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HISTORICAL DEVELOPMENT OF MODERN LOGIC

JEAN VAN HEIJENOORT

Modern logic began in 1879, the year in which Gottlob Frege (1848-
1925) published his Begriffsschrifi. In less than ninety pages this booklet
presented a number of discoveries that changed the face of logic. The
central achievement of the work is the theory of quantification; but this
could not be obtained till the traditional decomposition of the proposition
into subject and predicate had been replaced by its analysis into function
and argument(s). A preliminary accomplishment was the propositional
calculus, with a truth-functional definition of the connectives, including the
conditional. Of cardinal importance was the realization that, if circularity
is to be avoided, logical derivations are to be formal, that is, have to
proceed according to rules that are devoid of any intuitive logical force but
simply refer to the typographical form of the expressions; thus the notion
of formal system made its appearance. The rules of quantification theory,
as we know them today, were then introduced. The last part of the book
belongs to the foundations of mathematics, rather than to logic, and
presents a logical definition of the notion of mathematical sequence.

Frege's contribution marks one of the sharpest breaks that ever
occurred in the development of a science. The interest in logic, so alive in
the Middle Ages, had died out at the end of the fifteenth century, and the
great thinkers of the next three centuries were not attracted by logical
studies. In 1787 Kant wrote that logic 'is to all appearance complete and
perfect'.1 One great philosopher, Leibniz (1646-1716), showed a profound
and constant interest in logic. But Leibniz's investigations are more a
program than a realization. He never took the decisive steps towards a
theory of quantification: that of abandoning the Aristotelian subject-

1 The reference is to the "Preface" of the second edition of Kant's Kritik der reinen
Vernunft, p. viii, as quoted by W. Kneale and M. Kneale, The Development of Logic
(Oxford, Clarendon Press, 1962), p. 355.
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predicate analysis of the proposition and that of taking relations seriously.
After Leibniz logical studies very slowly gathered some momentum, but it
is only in the middle of the nineteenth century that some decisive progress
was made. George Boole (1815-1864) proposed a calculus that brought out
the algebraic analogies between propositions and classes. But the fact that
one and the same calculus could be interpreted both as a calculus of
propositions and as a calculus of classes turned out to be a momentary
drawback, rather than an asset, for the development of logic. Augustus De
Morgan (1806-1871) investigated some combinatorial properties of
relations, but not in a direction that would lead him to quantification
theory.

So Frege's Begriffsschrift stands as a major achievement in the
history of logic. Its only flaw is some confusion about quantification over
functions. Frege reluctantly accepted such quantification because it is
needed in his logical definition of sequence, hence of natural number (when
the 'ancestral' of a relation is introduced).2 If no special safeguards are
prescribed, quantification over functions opens the door to a paradox, as
Bertrand Russell (1872-1970) had to inform Frege on 16 June 1902 (see
van Heijenoort 1967, pp. 124-128).

Russell's paradox, that of the class of classes that do not contain
themselves as an element, was only one of the paradoxes that made their
appearance at the turn of the century; among the most important were the
paradox of the greatest ordinal (Burali-Forti, 1897), that of the set of not
finitely definable natural numbers (Richard, 1905) or real numbers
(König, 1905). The paradoxes were extremely disconcerting to those then
engaged in investigating the logical foundations of mathematics, and,
together with other factors, they led to four major new developments,
which occurred within a very short span of time:

(1) Hubert's metamathematics (1904);
(2) Brouwer's intuitionism (1907);
(3) Zermelo's axiomatic set theory (1908);
(4) Russell's theory of types (1908).

2 Van Heijenoort has encircled the word 'reluctantly' and written a question mark in the
left-hand margin.
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Hubert's metamathematics was, at that time, a rudimentary and
vague program, which was to be developed only twenty years later.
Brouwer's intuitionism was a profound new conception of mathematics that
demanded much time to be developed and understood. Axiomatic set
theory, as presented by Zermelo, had then little import for logic, because
Zermelo showed little concern for logic as a science, even when it had
direct bearing upon his axiomatization (axiom of separation).

So in the early twentieth century Russell's theory of types turned out
to be of major importance for the development of logic. It apparently made
logic safe from paradoxes, it had flexibility and power, and it could
express large tracts of mathematics, both their statements (theorems) and
their arguments (proofs). It was incorporated in Principia mathematica,
published by Russell and Whitehead in three volumes (1910-1913).

