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Sharp linear and bilinear restriction
estimates for paraboloids in the

cylindrically symmetric case

Shuanglin Shao

Abstract

For cylindrically symmetric functions dyadically supported on the
paraboloid, we obtain a family of sharp linear and bilinear adjoint
restriction estimates. As corollaries, we first extend the ranges of
exponents for the classical linear or bilinear adjoint restriction con-
jectures for such functions and verify the linear adjoint restriction
conjecture for the paraboloid. We also interpret the restriction esti-
mates in terms of solutions to the Schrödinger equation and establish
the analogous results when the paraboloid is replaced by the lower
third of the sphere.

1. Introduction

Let n ≥ 3 be a fixed integer and S be a smooth compact non-empty subset of
the paraboloid

{
(τ, ξ) ∈ R×R

n−1 : τ = |ξ|2}. If 0 < p, q ≤ ∞, the classical
linear adjoint restriction estimate1 for the paraboloid is the a priori estimate

(1.1) ‖(gdσ)∨‖Lq
t,x(R×Rn−1) ≤ Cp,q,n,S‖g‖Lp(S,dσ)

for all Schwartz functions g on S, where

(gdσ)∨(t, x) =

∫
S

g(τ, ξ)ei(x·ξ+tτ)dσ(ξ) =

∫
Rn−1

g(|ξ|2, ξ)ei(x·ξ+t|ξ|2)dξ

denotes the inverse space-time Fourier transform of the measure gdσ, and
dσ is the canonical measure of the paraboloid defined in Section 2.
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1In the notation of [17], the estimate (1.1) is denoted by R∗
S(p → q) and the esti-

mate (1.2) is denoted by R∗
S1,S2

(p × p → q).
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By duality, the estimate (1.1) is equivalent to the following estimate

‖f̂‖Lp′(S,dσ) ≤ Cp,q,n,S‖f‖Lq′(R×Rn−1)

for all Schwartz functions f , which roughly says that the Fourier trans-
form of an Lq′(R × R

n−1) function can be “meaningfully” restricted to the
paraboloid S. This leads to the restriction problem, one of the central prob-
lems in harmonic analysis, which concerns the optimal range of exponents p
and q for which the estimate (1.1) should hold. It was originally proposed
by Stein for the sphere [13] and then extended to smooth sub-manifolds
of R × R

n−1 with appropriate curvature [14] such as the paraboloid and
the cone. The restriction problem is intricately related to other outstanding
problems in analysis such as the Bochner-Riesz conjecture, the local smooth-
ing conjecture, the Kakeya set conjecture and the Kakeya maximal function
conjecture, see e.g., [17], [18].

In this paper, we will mainly focus on the restriction estimates for the
paraboloid. The corresponding linear adjoint restriction conjecture for the
paraboloid asserts that

Conjecture 1.1. The inequality (1.1) holds with constants depending on S,
n and p, q if and only if q > 2n

n−1
and n+1

q
≤ n−1

p′ .

The conditions on p and q are known to be best possible by the decay
estimates of (dσ)∨ and the standard Knapp example, see e.g., [14], [17].
When n = 2, the non-endpoint case was first proven to be true by Fefferman
and Stein [7] (and generalized to other oscillatory integrals by Carleson and
Sjölin [5]), and the endpoint case was proven to be true by Zygmund [29].

When n > 2, it was proven with the additional condition q > 2(n+1)
n−1

by

Tomas [25] using real interpolation, and q = 2(n+1)
n−1

by Stein [14] using com-
plex interpolation. In 1977, Córdoba [6] gave an alternate proof for n = 2
by largely relying on the successful resolution of the Kakeya conjecture in
two dimensions. In 1991, Bourgain [1] generalized Córdoba’s arguments to
higher dimensions, so that nontrivial progress on the Kakeya problem might
imply some nontrivial progress on the restriction result; using this technique,
he proved estimates for some q < 2(n+1)

n−1
; in particular, q > 4− 2

15
when n = 3.

Further improvements along this line were made by Moyua, Vargas, Vega
and Wolff, see e.g., [11], [27]. The current best result q > 2(n+2)

n
in higher

dimensions n ≥ 3 is due to Tao [20], based on the techniques in Wolff’s
breakthrough paper on the cone restriction estimates [28].

Among various techniques developed to attack this problem, the bilinear
method proves to be very powerful. Variants of this idea also have applica-
tions to the nonlinear dispersive equations, see e.g., [2], [3], [9], etc. More
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precisely, we assume S1 and S2 to be two smooth compact non-empty sub-
sets of the paraboloid in R × R

n−1, which are transverse in the sense that
the unit normals of S1 and of S2 are separated by at least some fixed an-
gle c > 0. Then the classical bilinear adjoint restriction conjecture concerns
the optimal range of exponents p and q for which the bilinear operator,
(f, g) → (fdσ1)

∨(gdσ2)
∨, should bound from Lp × Lp to Lq, where dσ1, dσ2

are the canonical Lebesgue measures of S1, S2, respectively. The following
formulation of this conjecture is taken from [23].

Conjecture 1.2. Let S1, S2 be defined as above and q ≥ n
n−1

, n+2
2q

+ n
p
≤ n

and n+2
2q

+ n−2
p

≤ n− 1. Then there exists a constant 0 < C < ∞ depending
on S1, S2, n and p, q such that

(1.2) ‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x(R×Rn−1) ≤ C‖f‖Lp(S1)‖g‖Lp(S2)

for all f ∈ Lp(S1) and g ∈ Lp(S2).

It is known that the bilinear restriction conjecture 1.2 is stronger than
the linear restriction conjecture 1.1, see [23]. For a discussion of recent
progress made on this problem, see [17]. We remark that the conditions
on p and q in this conjecture are also known to be best possible by the decay
estimates of (dσ)∨ and the variants of the standard Knapp examples such
as the squashed caps and the stretched caps, see e.g., [23], [17].

However, none of these Knapp-type examples are cylindrically symmetric
functions, i.e., functions on R×R

n−1 invariant under spatial rotations. Hence
we expect that further estimates are available if we assume that functions are
cylindrically symmetric and supported on a dyadic subset of the paraboloid
in the form of {(τ, ξ) : M ≤ |ξ| ≤ 2M, τ = |ξ|2} with M ∈ 2Z. We denote
by LM this class of functions. Indeed, it is the case: when n = 3, the
Tomas-Stein restriction estimate L2 → L4 is known to be best possible; but
for functions in LM , the estimate L2 → Lq is true for any q > 10/3 by
Corollary 2.3 in Section 3.

Our main theorems, Theorem 2.1 and 2.5, of this paper are to present a
family of sharp linear adjoint restriction estimates for f ∈ L1, and bilinear
ones for f ∈ L1 and g ∈ LM with 0 < M ≤ 1/4 on the dyadic space-time
slab R × {R/2 ≤ |x| ≤ R} with R ∈ 2Z. The proofs essentially combine
the two classical and elementary methods, the Carleson-Sjölin argument [14]
and the bilinear method via the Whitney decomposition, which effectively
solved the two dimensional restriction conjecture. In the arguments, we
heavily exploit the rotational symmetry via the “Fourier-Bessel” formula,
Lemma 3.2, for cylindrically symmetric functions to reduce matters to main
term estimates by encoding the error term into certain integrals. A lot of
effort is devoted to inventing counterexamples to show that the restriction
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estimates are best possible by relying on the idea coming from the standard
Knapp examples, the principles of both stationary phase and non-stationary
phase [14] and the Khintchine inequality [17]. We remark that some of of
them are quite challenging, see e.g., Example 4.5.

As corollaries of the main theorems, we can verify the inequality (1.1)
for LM when the exponents p and q are in a larger region (see Figure 2)
and show that it is nearly sharp except for certain endpoints. Furthermore,
we show that the linear adjoint restriction conjecture 1.1 holds for all cylin-
drically symmetric functions when p and q are restricted to the classical
region. By similar arguments, one can also establish the analogous sharp
restriction estimates when the paraboloid is replaced by the lower third of
the sphere Sn−1 or more general cylindrically symmetric and compact hy-
persurfaces of elliptic type as defined in [12], [23]. As applications of the
restriction estimates, we will interpret them in terms of the solutions to the
Schödinger equations and present another proof of the weighted Strichartz
estimates in [26] for Schrödinger equations.

