958). The proofs of these results appeared in
a joint paper by Frayne, Morel, and Scott (1962).

Soon after the announcements of those results in 1958, the notion of
elementary equivalence was expressed in algebraic terms by using ultra-
products. The first such result was discovered by Simon Kochen at
Princeton, where his doctoral dissertation (1959a) dealt with ultraproducts:
Two structures 21 and 8 are elementarily equivalent if and only if they
have isomorphic limit ultrapowers (1959, 1961). Keisler, who was then
doing his doctoral dissertation under Tarski, found many results on
ultraproducts, and improved Kochen's result to give a simpler charac-
terization of elementary equivalence: Two structures 2L and 8 are
elementarily equivalent if and only if they have isomorphic ultrapowers
(Keisler 1961). At the time Keisler's result assumed the Generalized Con-
tinuum Hypothesis. A decade later Sanaron Shelah, now widely regarded as
the greatest living logician, gave a new proof dispensing with that hypo-
thesis (1972).

Using reduced products, Keisler also settled the open problem,
discussed above, of determining which products are preserved by Horn
sentences. By means of the Generalized Continuum Hypothesis (1961a), and
later merely by the Continuum Hypothesis (1965), Keisler showed that a
sentence is a Horn sentence if and only if it is preserved by reduced
products. Fred Galvin, in his doctoral dissertation, demonstrated the same
result without using the Continuum Hypothesis (1965).

Ultraproducts quickly became a standard tool in model theory and
served as the focus of the first textbook in the subject, Bell and Slomson's
Models and Ultraproducts (1969). Moreover, early in the I960's ultra-
products were used to give two major results outside of logic.

The first of these results was in set theory. Using the work of his
student William Hanf on compactness in infinitary logic, Tarski solved a
problem that had been open for thirty years by showing that the first
strongly inaccessible cardinal was not a measurable cardinal. In fact, Tarski
established that measurable cardinals are very large, in the following sense:
If к is a measurable cardinal then there are к strongly inaccessible
cardinals below к (1962). Aware of Tarski's result, Scott (1961) used
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ultraproducts to show that if there is a measurable cardinal then Godei's
Axiom of Constructibility is false. Scott's result was refined by Frederick
Rowbottom (1964), in his dissertation done under Keisler: If there is a
measurable cardinal, then the Axiom of Constructibility already fails for
the real numbers. This line of results has since become one of the most
fruitful in contemporary set theory.

The second result using ultraproducts was Robinson's discovery, in
the fall of 1960, of non-standard analysis. He was inspired in part by the
non-standard models of arithmetic first found by Skolem (Robinson 1966,
vii). Ultraproducts were one way of obtaining such a non-standard model
of the real numbers, the Compactness Theorem for an uncountable lan-
guage being the other. Non-standard analysis, which showed that infini-
tesimals can be used rigorously, has proved very fruitful in analysis and in
applied mathematics. Albeverio et al. (1986) discuss recent applications of
non-standard analysis to probability theory, stochastic processes, and
Brownian motion.

5. Some Concluding Comments.
By way of conclusion, two general remarks should be made. The

first is that mathematicians whose research is not in logic have occasionally
supervised graduate students in logic. An important instance is the
algebraist Saunders Mac Lane, whose own doctoral dissertation, supervised
at Göttingen by Paul Bernays and Hermann Weyl, was in logic. In the late
1950's, Mac Lane had a graduate student named Michael Morley, who
came to Mac Lane with an application of the Compactness Theorem.
Morley hoped that this would be his thesis, but Mac Lane told him to find a
deeper theorem (Mac Lane 1989, 520). So Morley went to Berkeley to
learn more logic, and, after working with Robert Vaught (a former student
of Tarski), found the seminal result known as Morley's Theorem: If a
countable first-order theory is categorical in one uncountable power, it is
categorical in all uncountable powers. In effect, Mac Lane and Vaught
functioned as joint supervisors for Morley's dissertation, to the enormous
enrichment of logic. The subject which began with that dissertation,
stability theory, has become one of the chief foci for logic today.
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The second remark concerns the light that textbooks, and handbooks,
can shed on the transmission of interactions between logic and mathematics,
in the period under discussion. These interactions have, in good part, taken
place between model theory in logic and universal algebra in mathematics.
They were already enshrined in the first textbooks of universal algebra, by
Cohn {1965) and Grätzer {1968). They were apparent as well in the most
important textbook of model theory, that of Chang and Keisler, who noted:
"The line between universal algebra and model theory is sometimes fuzzy;
our own usage is explained by the equation universal algebra + logic =
model theory" {1973, 1). The fundamental role of model theory within
mathematical logic is suggested by the part that model theory plays in the
Handbook of Mathematical Logic (Barwise 1977). Its editor, Jon Barwise,
opens the volume by discussing which algebraic notions can be expressed in
first-order logic, and which not. The volume considers model theory
before turning to the other parts of logic.

Mathematical logic can be found even in some general textbooks in
abstract algebra, such as Basic Algebra I by Nathan Jacobson. Its fifth
chapter culminated with Sturm's theorem of 1836 (for determining the
exact number of real roots of a polynomial) and, generalizing that
theorem, Tarski's decision procedure for real closed fields (1948). "It is
worth mentioning also", Jacobson concluded, "that Tarski's theorem has
had an important application to partial differential equations. This is a
striking example of the interconnectedness of mathematics in that a result
which originated in mathematical logic has an important consequence in
one of the most applied parts of mathematics" {1985, 341).

Despite this evidence that logic has contributed to both algebra and
analysis, model theory has not always found a comfortable home among
logicians. The recursion theorist Gerald Sacks tells us that "Burton Dreben
... once asked with characteristic sweetness: 'Does model theory have
anything to do with logic?" {1972, 1). One suspects that van Heijenoort,
who shared a Quinean bias with his friend Dreben, held similar views.
"Model theory", van Heijenoort tells us, "has bloomed into an extensive
science. But this new discipline does not seem to care much about what was
the original object of semantics, namely meaning. It has become an abstract
mathematical science, whose philosophical implications are scant" {1977,
185).
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Perhaps it is the lack of philosophical concern, on the part of modern
mathematical logic, that troubled both van Heijenoort and Grattan-
Guinness. Perhaps this is why Grattan-Guinness saw the mathematicians as
dominating the logicians in Poland between the two World Wars, especially
in the journal Fundamenta Mathematicae (1988, 80).

Yet one may have a different vision of mathematics and logic in
Poland between the wars. During those years, Tarski published many of his
papers on mathematical logic in Fundamenta, just as he published many of
his papers on set theory there, thus encouraging interactions between logic
and the rest of mathematics. Tarski was the chief catalyst of such
interactions after the Second World War, when their center was no longer
in Europe but in the United States. More and more, these fundamental
interactions have depended on using mathematical logic to give significant
results about parts of mathematics beyond the pale of logic, and of
philosophy.
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