The logic that had then come out of Frege's and Russell's
investigations is distinguished by a number of specific features. Unlike
Boole and De Morgan, Frege did not consider that the task of logic is to
investigate, with the use of ordinary language, combinatorial relations
between propositions, but rather that it is to set up a reconstructed
language, free from ambiguity and vagueness, in which mathematics (and
subsequently perhaps other sciences) could be translated and developed.
This new language becomes the logician's language. It is not a mere
manipulation of signs, because it is, like any language, understood
(according to certain rales). But it is self-sufficient: it is not interpreted in
another system, such as naive set theory for instance. Since any doctrine
(set theory like any other) ultimately has to be logically grounded, for
Frege it would have been absurd to consider a set-theoretic semantic as a
standard by which to gauge the completeness of his system.3

One consequence of this 'universal' or 'absolute' aspect of Frege's
logic is that, in his system, the quantifiers range over all objects. Boole's
and De Morgan's 'universes of discourse' can be changed at will; they are
mathematical devices, and they have no ontological import. For Frege the
ontological furniture of the universe divides into objects and functions

3 Van Heijenoort added "a" in "consider a set-theoretic semantic" by hand, then encircled
the "a" and underlined "set-theoretic semantic". In the left-hand margin, a question mark
and two verticle bars mark this passage.
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(concepts are functions of a special kind), and the quantifiers range over
the fixed universe of objects and functions.4 When quantifiers have to be
applied to a special class of objects ('for every natural number ', 'there
exists a natural number such that...'), Frege uses a device that is in fact the
relativization of quantifiers ('for every object x, if л: is a natural number,
then ", 'there exists an object x such that x is a natural number and ...').
When a function is introduced, it has to be defined for all objects (addition,
for example, is defined, not only for natural numbers, but also for, say, 1
and the Moon; what the value of the function is is, in that case, irrelevant,
but it must exist). With the theory of types, Russell's quantifiers cannot
range over all objects; but they range over all objects of a given type. And
here again, though stratified, the universe is fixed.

In 1915 Leopold Löwenheim (1878-1957) published a paper that
attracted little attention at the time but turned out to be of major impor-
tance for the development of logic. Here are Löwenheim's main contri-
butions to logic in this paper.

(1) For the first time first-order logic is taken as a distinct object of
study; all questions of quantification over predicates or functions are
pushed aside;

(2) Löwenheim methodically exploits the semantic approach to logic;
he has no axioms or rules of inference; he uses the notion of set-theoretic
interpretation and deals with questions of validity (satisfiability) in various
domains;

(3) A very disquieting theorem is proved: if a formula of the first-
order predicate calculus with identity is satisfiable, it is satisfiable in a
finite or a denumerably infinite domain; the theorem introduces a divorce
between logic and Cantonan set theory; logic cannot deal with the
nondenumerable, or rather with the distinction between denumerable and
nondenumerable; the theorem is an unexpected result of modern logic that
will have profound consequences;

(4) The solution of important cases of the decision and reduction
problems: the singulary first-order logic is shown to be decidable, and full

4 The notation in the left-hand margin indicates that "& functions" should be added after
"objects".
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first-order logic is reduced to binary first-order logic (with a small
number of predicate letters).

Löwenheim's paper contains another notable contribution to logic,
namely the method he uses to prove his theorem. This method was
subsequently exploited and developed by Skolem, Herbrand, and Godei. It
constitutes the very core of Herbrand's approach to logic, and we will
examine it below.

Löwenheim's set-theoretic semantic renewed an early tradition in
logic, that of Peirce and Schröder. Frege's and Russell's approach to logic
had been syntactic, in the sense that their systems are based on axioms and
rules of inference. Moreover, this logic is, unlike Löwenheim's, formal.
But here we have to remark that the word 'formal' can be used in two quite
different senses:

(1) It refers to typographically verifiable properties of formulas; it
is the sense that the word has in 'formal system', and it is in that sense that
the Frege-Russell kind of logic is formal (although there are in Russell
some relapses from that kind of formalism);

(2) An Aristotelian syllogism is formal because its validity is inde-
pendent of the meaning of the terms used ('men', 'mortals', 'Athenians');
the syllogism would remain valid if these terms were replaced by other
terms of the same grammatical form (class nouns or adjectives); if we
adopt an extensional point of view, to each term there will correspond a set
(and to relational terms there will correspond a set of ordered pairs,
ordered triples, and so on). So the combination of this interpretation of the
word 'formal' and the extensional viewpoint leads to the set-theoretic
approach to logic.