Acknowledgements. The author is very grateful to his advisor Terence
Tao for introducing this fascinating subject, and is indebted to him for many
helpful conversations and encouragement during the preparation of this pa-
per. The author thanks Monica Visan for helpful discussions. The author
would like to thank the referee for his valuable comments and suggestions.

2. Notations and Main Theorems

Let n ≥ 3 be the fixed space-time dimension. In this paper, we interpret
R × R

n−1 as the space-time frequency space.
We will use the notations X � Y , Y � X, or X = O(Y ) to denote the

estimate |X| ≤ CY for some constant 0 < C < ∞, which may depend on
p, q, n and S1 or S2, but not on the functions. If X � Y and Y � X we
will write X ∼ Y . If the constant C depends on a special parameter other
than the above, we shall denote it explicitly by subscripts. For example, Cε

should be understood as a positive constant not only depending on p, q, n
and S1 or S2, but also on ε.

We denote by dσ the canonical Lebesgue measure of the standard para-
boloid S = {(τ, ξ) : τ = |ξ|2} in R × R

n−1, which is the pullback of n − 1-
dimensional Lebesgue measure dξ under the projection map (τ, ξ) �→ ξ; thus,∫

S

f(τ, ξ)dσ =

∫
Rn−1

f(|ξ|2, ξ)dξ.

By Sn−2 we denote the n − 1 dimensional unit sphere canonically embedded
in R

n−1, and by dµ its surface measure.
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We define a dyadic number to be any number R ∈ 2Z of the form R = 2j

where j is an integer. For each dyadic number R > 0, we define the dyadic
annulus in R

n−1,

AR :=
{
x ∈ R

n−1 : R/2 ≤ |x| ≤ R
}
.

We define the space-time norm Lq
tL

r
x of f on R × R

n−1 by

‖f‖Lq
t Lr

x(R×Rn−1) =

(∫
R

(∫
Rn−1

|f(t, x)|rd x

)q/r

d t

)1/q

,

with the usual modifications when q or r are equal to infinity, or when the
domain R×R

n−1 is replaced by a small region of space-time such as R×AR.
When q = r, we abbreviate it by Lq

t,x. Unless specified in this paper, all the
space-time integrals are taken over R × AR with dyadic R > 0, which will
be clear from the context.

We define the spatial Fourier transform of f on R
n−1 by

f̂(ξ) =

∫
Rn−1

f(x)e−ix·ξdx.

We use 1U to denote the indicator function of the set U , i.e.,

1U(x) =

{
1, for x ∈ U,

0, for x /∈ U.

For 1 ≤ p ≤ ∞, we denote the conjugate exponent of p by p′, i.e., 1/p +
1/p′= 1.

We start with stating the main theorem concerning the linear restriction
estimates, which is proven in Section 3.

Theorem 2.1. Suppose f ∈ L1 and R > 0 is a dyadic number. Then the
following sharp restriction estimates hold:

• for q = 2 and 2 ≤ p ≤ ∞,

‖(fdσ)∨‖L2
t,x

� min
{
R

1
2 , R

n−1
2

}‖f‖Lp(S).

• for q = 4 and 4 ≤ p ≤ ∞, ∀ ε > 0,

‖(fdσ)∨‖L4
t,x

�ε min
{
R−n−2

4
+ε, R

n−1
4

}‖f‖Lp(S).

• for q = 3p′ and 1 ≤ p < 4,

‖(fdσ)∨‖Lq
t,x

� min
{
R(n−2)( 1

q
− 1

2
), R

n−1
q
}‖f‖Lp(S).
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• for q = ∞ and 1 ≤ p ≤ ∞,

‖(fdσ)∨‖L∞
t,x

� min
{
R−n−2

2 , 1
}‖f‖Lp(S).

where A in {A, B} is given by the case where R ≥ 2 and B by R ≤ 1. Fur-
thermore, by interpolation we obtain the sharp restriction estimates Lp → Lq

when p, q are in the region determined by these lines (Figure 1).

L2 → L2

L4 → L4

L1 → L∞

Lp → Lq with q = 3p′ and 1 ≤ p < 4

1
p

1
q

11
2

1
4

1
4

1
2

0

I

II

III

Figure 1: Linear restriction estimates on R × AR.

Remark 2.2. We observe that the estimates above in each case are “con-
tinuous” in the sense that they match when R ∼ 1.

One can easily obtain the following corollary regarding the linear adjoint
restriction conjecture.

Corollary 2.3. Suppose f are cylindrically functions supported on the para-
boloid.

• If f ∈ LM , the linear adjoint restriction conjecture 1.1 holds with
constants depending on p, q, n and M whenever q > 2n

n−1
, 1

p
+ 1

q
≤ 1

and 1
p

+ 2n−1
q

< n − 1 (Figure 2).

• The linear adjoint restriction conjecture 1.1 is true for all f (Figure 2).
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1
p

1
q

n−1
2n

n−2
2(n−1)

n−1
2n

n
2(n−1)

0

L
2n

n−1 → L
2n

n−1

L
2(n−1)

n−2 → L
2(n−1)

n−2

L1 → L∞

Figure 2: Linear restriction estimates for LM (cf. the inside trapezoid,
the classical range of p and q for Conjecture 1.1).

Proof. By Theorem 2.1, the first assertion follows from scaling to f ∈ L1

and then summing all dyadic R and using interpolation.

To prove the second assertion, it is sufficient to obtain it under the bound-
ary conditions q > 2n

n−1
and n+1

q
= n−1

p′ since other estimates are easily
obtained by a standard argument of using the Hölder inequality. By inter-
polating between the L2 → L2 estimate and the Lp → Lq estimates on the
line segment q = 3p′ and 1 ≤ p < 4, we obtain that, for q > 2n

n−1
, n+1

q
= n−1

p′
and f ∈ L1,

‖(fdσ)∨‖Lq
t,x

� Rα(R)‖f‖Lp(S),

where α is the step function

α(R) =

{
−n−2

2
[1 − 2n

q(n−1)
], for R ≥ 2,

n−1
q

, for 0 < R ≤ 1.

We remark that the constant above CRα(R) does not depend on ε. By scaling,
when f ∈ LM , under the same conditions on p and q,

‖(fdσ)∨‖Lq
t,x

� (RM)α(RM)‖f‖Lp(S),

where α is defined as above. Then for all cylindrically symmetric f supported
on the paraboloid, we decompose it into a sum of dyadically supported
functions,

f =
∑

M : dyadic

f1{(τ,ξ):τ=|ξ|2,M≤|ξ|≤2M} =
∑
M

fM ,
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where fM := f1{(τ,ξ):τ=|ξ|2,M≤|ξ|≤2M}. Hence

‖(fdσ)∨‖Lq
t,x(R×Rn−1) =

(∑
R

‖(fdσ)∨‖q
Lq

t,x(R×AR)

)1/q

=

(∑
R

‖
∑
M

(fMdσ)∨‖q
Lq

t,x(R×AR)

)1/q

≤
(∑

R

(∑
M

‖(fMdσ)∨‖Lq
t,x(R×AR)

)q)1/q

�
(∑

R

(∑
M

(RM)α(RM)‖fM‖Lp(S)

)q)1/q

�
(∑

M

‖fM‖p
Lp(S)

)1/p

= ‖f‖Lp(S),

where R > 0 and M > 0 are both dyadic numbers; in the last inequality,
since

∀R > 0,
∑
M

(RM)α(RM) < ∞,

∀M > 0,
∑

R

(RM)α(RM) < ∞,

we have used the Schur’s test for exponents p and q satisfying the condition
q > 2n

n−1
> p ≥ 1. �

Remark 2.4. In the cylindrically symmetric case, we remark that q > 2n
n−1

is still sharp since it is given by the decay estimate |(dσ)∨(t, ξ)| ≤ Cn(1 +
|t| + |ξ|)(1−n)/2, see e.g., [14, Chapter 8, Theorem 3.1].

Next we state the theorem regarding the bilinear restriction estimates in
the cylindrically symmetric case, which is proven in Section 4.

Theorem 2.5. Suppose f ∈ L1 and g ∈ LM with 0 < M ≤ 1/4. R > 0 is a
dyadic number. Then the following sharp bilinear restriction estimates hold:

• for q = 1 and 2 ≤ p ≤ ∞,

‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� min
{
RM

n−2
2

−n−1
p , R

n
2 M

−1+ n−1
p′ , Rn−1M

−1+ n−1
p′
}‖f‖Lp(S1)‖g‖Lp(S2).
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• for q = 2 and 2 ≤ p ≤ ∞,

‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� min
{
R−n−2

2 M
n−1

2
−n−1

p , R
1
2 M

n−1
p′ , R

n−1
2 M

n−1
p′
}‖f‖Lp(S1)‖g‖Lp(S2).