In this (semantic) approach the basic notion is that of a valid
formula, while in the syntactic approach it is that of a provable formula.
The latter approach was that of Frege and Russell; the first, that of
Löwenheim. At this point the question arises of the relationship between
these two approaches. That every provable formula is valid constitutes the
(easily solved) problem of soundness. That every valid formula is provable
is the (much deeper) problem of completeness. Frege and Russell entirely
ignored the set-theoretic approach; nevertheless the first-order part of their
systems (that is, leaving out quantification over functions or predicates) is
complete. This is undoubtedly attributable to their logical good sense,
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because, if they had carried out, as 'scratch-work', any completeness proof,
they could not have failed to hit upon the Löwenheim-Skolem theorem
(which is a by-product of such a proof).

By reintroducing in logic the set-theoretic semantic approach,
Löwenheim opened up a new branch of logic, the theory of models, that is,
the systematic investigation of the relations between syntactic objects
(formulas) and set-theoretic structures. This new branch flourished several
decades later, mostly under the influence of Alfred Tarski (1902-1983).

In the 1920's Thoralf Skolem (1887-1963) generalized Löwenheim's
theorem, and improved its demonstration; he saw that Löwenheim's
method was in fact a proof procedure, and he used it for solving new cases
of the decision problem. David Hubert (1862-1943), motivated by his
investigations into the foundations of mathematics, put back in the limelight
the notion of formal system.

In his doctoral dissertation (1930, written in 1929) Jacques Herbrand
(1908-1931) presented a theorem that revealed a profound feature of first-
order logic. Herbrand's theorem states that a first-order formula F is
provable if and only if a certain quantifier-free formula, obtained from F
through an effective procedure, it is sententially valid. But the theorem
deserves a more precise presentation. Let Q be some standard first-order
predicate calculus whose sentential connectives are negation and dis-
junction. Let F be a formula of Q in which no variable has bound and free
occurrences and in which no two quantifiers bind the same variable (given
any formula of Q, there is an equivalent, and easily found, formula
satisfying these conditions). Let a variable be restricted in F if it is bound
by an existential quantifier occurring in the scopes of an even number of
negation signs or by a universal quantifier occurring in the scopes of an
odd number of negation signs. Let Г = {0, 1, 2, ...} be an infinite list of
variables of Q not occurring in F.

By way of illustration, assume that the restricted variables of F are
x\ and X2, that its nonrestricted variables are у и уг, and уз, у\ being free,
the quantifier binding y2 being in the scopes of the quantifiers binding jci
and X2, and the quantifier binding уз being in the scope of the quantifier
binding JC2 (we shall speak of x\ and X2 as the 'arguments' of У2, of x-i as
the 'argument' of yj). We write the following table.
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Line xi x2 y i yi(xi,X2) уз(х2)

1
2
3
4
5

0
Q

1
I
Q

0
I
0

I
2

1
1
I
1
1

2
4
6
7

lo
o

3
5
3
5
9

The table is written according to the following rales:
(1) Under the restricted variables we shall write elements of Г

occurring on the previous lines of the table, except for the first line, on
which we write 0 under each restricted variable; on a given line these
elements form an ordered pair, and the order in which these ordered pairs
are written is determined by the following mies: if max(/, j) < max(fc, t),
<i, j> precedes <k, />; if max(¿, j) = max(&, I), the relative order of <i, j>
and <k, l> is their lexicographic order.

(2) On a given line, the element of Г written under an unrestricted
variable is different from any element of Г previously written in the table
(on a line above or on the same line but to the left), except in the following
case: if a line q the 'arguments' of the nonrestricted variable и have been
assigned the same symbols as on line p, with p < q, then under и on line q
we write the symbol occurring under и on line p (if the nonrestricted
variable v has no 'argument', then on every line the same symbol is written
under v).

If the reader writes a few additional lines in the table above, he will
grasp the method quickly.

Each line of the table determines a substitution instance of F: in F we
delete all quantifiers and replace each variable by the symbol assigned to it
in the line. Let A&, with k = 1, 2, 3,..., be the substitution instance obtained
by the use of line k. The formula

Ai v A2 v ... v Ak ,

which we will denote by Djç, is called the kth Herbrand disjunction of F.
Note that Dk is a quantifier-free formula of Q.

Herbrand's theorem can now be stated:
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F is provable in Q if and only if for some к the &th Herbrand
disjunction of F is sententially valid.

This remarkable theorem establishes a rather unexpected bridge
between quantification theory and the sentential calculus.

To verify, for some F and some k, that the kth. Herbrand disjunction
of F is sententially valid requires no ingenuity; it is a purely mechanical
operation. So the function ф?(к) that is equal to 0 or 1 according as, for F,
Dk, is valid or not is effectively computable (recursive; in fact, primitive
recursive), and the set of formulas of Q that have a valid Herbrand dis-
junction is recursively enumerable.

But there are additional results.
Once we have checked that, for some к, Dk is sententially valid, we

can derive F from Djç by successively introducing quantifiers and cutting
repeated disjuncts in a disjunction. To be more precise, the system Q is
equivalent to a system QH whose axioms are the sententially valid formulas
of Q and whose rales are (1) a rule of universalization, which allows us to
reintroduce a nonrestricted quantifier at its proper place inside F, (2) a
rule of existentialization, which allows us to do the same for a restricted
quantifier, and (3) a rale of simplification, which from M v N v N'y P
allows us to infer M v Nv P, where ЛГ is an alphabetical variant of N, and
M and P may be empty.

These rales are one-premiss rales, and the two-premiss rale of
detachment is shown to be unnecessary for first-order logic. This means
that proofs can be put in a standard, and relatively simple, form: when
written in a tree form, the proof has just one branch, and this result may
render metamathematical arguments about proofs simpler.

Besides being two-premiss, the rale of detachment has the further
disadvantage that a formula B, inferred through the rale from A and A=>
B, does not yield any information about A. In QH all formulas occurring in
a proof whose first line is Dk and last line is F are subformulas of F,
substitution instances of subformulas of F ('subformulas' in the extended
sense), or disjunctions of such formulas. The system QH has the very valu-
able 'subformula property'.
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If now, for a given F, £>& is not sententially valid, for every k, then,
for every k, ~Dk, which is equivalent to

-Ai & ~A2 & ... & ~Ak

is sententially satisfiable. From the fact that for every к the set {~A\, ~A2,
..., ~Afc} is satisfiable in a finite domain one can infer that the infinite set
{~Ai, ~A2, ...} is satisfiable in a denumerably infinite domain (König's
lemma, or law of infinite conjunction). And from this fact one can readily
infer that the formula ~F is satisfiable in a denumerably infinite domain.
Hence we can now state: Either for some к the kth Herbrand disjunction of
F is valid, and in that case F is provable in Q (and even in QH), or for no к
is the &th Herbrand disjunction valid, and in that case ~F is Ko-satisfiable.
We thus obtain the completeness of first-order logic, combined with the
Löwenheim-Skolem theorem. For this completeness is generally formu-
lated: Every valid formula F of first-order logic is provable. But this is
equivalent to: F is provable or ~F is satisfiable. Replacing 'satisfiable' by
'Ko-satisfiable', we obtain the strengthened form: F is provable or ~F is
Ko-satisfiable.

In inferring, as indicated above, that the infinite set {~A\, ~A2,...} is
Ko-satisfiable, one applies the law of excluded middle to undecidable alter-
natives, and the argument is not considered to be 'finitary', in Hubert's
sense of the word. Herbrand, who had adopted Hubert's finitism, regarded
such an argument as unacceptable and did not draw the inference, although
he was aware of its possibility. In 1930 Kurt Godei (1906-1978) published
a proof of the completeness of first-order logic that follows the lines
indicated above.

The Herbrand approach to logic, which consists in considering the
successive Herbrand disjunctions of a formula, has two aspects, syntactic
and semantic. If, as we did above, we obtain the disjunction by substituting
syntactic objects, namely the variables of Q that are in Г, the Herbrand
method can be considered to be a proof procedure. We have seen above
that the set of formulas of Q that have a valid Herbrand disjunction is
recursively enumerable; hence, given a formula F, searching for a number
к such that Dk is valid is exactly of the same complexity as searching for a
proof of F in any given standard system of quantification theory. And the
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soundness-and-completeness result for that proof procedure would be that a
formula is valid if and only if some Herbrand disjunction of the formula is
valid. We can, however, adopt another point of view. We can now consider
the elements of Г to be, not variables of Q, but names of objects in a
certain domain. The Herbrand disjunctions are no longer formulas of Q;
they are expressions in a new language (compare validity in a finite
domain: finitely many names are introduced, universal quantifiers are
turned into conjunctions, existential quantifiers into disjunctions, then truth
tables are used; we can look at the whole operation either as syntactic or as
semantic). The validity, for some k, of the kth Herbrand disjunction is
regarded as a constructive substitute for set-theoretic validity, and the
Herbrand theorem becomes a finitistic analogue of the soundness-and-
completeness theorem of quantification theory: a formula is, in that sense,
'constructively valid' if and only if it is provable.