• for q = 4 and 4 ≤ p ≤ ∞, ∀ ε > 0,

‖(fdσ1)
∨(gdσ2)

∨‖L4
t,x

�ε min
{
R− 3(n−2)

4
+εM

n
2
−n−1

p , R−n−2
4

+εM
n−1
p′ , R

n−1
4 M

n−1
p′
}‖f‖

Lp(S1)
‖g‖

Lp(S2)
.

• for q = 3p′ and 1 ≤ p < 4,

‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x

� min
{
R

−n−2
q′ M

n
2
−n−1

p , R(n−2)( 1
q
− 1

2
)M

n−1
p′ , R

n−1
q M

n−1
p′
}‖f‖Lp(S1)‖g‖Lp(S2).

• for q = ∞ and 1 ≤ p ≤ ∞,

‖(fdσ1)
∨(gdσ2)

∨‖L∞
t,x

� min
{
R−(n−2)M

n
2
−n−1

p , R−n−2
2 M

n−1
p′ , M

n−1
p′
}‖f‖Lp(S1)‖g‖Lp(S2).

where A in {A, B, C} is given by the case where R ≥ 1/M , B by 2 ≤ R ≤
1/M and C by R ≤ 1. Furthermore, by interpolation we obtain the sharp
restriction estimates Lp×Lp → Lq when p and q are in the region determined
by these lines (Figure 3).

1
p

1
q

1
2

1

1
4

0 1
4

1
2

1

I

II

III

IV

V Lp × Lp → Lq with q = 3p′ and 1 ≤ p < 4

L2 × L2 → L2

L2 × L2 → L1

L4 × L4 → L4

L1 × L1 → L∞

Figure 3: Bilinear restriction estimates on R × AR.
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Remark 2.6. We observe that R ≥ 1
M

if and only if A � B and R ≥ 1 if
and only if B � C. In other words, the estimates are “continuous” in the
sense that A ∼ B when R ∼ 1/M and B ∼ C when R ∼ 1.

As a corollary of Theorem 2.5, we see that the bilinear adjoint restriction
conjecture holds for exponents p and q in a larger region.

Corollary 2.7. Suppose f and g are defined as Theorem 2.5. Then the
bilinear adjoint restriction conjecture 1.2 holds with constants depending on
p, q, n, S1, S2 and M , whenever q > n

n−1
, 2

p
+ n

q
< n and 2

p
+ 1

q
≤ 2. These

estimates are sharp except for certain endpoints (Figure 4).

L2 × L2 → L
n

n−1

L2 × L2 → L
n+2

n

L
2(n−1)

n × L
2(n−1)

n → L
n−1
n−2

L1 × L1 → L∞

L
2n

n−1 × L
2n

n−1 → L
n

n−1

1
p

1
q

0 11
2

n−1
2n

n
2(n−1)

n−1
n

n
n+2

n−2
n−1

Figure 4: Bilinear restriction estimates for functions in L1 and LM with
0 < M ≤ 1/4 (cf. the inside pentagram, the classical range of p and q for
Conjecture 1.2).

Remark 2.8. When S is replaced by the lower third of the sphere, the
analogous results to Theorems 2.1 and 2.5 hold, which will be accomplished
in Section 5. This is essentially due to the common geometric property of
non-vanishing Gaussian curvature shared by the sphere and the paraboloid
and the fact that the sphere locally resembles the paraboloid, which can be
seen from the Taylor expansion

√
1 − |ξ|2 ∼ 1− c(|ξ|)|ξ|2 when |ξ| is small.

Remark 2.9. It is well known that the adjoint restriction estimates are
closely related to the Strichartz estimates for the nonlinear dispersive equa-
tions such as the Schrödinger equation and the wave equation, see e.g., [16]
and [14]. We will establish this connection in our case in Section 6.
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This paper is organized as follows: Section 3 is devoted proving Theo-
rem 2.1 and constructing counterexamples to show the linear estimates are
sharp. Section 4 is devoted proving Theorem 2.5 and constructing coun-
terexamples showing the bilinear estimates are sharp. In Section 5 we will
establish analogous results for the cylindrically symmetric functions sup-
ported on the lower third of the sphere or the cylindrically symmetric and
compact hypersurfaces of elliptic type. In Section 6 we will interpret the
restriction estimates in terms of solutions to the Schrödinger equation to
establish the Strichartz estimates.

3. Proof of Theorem 2.1: linear estimates and examples

For any cylindrically symmetric function f on the paraboloid, we set F (|ξ|)=
f(|ξ|2, ξ). We observe that (fdσ)∨(t, x) is also a cylindrically symmetric
function. To begin the proof of Theorem 2.1, we first investigate the behavior
of (fdσ)∨ on {|x| ≤ 1} via the following proposition.

Proposition 3.1. Suppose f ∈ L1. Then for any 1 ≤ p ≤ ∞, q ≥ max{2, p′}
and R ≤ 1, we have a sharp estimate

(3.1) ‖(fdσ)∨‖Lq
t,x

� R
n−1

q ‖f‖Lp(S).

Proof. If we change to polar coordinates, the left-hand side of (3.1) is

‖(fdσ)∨‖Lq
t,x

=

(∫ R

R/2

∫
R

∣∣∣∣∫
1≤|ξ|≤2

f(ξ)ei(x·ξ−t·|ξ|2)d ξ

∣∣∣∣q d t d x

)1/q

=

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)sn−2e−its2

∫
Sn−2

eirsωdµ(ω)ds

∣∣∣∣q dt rn−2dr

)1/q

,

where I = [1, 2]. Then we change variables back s → a1/2 to majorize it by(∫ R

R/2

∫
R

∣∣∣∣∫
I′

a(n−3)/2F (a1/2)(dµ)∨(ra1/2e1)e
−itada

∣∣∣∣q dt rn−2dr

)1/q

,

where I ′ = [1,
√

2] and e1 = (1, 0, . . . , 0) ∈ R
n−1.

Then by the Hausdorff-Young inequality when q > 2 or the Plancherel
theorem when q = 2, changing s → a = s2 and the fact that ‖(dµ)∨‖L∞

ω
� 1,

the left-hand side of (3.1) is further bounded by

R
n−2

q

(∫ R

R/2

‖F‖q

Lq′(I)
dr

)1/q

∼ R
n−1

q ‖F‖Lq′(I).

Then by the Hölder inequality and the fact ‖F‖Lp(I) ∼ ‖f‖Lp(S), (3.1) fol-
lows.
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Now we will construct a counterexample to show the estimate (3.1) is
sharp when 1 ≤ p ≤ ∞ and q ≥ max{2, p′}. We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−(n−2)1{1≤|ξ|≤2}eit0|ξ|2,

where t0 ∈ R. Then the left-hand side of (3.1) reduces to(∫ R

R/2

∫
R

∣∣∣∣∫
I

e−i(t−t0)s2

∫
Sn−2

eirsωdµ(ω)ds

∣∣∣∣q dt rn−2dr

)1/q

.

We choose r and t satisfying that

r ∈ [R/100, R/50], |t − t0| ≤ 1/100.

Then the left-hand side of (3.1) � R
n−1

q and its right-hand side � R
n−1

q .
Hence (3.1) is easily seen to be sharp. �

Before investigating the behavior of (fdσ)∨ on |x| ≥ 1, we shall exploit
the spatial rotation-invariant symmetry of f in the following proposition.

Lemma 3.2 (Fourier-Bessel formula). Suppose f is a cylindrically symmet-
ric function supported on the paraboloid. Then

(fdσ)∨(t, x)

= cnr−
n−2

2

∫
I

F (s)s
n−2

2 ei(rs−ts2)ds + cnr−
n−2

2

∫
I

F (s)s
n−2

2 e−i(rs+ts2)ds

+ cn

∫
I

F (s)sn−2e−its2−irs

∫ ∞

0

e−rsyy
n−4

2 [(y + 2i)
n−4

2 − (2i)
n−4

2 ]dyds

− cn

∫
I

F (s)sn−2e−its2+irs

∫ ∞

0

e−rsyy
n−4

2 [(y − 2i)
n−4

2 − (−2i)
n−4

2 ]dyds,

(3.2)

where r = |x| and I is the projection interval in the radial direction.

Proof. We first expand (fdσ)∨ in the polar coordinates,

(fdσ)∨(t, x) =

∫
{|ξ|∈I}

f(|ξ|2, ξ)ei(xξ−t|ξ|2)dξ =

∫
I

F (s)e−its2

sn−2(dµ)∨(rse1)ds,

where dµ is the surface measure of the sphere Sn−2.
On the one hand, the inverse Fourier transform of dµ is given by

(dµ)∨(ξ) = cn|ξ| 3−n
2 Jn−3

2
(|ξ|),

where Jn−3
2

is the Bessel function of order n−3
2

, see e.g. [14] or [15].
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On the other hand, by using the same argument as proving [15, Lemma 3.11],
we obtain that, for fixed m ≥ 0,

Jm(r) = cm
eir − e−ir

r1/2
+ cmrme−ir

∫ ∞

0

e−ryy
2m−1

2

[
(y + 2i)

2m−1
2 − (2i)

2m−1
2

]
d y

− cmrmeir

∫ ∞

0

e−ryy
2m−1

2

[
(y − 2i)

2m−1
2 − (−2i)

2m−1
2

]
d y.

Hence (3.2) holds after we combine these two estimates and set m= n−3
2

. �
Therefore we define the error term of (fdσ)∨ by

Ef(t, x) := ± cn

∫
I

F (s)sn−2e−its2∓irs×

×
∫ ∞

0

e−rsyy
n−4

2 [(y ± 2i)
n−4

2 − (±2i)
n−4

2 ]dyds,

where by ± we denote a sum of two terms where + and − appear alter-
natively. Heuristically, one should think of Ef as a term comparable to
r−n/2

∫
I
F (s)s

n−4
2 e−its2

ds, which comes from estimating the error term of

Bessel function Jm(r) by r−3/2. At the first approximation, this simplifica-
tion is easy to deal with and intuitively provides what the bound involving
the error term should be. However in this paper we will establish it rigor-
ously in the following proposition, which shows that the information about
its contribution to the linear estimates when |x| ≥ 1. It is acceptable com-
pared to the main term estimates established in the next propositions.

Proposition 3.3. Suppose f ∈ L1. Then for any q ≥ max{2, p′} and any
dyadic number R ≥ 2 and f ∈ Lp(S),

(3.3) ‖Ef‖Lq
t,x

� R−n
2
+ n−1

q ‖f‖Lp(S).

Proof. We set

E(r) :=

∫ ∞

0

e−ryy
n−4

2 [(y ± 2i)
n−4

2 − (±2i)
n−4

2 ]dy.

For r ≥ 1, we first estimate E(r) by repeating the proof of [15, Lemma 3.11]
for readers’ convenience.

|E(r)| ≤
∫ 1

0

e−ryy
n−4

2 |(y ± 2i)
n−4

2 − (±2i)
n−4

2 |dy+

+

∫ ∞

1

e−ryy
n−4

2 |(y + 2i)
n−4

2 − (2i)
n−4

2 |dy

=: I + II
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For I, where 0 ≤ y ≤ 1, by the mean value theorem we have |(y ± 2i)
n−4

2 −
(±2i)

n−4
2 | � y. For II, where y ≥ 1, we take y out and then use the mean

value theorem to obtain |(y ± 2i)
n−4

2 − (±2i)
n−4

2 | � y
n−4

2 . Then combining
these estimates above,

|E(r)| ≤
∫ 1

0

e−ryy
n−2

2 dy +

∫ ∞

1

e−ryyn−4dy

� r−n/2

∫ r

0

e−yy
n
2
−1dy + r−(n−3)

∫ ∞

r

e−yyn−4dy.

By the definition of the Gamma function Γ,

r−n/2

∫ r

0

e−yy
n
2
−1dy � Γ(n/2)r−n/2.

Then using integration by parts n − 4 times when n ≥ 4 and y−1 ≤ r−1

when n = 3, we obtain r−(n−3)
∫∞

r
e−yyn−4dy � e−rr−1.

Since e−rr−1+ n
2 is continuous on [1,∞) and decays to 0 as r → ∞,

e−rr−1 � r−
n
2 holds for r ≥ 1. Therefore

(3.4) |E(r)| � r−n/2.

Next let us turn to the estimate (3.3). By changing to polar coordinates,
the left-hand side of (3.3) is comparable to

(3.5)

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)sn−2e−its2∓irsE(rs) ds

∣∣∣∣q dt rn−2dr

)1/q

,

where I = [1, 2]. After changing variables s = a1/2, (3.5) is comparable to(∫ R

R/2

∫
R

∣∣∣∣∫
I′

F (a1/2)a
n−3

2 E(ra1/2)e∓ira1/2

e−ita da

∣∣∣∣q dt rn−2dr

)1/q

,

where I ′ = [1,
√

2]. Then by the Hausdorff-Young inequality when q > 2
or the Plancherel theorem when q = 2, changing variables back a = s2 and
s ∼ 1, the left-hand side of (3.5) is further majorized by(∫ R

R/2

∫
R

∣∣∣∣∫
I

|F (s)E(rs)|q′ ds

∣∣∣∣q/q′

dt rn−2dr

)1/q

.

Since rs ≥ 1 for any r ∈ [R/2, R] and s ∈ I, (3.4) and the Hölder inequality

give R−n
2
+ n−1

q ‖F‖Lp(I). Since ‖F‖Lp(I) ∼ ‖f‖Lp(S), (3.3) follows. �
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When |x| ≥ 1, we are left with estimating the main term of (fdσ)∨,

(3.6) Mf(t, x) := cnr
−n−2

2

∫
I

F (s)s
n−2

2 ei(±rs−ts2)ds,

where by ± we denote the summation of two terms. We call it the heuristic
approximation of (fdσ)∨. We are going to prove the positive part “esti-
mates” of Theorem 2.1 in the following four propositions. In the remainder
of this section, we will prove its negative part “sharpness” by certain coun-
terexamples.

Proposition 3.4 (q = 2 line). Suppose f ∈ L1. Then for q = 2, 2 ≤ p ≤ ∞
and R ≥ 2, we have a sharp estimate

(3.7) ‖(fdσ)∨‖L2
t,x

� R1/2‖f‖Lp(S).

Proof. We observe that it is sufficient to estimate the term of Mf with +
sign. In the propositions followed, we will make the same reduction unless
specified. Hence by the heuristic approximation (3.6) of (fdσ)∨ with +
sign, changing variables and then the Plancherel theorem in t followed by
the Hölder inequality,

‖(fdσ)∨‖L2
t,x

=

(∫
R/2≤|x|≤R

∫
R

|(fdσ)∨(t, x)|2d t d x

)1/2

∼
(∫ R

R/2

∫
R

∣∣∣∣r−n−2
2

∫
I

F (s)s
n−2

2 ei[rs−ts2]ds

∣∣∣∣2 dt rn−2dr

)1/2

=

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)s
n−2

2 eirse−ts2

ds

∣∣∣∣2 dt dr

)1/2

=

(∫ R

R/2

‖F‖2
L2

s(I)dr

)1/2

� R1/2‖f‖L2(S) � R1/2‖f‖Lp(S),

where I = [1, 2], 2 ≤ p ≤ ∞. Hence (3.7) follows. �

Now let us deal with the estimates on the line q = 4. The estimate
L4 → L4 is the endpoint of two dimensional (n = 2) linear adjoint restriction
conjecture and hence the classical TT ∗ approach, namely the Carleson-Sjölin
argument used in Proposition 3.6, unfortunately fails because we can not
apply the Hardy-Littlewood-Sobolev inequality at one step. Instead, we
can perform a Whitney-type decomposition to I to create some frequency
separation. Similar arguments can be found in [20], [22], [23].
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Proposition 3.5 (q = 4 line). Suppose f ∈ L1. Then for q = 4, 4 ≤ p ≤ ∞
and ε > 0 and R ≥ 2, we have a sharp estimate up to Rε,

(3.8) ‖(fdσ)∨‖L4
t,x

�ε R−(n−2)/4+ε‖f‖Lp(S).

Proof. By the same reasoning as that used in the proof of Proposition 3.4,
we will only prove the estimate when p = 4. By the heuristic approxima-
tion (3.6) of (fdσ)∨ with + sign,

‖(fdσ)∨‖2
L4

t,x
∼ R−(n−2)/2

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)s
n−2

2 ei(rs−ts2)ds

∣∣∣∣4 dt dr

)1/2

,

where I = [1, 2].