In 1934 Gerhard Gentzen (1909-1943)5 introduced several systems,
adequate either for the classical or for the intuitionistic first-order
predicate calculus, that presented novel features, different from those of
the systems then currently used (Frege, Russell, Hilbert-Ackermann,
Heyting). One feature of Gentzen's systems is that they deal with sequents,
that is, arrays consisting of two finite sequences of formulas separated by

Ai, A2, ..., Am —*• B\, B2, ..., Bn .

This sequent can be read as

'Ai & A2 & ...& Am entails 'Bi v 5 2 v ...v Bn\

Another feature of these systems is that they employ relatively many rales

and just one axiom (or, rather, axiom schema), namely A -+ A. But the

decisive trait is that the function of the rules, except for the cut rale, which

is the analogue of the rale of detachment, and the relatively innocuous

5 Other sources give the date of Gentzen's death as 4 August 1945; see, e.g. p. viii of the
Biographical sketch by Szabo in M.E. Szabo (editor), The collected papers of Gerhard
Gentzen (Amsterdam/London, North-Holland, 1969; reprinted 1970), vii-viii.
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structural rules, is to allow the introduction of a connective or a quantifier
in either the first or the second sequence of a sequent. Gentzen showed that
the cut rule is eliminable. We thus obtain 'cut-free' proofs that proceed by
a gradual construction of the formula to be proved. These proofs have the
subformula property, just like proofs in Herbrand's QH-

For classical first-order logic Gentzen also showed that any proof
can be divided into two parts: first, sentential rules establish, from axioms,
a sententially valid Mittelsequenz, then the successive introduction of
quantifiers leads to the formula to be proved. Thus Gentzen's Mittelsequenz
corresponds to Herbrand's valid disjunction Z)&. Hence Gentzen's results, at

least for classical logic, bear a strong relation to Herbrand's.

Gentzen himself considered his method to be syntactic. He had rules
different from those of Frege and Russell, but of essentially the same
nature. Gentzen's rales, however, can be viewed from a semantic point of
view. If a rule allows us to infer, from the derivability of A, the
derivability of B, the same rule, read backward, allows us to infer, from
the existence of a falsifying interpretation of B, the existence of a falsifying
interpretation of A. Thus Gentzen's syntactic rules have a close relationship
to the semantic rules that we would obtain by asking the question: if a
formula F is / under a certain interpretation, what are the truth values of
the subformulas of F? For example, if F is G & Я, then G is / o r Я is/, if
F is G v Я, then G i s/and Я is/, if F is (x)Gx, then, for some individual
constant a, Ga is /, and so on. This method was codified by E.W. Beth
(1908-1964): one writes in the left column of a semantic tableau the
subformulas of F that are t in any interpretation in which F is/and in the
right column of the tableau the subformulas of F that are / in any
interpretation in which F is /(hence one starts with F in the right column,
the left column being empty). If the tableau is closed, that is, if the same
formula occurs in the left and in the right columns, any interpretation in
which F is/has to satisfy the impossible requirement that it makes one and
the same formula both t and/, hence there is no such interpretation, which
means that F is valid. The complete picture is somewhat more complicated
than what this brief description can convey: when there is a disjunction in
the left column or a conjunction in the right column, a tableau splits into
two subtableaux; if a tableau is not closed, it may proceed indefinitely; and
so on. The basic idea, however, is quite simple and leads to a remarkably
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elegant proof procedure. This procedure can be further simplified if we
remark that the left and right columns of a semantic tableau form two
isomorphic trees: if a formula is in one column, its negation can be written
in the other; hence one column can be suppressed, and we are led to the
tree method (codified in a textbook by Richard Jeffrey, 1967), which is a
very convenient proof procedure for quantification theory.

The present survey had to confine itself to the mainstream of modern
logic. Several aspects of logic have been left untouched, in particular the
logical systems that differ from classical logic: the various modal logics,
the multivalued logics, and especially intuitionistic logic. This last logic,
born from considerations about the foundations of mathematics, claims to
be an alternative to classical logic, at least in the domain of mathematical
arguments.

Modern times, that is, the period since 1879, have seen a renaissance
of logical studies. Two satellite fields have appeared: set theory and
foundations of mathematics, and there have been many reciprocal
influences between these two fields and logic. The revival of logic is also
partly responsible for the growing analytical tendency in contemporary
philosophy. Logical investigations form today a very lively field.
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