We set (Fdσ)∨(t, r) :=
∫

I
F (s)s

n−2
2 ei[rs−ts2]ds, which can be regarded as

the inverse space-time Fourier transform of f(τ, ξ)|ξ|n−2
2 restricted to the

parabola. To prove (3.8), it suffices to prove that, for any ε > 0,

(3.9)

(∫ R

R/2

∫
R

|(Fdσ)∨(Fdσ)∨|2 d t dr

)1/2

�ε Rε‖F‖2
L4.

Next we will perform a Whitney-type decomposition to I = [1, 2]. For each
j ≥ 0 we break up I into O(2j) dyadic intervals τ j

k of length 2−j, and write
τ j
k � τ j

k′ if τ j
k and τ j

k′ are not adjacent but have adjacent parents. For each
j ≥ 0, let F =

∑
F j

k where F j
k = F1τj

k
. Then

(Fdσ)∨(Fdσ)∨ =
∑

j

∑
k,k′:τ j

k�τj

k′

(F j
kdσ)∨(F j

k′dσ)∨.

From the triangle inequality, the left-hand side of (3.9) is bounded by∑
2j≤R

∥∥∥∥ ∑
k,k′:τ j

k�τj

k′

(F j
kdσ)∨(F j

k′dσ)∨
∥∥∥∥

L2
t,r(R×R)

+

+
∑
2j≥R

∑
k,k′:τ j

k�τj

k′

∥∥∥(F j
kdσ)∨(F j

k′dσ)∨
∥∥∥

L2
t,r(R×AR)

=: A + B.

We will first estimate A. By the quasi-orthogonality property of functions
among (F j

k dσ)∨(F j
k′dσ)∨[23, Lemma 6.1],

A �
∑
2j≤R

( ∑
k,k′:τ j

k�τj

k′

‖(F j
kdσ)∨(F j

k′dσ)∨‖2
L2

t,r(R×R)

)1/2

.
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By using the Plancherel theorem and the Cauchy-Schwarz inequality and
si ∼ 1 for i = 1, 2,

‖(F j
kdσ)∨(F j

k′dσ)∨‖2
L2

t,r(R×R) � ‖F j
k‖2

L2(Ij
k)
‖F j

k′‖2
L2(Ij

k′ )
‖dσj

k ∗ dσj
k′‖L∞,

where dσj
k and dσj

k′ are two arc measures of the parabola {τ = |ξ|2} in R×R

supported on τ j
k and τ j

k′ , respectively.
On the one hand, from the geometric properties of the paraboloid,

‖dσj
k ∗ dσj

k′‖L∞ � 2j.

On the other hand, by the Hölder inequality, ‖F j
k‖L2(Ij

k) ≤ 2−j/4‖F j
k‖L4(Ij

k).

Thus after combining these estimates,

A �
∑
2j≤R

( ∑
k,k′:τ j

k�τj

k′

‖F j
k‖2

L4(Ij
k)
‖F j

k′‖2
L4(Ij

k′ )

)1/2

.

We also observe that for each k, there are O(1) k′ such that τ j
k � τ j

k′. Hence
by the Cauchy-Schwarz inequality, for any ε > 0,

A � (log R)‖F‖2
L4 �ε Rε‖F‖2

L4.

Next let us estimate B. On the one hand, by the Cauchy-Schwarz inequality,

‖(F j
k′dσ)∨‖L∞

t,x
� 2−j/2‖F j

k′‖L2(τ j

k′ )
.

On the other hand, by the Plancherel theorem in t,

‖(F j
kdσ)∨‖L2

t,r(R×AR) =

(∫ R

R/2

∫
R

|(F j
kdσ)∨|2dt dr

)1/2

� R1/2‖F j
k‖L2(τ j

k).

Since there are O(1) k′ such that τ j
k � τ j

k′ for each k, by using the Cauchy-
Schwarz inequality,

B � R1/2
∑
2j≥R

∑
k,k′:τ j

k�τj

k′

2−j/2‖F j
k′‖L2(τ j

k′ )
‖F j

k‖L2(τ j
k) � R1/2

∑
2j≥R

2−j/2‖F‖2
L2.

Thus summing in j and using the Hölder inequality, (3.9) follows. �
In contrast to the proof of the estimate L4 → L4 in Proposition 3.5, the

estimates Lp → Lq when q = 3p′ and 1 ≤ p < 4 can be proven by the
Carleson-Sjölin argument or equivalently the TT ∗ method. Such arguments
can also be used to prove the non-endpoint Strichartz estimates as in [8].



1144 S. Shao

Proposition 3.6 (q = 3p′ line). Suppose f ∈ L1. Then for 1 ≤ p < 4,
q = 3p′ and R ≥ 2, we have a sharp estimate

(3.10) ‖(fdσ)∨‖Lq
t,x

� R(n−2)(1/q−1/2)‖f‖Lp(S).

Proof. By the heuristic approximation (3.6) with + sign,

‖(fdσ)∨‖Lq
t,x

∼ R(n−2)( 1
q
− 1

2
)

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)s
n−2

2 ei(rs−ts2)ds

∣∣∣∣q dt dr

)1/q

,

where I = [1, 2].

Setting (Fdσ)∨(t, r) :=
∫

I
F (s)s

n−2
2 ei(rs−ts2)ds, we see that it suffices to

prove

(3.11)

(∫ R

R/2

∫
R

∣∣∣∣∫
I

F (s)s
n−2

2 ei(rs−ts2)ds

∣∣∣∣q dt dr

)1/q

� ‖F‖Lp(S).

Squaring (Fdσ)∨, we obtain

{(Fdσ)∨(t, r)}2 =

∫
I×I

F (s1)F (s2)(s1s2)
n−2

2 ei(r·(s1+s2)−t(s2
1+s2

2))ds1ds2,

which is an oscillatory integral with a phase function r(s1+s2)−t(s2
1+s2

2). Its
Hessian is 2(s2−s1) which vanishes when s1 = s2. But we can make a change
of variables (s1, s2) → (a, b) with a = s1 + s2, b = s2

1 + s2
2. It is easy to see

that the Jacobian is 2(s2 − s1). Let Ω be the image in R×R of I × I under
such change of variables. Then {(Fdσ)∨(t, r)}2 =

∫
Ω

F̃ (a, b)ei(ra−tb)da db,

where F̃ (a, b) = F (s1)F (s2)(s1s2)
n−2

2 /|s1 − s2| is a function of s1 and s2.

Setting q = 2r′. Since r′ > 2, by the Hausdorff-Young inequality and
si ∼ 1 for i = 1, 2,

‖(Fdσ)∨(t, r)‖2
Lq(R×AR) ≤ ‖{(Fdσ)∨(t, r)}2‖Lr′(R×R)

≤
(∫

Ω

|F̃ (s1, s2)|rds1ds2

)1/r

∼
(∫

I2

|F (s1)|r|F (s2)|r 1

|s1 − s2|r−1
ds1ds2

)1/r

=

(∫
I

|F (s1)|r
∫

I

|F (s2)|r 1

|s1 − s2|1−(2−r)
ds2ds1

)1/r

∼
(∫

I

|F (s1)|rI2−r(|F |r)(s1)ds1

)1/r

,
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where I2−r is the Riesz potential of order 2−r defined via the spatial Fourier

transform by Îsf(ξ) = |ξ|−sf̂(ξ). Since ‖f‖Lp ∼ ‖F‖Lp(I), it then suffices to
prove that (∫

I

|F |rI2−r(|F |r)ds1

)1/r

� ‖F‖2
Lp(I).

By the Hölder inequality, we obtain∫
I

|F |rI2−r(|F |r)ds1 ≤
∥∥|F |r∥∥

Lp/r(I)

∥∥I2−r(|F |r)∥∥
L1/(1−r/p)(I)

.

Since
∥∥|F |r∥∥1/r

Lp/r(I)
= ‖F‖Lp(I), it suffices to show ‖I2−r(|F |r)‖L1/(1−r/p) �∥∥|F |r∥∥

Lp/r(I)
, which will follow from the Hardy-Littlewood-Sobolev inequal-

ity. Hence the inequality (3.11) follows. �

Proposition 3.7 (q = ∞ line). Suppose f ∈L1. Then for q = ∞, 1 ≤ p ≤ ∞
and R ≥ 2, we have a sharp estimate

(3.12) ‖(fdσ)∨‖L∞
t,x

� R−(n−2)/2‖f‖Lp(S).

Proof. By the heuristic approximation (3.6) of (fdσ)∨ with + sign and the
Hölder inequality, for any p ≥ 1,

‖(fdσ)∨‖L∞
t,x

∼ R−(n−2)/2
∥∥∥∫

I

F (s)s
n−2

2 ei(rs−ts2)ds
∥∥∥

L∞
t,r

� R−(n−2)/2‖f‖Lp(S).

�
Now we see that the restriction estimates in Theorem 2.1 follow from

Propositions 3.3, 3.4, 3.5, 3.6 and 3.7.
The remainder of this section is devoted constructing counterexamples.

In view of the propositions above, we will use the main term of (fdσ)∨,

Mf(t, x) = cnr−
n−2

2

∫
I

F (s)s
n−2

2 ei(±rs−ts2)ds,

since the bound B given by the error terms are much smaller than that by
the main terms when R is sufficiently large .

Our first counterexample is of Knapp-type, which is designed to show the
estimates in the region I in Figure 1 determined by the estimates L2 → L2,
L4 → L4 and L1 → L∞ are sharp. The strength of the standard Knapp
example or its variants lie in the idea of using both spatial localization and
frequency localization. In this example, we will only show that the estimate
L2 → L2 is sharp since the computations for others are similar.
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Example 3.8 (I). If R ≥ 2, the L2 → L2 estimate goes back to (3.7) in
Proposition 3.4. We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−(n−2)/21{1≤|ξ|≤1+R−1/2}e
−ir0|ξ|+it0|ξ|2,

where r0 ∈ [R/2, R] and t0 ∈ R. Thus the left-hand side of (3.7) is compa-
rable to ⎛⎝∫ R

R/2

∫
R

∣∣∣∣∣
∫ 1+R−1/2

1

e[−i(t−t0)s2+i(±r−r0)s]ds

∣∣∣∣∣
2

dt dr

⎞⎠1/2

,

where by ± it denotes a summation of two terms. We observe that∣∣∣∣∣
∫ 1+R−1/2

1

e[−i(t−t0)s2+i(±r−r0)s]ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1+R−1/2

1

e−i{(t−t0)(s−1)2−[(±r−r0)−2(t−t0)](s−1)}ds

∣∣∣∣∣ ,
and hence choose r ∈ [R/2, R] and t ∈ R such that

R/100 ≤ t − t0 ≤ R/50,

|(r − r0) − 2(t − t0)](s − 1)| ≤ R1/2/100.

Thus r and t are in the intersection region of two tubes whose size is of
R1/2 × R.

With this choice of r and t, |(t − t0)(s − 1)2−[(r − r0) − 2(t − t0)](s − 1)|
is less than a small number, say π/6. Then by direct computations, the term
with + sign will be bounded below by R1/4. However for the term with −
sign, given this choice of r and t, we see that the roots of the quadratic
polynomial, (t − t0)(s − 1)2 − [(r + r0) + 2(t − t0)](s − 1), will be strictly
less than −1, which consequently are not located in the interval [0, R1/2].
Thus by the principle of non-stationary phase, we see that the term with −
sign will be bounded above by ON(R−N) for any N > 0. Then by choosing
N sufficiently large, from the triangle inequality the left-hand side of (3.7)
� R1/4. Also it is easy to see that its right-hand side � R1/4. Thus we see
that the estimate L2 → L2 when R ≥ 2 is sharp.

Our second counterexample is to show that the estimates in the region II
in Figure 1 determined by the lines q = 2 and q = 4 are sharp. In this
example we will only show the estimates on the line q = 2 in Proposition 3.4
are sharp by using the principle of stationary phase.
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Example 3.9 (II). If R ≥ 2, the estimate Lp → L2 when 2 ≤ p ≤ ∞ goes
back to Proposition 3.4. We take the example

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−n−2
2 1{1≤|ξ|≤2}e−ir0|ξ|+it0|ξ|2,

where r0 ∈ [R/2, R] and t0 ∈ R. Then the left-hand side of (3.7) is compa-
rable to(∫ R

R/2

∫
R

∣∣∣∣∫
I

e−i{(t−t0)(s−1)2−[(±r−r0)−2(t−t0)](s−1)}ds

∣∣∣∣2 dt dr

)1/2

.

We choose r ∈ [R/100, R/50] and t ∈ R such that (r − r0)/2(t − t0) ∈ [1, 2].
Then

−−[(r − r0) − 2(t − t0)]

2(t − t0)
∈ [0, 1], −(r + r0) + 2(t − t0)

2(t − t0)
< −1.

Then from the principles of stationary phase and non-stationary phase,∣∣∣∣∫
I

e−i{(t−t0)(s−1)2−[(r−r0)−2(t−t0)](s−1)}ds

∣∣∣∣ � R−1/2,∣∣∣∣∫
I

e−i{(t−t0)(s−1)2+[(r+r0)+2(t−t0)](s−1)}ds

∣∣∣∣ �N R−N ,

for any N ≥ 0. Then if choosing N sufficiently large, the triangle inequality
gives(∫ R

R/2

∫
R

∣∣∣∣∫
I

e−i{(t−t0)(s−1)2−[(±r−r0)−2(t−t0)](s−1)}ds

∣∣∣∣2 dt dr

)1/2

� R1/2.

Its right-hand side � R1/2 for 2 ≤ p ≤ ∞. Thus we see that the estimates
on the line q = 2 when R ≥ 2 are sharp.

The third counterexample shows that the estimates inside the region III
determined by lines q = 4, q = 3p′ and q = ∞ in Figure 1 are sharp. In this
example, we will only carry out the computations for the estimates Lp → Lq

on the line q = ∞ in Proposition 3.7.

Example 3.10 (III). If R ≥ 2, the estimate Lp → L∞ when 1 ≤ p ≤ ∞
goes back to Proposition 3.7. We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−n−2
2 1{1≤|ξ|≤2}e−ir0|ξ|+it0|ξ|2,

where r0 ∈ [R/2, R] and t0 ∈ R. They are chosen such that ‖(fdσ)∨‖L∞
t,x

can be realized at (t0, x0) with r0 = |x0|.
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Hence the left-hand side of the inequality (3.12) is comparable to

R−n−2
2

∣∣∣∣∫
I

ei(±r0−r0)sds

∣∣∣∣ .
Since r0 ∈ [R/2, R],

∣∣∫
I
e−i2r0sds

∣∣ � R−N holds for any N ≥ 0. Then the

triangle inequality yields R−n−2
2

∣∣∫
I
ei(±r0−r0)sds

∣∣ � R−n−2
2 . On the other

hand, the right-hand side of (3.12)� R−(n−2)/2 for 1 ≤ p ≤ ∞. Hence the
estimates on the line q = ∞ when R ≥ 2 are sharp.

For lines q = 4 and q = 3p′, the estimates go back to (3.8) and (3.10).
We choose r ∈ [R/2, R] and t such that 2 ≤ r−r0 ≤ 4, 2 ≤ t− t0 ≤ 4. Then
by the same reasoning as Example 3.8, these estimates are sharp.

Thus the proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.5: bilinear estimates and exam-

ples

For f ∈ L1 and g ∈ LM with 0 < M ≤ 1/4, we set I1 = [1, 2], IM = [M, 2M ]
and F (|ξ|) = f(|ξ|2, ξ), G(|ξ|) = g(|ξ|2, ξ). In the bilinear case, 1 and 1/M
will bring in two natural separation scales in the physical space. In light
of the proof of Theorem 2.1, we will have the following permutations of the
product (fdσ1)

∨(gdσ2)
∨.

• when |x| = r ≥ 1/M ,

|(fdσ1)
∨(gdσ2)

∨| = |MfMg + MfEg + MgEf + EfEg|.
• when 1 ≤ |x| = r ≤ 1/M ,

|(fdσ1)
∨(gdσ2)

∨| = |Mf(gdσ2)
∨ + Ef(gdσ2)

∨|.
• when |x| ≤ 1, |(fdσ1)

∨(gdσ2)
∨| remains unchanged.

We are going to prove the “estimates” part of Theorem 2.5 via the following
three propositions and its “sharpness” part by building counterexamples in
three cases followed.

Proposition 4.1. Suppose f ∈ L1 and g ∈ LM with 0 < M ≤ 1/4, and
R ≤ 1 is a dyadic number. Then we have sharp estimates

• for q = 1 and 2 ≤ p ≤ ∞,

(4.1) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� Rn−1M
−1+ n−1

p′ ‖f‖Lp(S1)‖g‖Lp(S2).

• for q ≥ max{2, p′},
(4.2) ‖(fdσ1)

∨(gdσ2)
∨‖Lq

t,x
� R

n−1
q M

n−1
p′ ‖f‖Lp(S1)‖g‖Lp(S2).



Sharp linear and bilinear restriction estimates 1149

Proof. If we change to the polar coordinates, the left-hand side of (4.1)
reduces to∫ R

R/2

∫
R

∣∣∣∣∫
I1

F (s1)e
−its2

1(dµ)∨(rs1e1)s
n−2
1 ds1×

×
∫

IM

G(s2)e
−its2

2(dµ)∨(rs2e1)s
n−2
2 ds2

∣∣∣∣ dtrn−2dr.(4.3)

We use the Cauchy-Schwarz inequality and the Plancherel theorem in t to
bound (4.3) by

(4.4) Rn−1Mn−2‖F‖L2(I1)M
−1/2‖G‖L2(IM ).

Then by the Hölder inequality, (4.4) is bounded by

Rn−1Mn−2−n−1
p ‖f‖Lp(S1)‖g‖Lp(S2).

Hence the inequality (4.1) follows.
To prove (4.2), by the Hölder inequality,

‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x

� ‖(fdσ1)
∨‖Lq

t,x
‖(gdσ2)

∨‖L∞
t,x

.

On the one hand, by Proposition 3.1,

‖(fdσ1)
∨‖Lq

t,x
� R

n−1
q ‖f‖Lp(S1).

On the other hand, by the Hölder inequality,

‖(gdσ2)
∨‖L∞

t,x
� M

n−1
p′ ‖g‖Lp(S2).

Hence the inequality (4.2) follows. �
The following proposition concerns the case where 1 ≤ |x| ≤ 1/M .

Proposition 4.2. Suppose f ∈ L1 and g ∈ LM with 0 < M ≤ 1/4, and
2 ≤ R ≤ 1/M . Then

• for q = 1 and 2 ≤ p ≤ ∞,

(4.5) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� R
n
2 M

−1+ n−1
p′ ‖f‖Lp(S1)‖g‖Lp(S2).

• for q ≥ max{2, p′},

(4.6) ‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x

� ‖R∗‖Lp→LqM
n−1
p′ ‖f‖Lp(S1)‖g‖Lp(S2),

where ‖R∗‖Lp→Lq denotes the operator norm of f → (fdσ)∨ from
Lp(S1) to Lq

t,x given by Theorem 2.1.
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Proof . To prove (4.5), it suffices to prove the following inequalities by
Lemma 3.2,∫ R

R/2

∫
R

∣∣Mf(t, re1)
∣∣∣∣(gdσ2)

∨(t, re1)
∣∣dt r

n−2

dr�R
n
2 M

−1+ n−1
p′ ‖f‖

Lp(S1)
‖g‖

Lp(S2)
,

and∫ R

R/2

∫
R

∣∣Ef(t, re1)
∣∣∣∣(gdσ2)

∨(t, re1)
∣∣dt r

n−2

dr�R
n
2
−1M

−1+ n−1
p′ ‖f‖

Lp(S1)
‖g‖

Lp(S2)
.

These two estimates above can be proven along similar lines as proving (4.1).
We choose to prove the second. The Hölder inequality yields,

‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x

� ‖(fdσ1)
∨‖Lq

t,x
‖(gdσ2)

∨‖L∞
t,x

.

Then by using the same reasoning as in the proof of (4.2), the inequality (4.6)
follows. We note that the error term Ef gives a better decay estimate as
expected. �

Next let us concentrate on the case where |x| ≥ 1/M . As indicated at
the beginning of this section, we will have to deal with estimates involving
|MfMg|, |MfEg|, |EfMg| and |EfEg|.
Proposition 4.3 (Bilinear main term estimates). Suppose f ∈ L1 and
g ∈ LM with 0 < M ≤ 1/4, and R ≥ 1/M . Then

• for q = 1 and 2 ≤ p ≤ ∞,

(4.7) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� RM
n−2

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

• for q = 2 and 2 ≤ p ≤ ∞,

(4.8) ‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� R−n−2
2 M

n−1
2

−n−1
p ‖f‖Lp(S1)‖g‖Lp(S2).

• for q ≥ max{4, 3p′} and 1 ≤ p ≤ ∞,
(4.9)

‖(fdσ1)
∨(gdσ2)

∨‖Lq
t,x

�‖R∗‖Lp→LqR−n−2
2 M

n
2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

Proof. To prove (4.7), it suffices to prove the following inequalities

‖MfMg‖L1
t,x

� RM
n−2

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).(4.10)

‖EfEg‖L1
t,x

� R−1M
n−4

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

‖MfEg‖L1
t,x

� M
n−4

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

‖EfMg‖L1
t,x

� M
n−2

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).
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In what follows we will only prove (4.10) since other estimates involving
error terms will follow similarly. In fact these inequalities give better decay
estimates than those given by (4.10). By the heuristic approximation (3.6)
with + sign, the left-hand side of (4.10) reduces to

(4.11)

∫ R

R/2

∫
R

∣∣∣∣∫
I1

F (s1)s
n−2

2
1 ei(rs1−ts2

1)ds1

∫
IM

G(s2)s
n−2

2
2 ei(rs2−ts2

2)

∣∣∣∣ dt dr.

After changing variables and using the Cauchy-Schwarz inequality and the
Plancherel theorem in t, we see that (4.11) is bounded by

RM
n−3

2 ‖F‖L2(I1)‖G‖L2(IM ) ∼ RM− 1
2‖f‖L2(S1)‖g‖L2(S2).

Then from the Hölder inequality, the inequality (4.10) follows. Similarly, to
prove (4.8), it suffices to prove the following inequalities

‖MfMg‖L2
t,x

� R−n−2
2 M

n−1
2

−n−1
p ‖f‖Lp(S1)‖g‖Lp(S2).(4.12)

‖EfEg‖L2
t,x

� R−n+1
2 M

n−2
2

−n−1
p ‖f‖Lp(S1)‖g‖Lp(S2).

‖MfEg‖L2
t,x

� R−n
2
+ 1

2 M
n−2

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

‖EfMg‖L2
t,x

� R−n
2
+ 1

2 M
n
2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

Since the estimates above involving error terms give better decay estimates
than (4.12), we will also only prove (4.12). We rewrite its left-hand side as

R−n−2
2

(∫ R

R/2

∫
R

∣∣∣∣∫
I1×IM

F (s1)G(s2)×

×(s1s2)
n−2

2 ei(r(s1+s2)−t(s2
1+s2

2)ds1ds2

∣∣∣2 dtdr

)1/2

.

Setting x := s1 + s2 and y := s2
1 + s2

2, we observe that the Jacobian ∼
|1 − M | ∼ 1 provided M ≤ 1/4. From the Plancherel theorem both in t
and r, the left-hand side of (4.12) is further majorized by

R−n−2
2 M

n−2
2 ‖F‖L2(I1)‖G‖L2(IM ) ∼ R−n−2

2 ‖f‖L2(S1)‖g‖L2(S2).

By using the Hölder inequality again, we see that (4.12) follows. Finally we
prove (4.9). In fact, it suffices to prove the following two inequalities

‖(fdσ1)
∨Mg‖Lq

t,x
� ‖R∗‖Lp→LqR−n−2

2 M
n
2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

‖(fdσ1)
∨Eg‖Lq

t,x
� ‖R∗‖Lp→LqR−n

2 M
n
2
−1−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2).

The first follows from the Hölder inequality and the linear estimate in The-
orem 2.1, and the second follows along similar lines. �



1152 S. Shao

Therefore the restriction estimates in Theorem 2.5 are obtained from
Propositions 4.1, 4.2 and 4.3.

In the remainder of this section we will construct counterexamples to
show these estimates are sharp or nearly sharp up to Rε. Since the error
terms give much better decay estimates, we will use the heuristic approxi-
mations (3.6) of (fdσ1)

∨ and (gdσ2)
∨ when computing these examples. We

will distinguish them into three cases as follows.

Case 1: R ≥ 1/M .

We start with a common example to show the estimates in the region I
in Figure 3 determined by L2 ×L2 → L1, L2 ×L2 → L2 and L1 ×L1 → L∞

are sharp by using the idea coming from standard Knapp example. In the
following example, we will only do the computations when p = 2 and q = 1.

Example 4.4 (I). If R ≥ 1/M , RM− 1
2 is best possible in the following

inequality

(4.13) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� RM− 1
2‖f‖L2(S1)‖g‖L2(S2).

We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤1+R−1M},

g(|η|2, η) = G(|η|) = |η|−n−2
2 ei(−r0|η|+t0|η|2)1{M≤|η|≤M+R−1},

where r0 ∈ [R/2, R] and t0 ∈ R. By the heuristic approximation (3.6), the
left-hand side of (4.13) is comparable to

∫ R

R/2

∫
R

∣∣∣∣∣
∫ 1+R−1M

1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

∫ M+R−1

M

ei[(±r−r0)s2−(t−t0)s2
2]ds2

∣∣∣∣∣ dt dr,

which we understood is a summation of four terms. For the integral on
[1, 1 + R−1M ], we will choose r and t such that R/100 ≤ r− r0 ≤ R/50 and
RM−1/100 ≤ t − t0 ≤ RM−1/50. Then we have∣∣∣[(r − r0) − 2(t − t0)](s1 − 1) − (t − t0)(s1 − 1)2

∣∣∣ ≤ 1,

−(r + r0) + 2(t − t0)

2(t − t0)
= −

(
1 +

r − r0

2(t − t0)

)
/∈ [0, R−1M ].

Hence the integral on [1, 1 + R−1M ] with + sign is � R−1M while the
one with − sign �N R−N for any N ≥ 0. Similarly for the integral on
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[M, M +R−1] with this choice of r and t. Then if N is sufficiently large, the
triangle inequality gives∫ R

R/2

∫
R

∣∣∣∣∣
∫ 1+R−1M

1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

×
∫ M

M−R−1

ei[(±r−r0)s2−(t−t0)s2
2]ds2

∣∣∣∣ dt dr � 1.

Then by direct computations, the right-hand side of (4.13) � 1. Thus we
see that the estimate L2 × L2 → L1 is sharp when R ≥ 1/M .

By modifying the above “narrow” Example 4.4, namely taking a linear
combination to create a “spreading-out” example, we will show that the
estimates in the region II in Figure 3 determined by the lines q = 1 and
q = 2 are sharp by using the Khintchine inequality. A similar construction
by Lee and Vargas can be found in [10] to show the sharp null form estimates
for the wave equation. In the following example we will only do computations
for the estimates on the line q = 1.

Example 4.5 (II). If R ≥ 1/M , RM (n−2)/2−(n−1)/p is best possible in the
following inequality

(4.14) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� RM
n−2

2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2),

where 2 ≤ p ≤ ∞.
We define two index sets J := {j ∈ Z : 1 ≤ j ≤ [RM−1]} and K := {k ∈

Z : 1 ≤ k ≤ [RM ]}, where [x] denotes the biggest integer which is less than
or equal to x ∈ R. For each j ∈ J, k ∈ K we define

fj(|ξ|2, ξ) = Fj(|ξ|) = |ξ|n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1+(j−1)R−1M≤|ξ|≤1+jR−1M},

gk(|η|2, η) = Gk(|η|) = |η|−n−2
2 ei(−r0|η|+t0|η|2)1{M+(k−1)R−1≤|η|≤M+kR−1}.

Also we set f =
∑

j∈J εjfj and g =
∑

k∈K ε̃kgk, where {εj : j ∈ J} and
{ε̃k : k ∈ K} are sets of i.i.d. (independent identically distributed) random
variables taking ±1 with an equal probability 1/2. Note that fj and gk are
“narrow”, disjoint and in the form of Example 4.4; but f and g “spread out”
and support on the whole set S1 and S2. By the Khintchine inequality, we
estimate the left-hand side of (4.14) by

(4.15) E

(
‖(fdσ1)

∨(gdσ2)
∨‖L1

t,x

)
∼ ‖(

∑
j,k

|(fjdσ1)
∨(gkdσ2)

∨|2)1/2‖L1
t,x

,
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where E(X) denotes the expectation of the random variable X. By the
heuristic approximation (3.6), the right-hand side of (4.15) is comparable to∫ R

R/2

∫
R

(∑
j,k

∣∣∣∣∣
∫ aj

aj−R−1M

Fj(s1)e
i[(±r−r0)s1−(t−t0)s2

1]ds1×

×
∫ bk

bk−R−1

Gk(s2)e
i[(±r−r0)s2−(t−t0)s2

2]ds2

∣∣∣∣2
)1/2

dt dr,(4.16)

where aj = 1+jR−1M and bk = M+kR−1, and by ± we denote a summation
of four terms. We choose r and t such that R/100 ≤ r − r0 ≤ R/50 and
RM−1 ≤ t−t0 ≤ RM−1/50. By this choice of r and t and similar discussions
as in Example 4.4, the triangle inequality gives,∣∣∣∣ ∫ aj

aj−R−1M

Fj(s1)e
i[(±r−r0)s1−(t−t0)s2

1]ds1×

×
∫ bk

bk−R−1

Gk(s2)e
i[(±r−r0)s2−(t−t0)s2

2]ds2

∣∣∣∣ � R−2M.

Then (4.16) is bounded below by R2M−1(|J ||K|)1/2R−2M , i.e., (|J ||K|)1/2.
Here |J | ∼ RM−1 denotes the cardinality of the index set J , similarly for
|K| ∼ MR. Hence we obtain that the left-hand side of (4.14) is � R. On
the other hand, the right-hand side of (4.14) � R for 2 ≤ p ≤ ∞. Hence
the estimates on the line q = 1 when R ≥ 1/M are sharp.

The following example shows that the estimates in the region III in
Figure 3 determined by the lines q = 2 and q = 4 are sharp by the principle
of stationary phase. We do computations when q = 2.

Example 4.6 (III). If R ≥ 1/M , R−n−2
2 M

n−1
2

−n−1
p is best possible in the

following inequality.

(4.17) ‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� R−n−2
2 M

n−1
2

−n−1
p ‖f‖Lp(S1)‖g‖Lp(S2),

where 2 ≤ p ≤ ∞.
We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤2},

g(|η|2, η) = |η|−n−2
2 ei(−r0|η|+t0|η|2)1{M≤|η|≤2M},

where r0 ∈ [R/2, R] and t0 ∈ R. By the heuristic approximation (3.6), the
left-hand side of (4.17) is comparable to

R−n−2
2

(∫ R

R/2

∫
R

∣∣∣∣∫
I1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

∫
IM

ei[(±r−r0)s2−(t−t0)s2
2]ds2

∣∣∣∣2dt dr

)1/2

.
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We choose r ∈ [R/2, R] and t such that M−1/100 ≤ r − r0 ≤ M−1/50
and (r − r0)/2(t − t0) ∈ I1. Then from the principles of stationary phase
and non-stationary phase, for any N ≥ 0,∣∣∣∣∫

I1

ei[(r−r0)s1−(t−t0)s2
1]ds1

∣∣∣∣ � M1/2,∣∣∣∣∫
I1

e−i[(r+r0)s1+(t−t0)s2
1]ds1

∣∣∣∣ �N MN ,∣∣∣∣∫
s2∼M

ei[(r−r0)s2−(t−t0)s2
2]ds2

∣∣∣∣ � M,∣∣∣∣∫
s2∼M

e−i[(r+r0)s2+(t−t0)s2
2]ds2

∣∣∣∣ �N MN .

Then from the triangle inequality, the left-hand side of (4.17)�R− (n−2)
2 M1/2.

By direct computations, the right-hand side of (4.17) � R− (n−2)
2 M1/2. Thus

the estimates on the line q = 2 when R ≥ 1/M are sharp.

The next example will show that the estimates in the region IV in Fi-
gure 3 determined by L2 × L2 → L2, L4 × L4 → L4 and L1 × L1 → L∞

are sharp up to Rε by using the idea of Knapp example. We will only do
computations for the estimate when p = q = 2.

Example 4.7 (IV). If R ≥ 1/M , R−n−2
2 is best possible in the following

inequality.

(4.18) ‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� R−n−2
2 ‖f‖L2(S1)‖g‖L2(S2).

We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤1+M1/2},

g(|η|2, η) = |η|−n−2
2 ei(−r0|η|+t0|η|2)1{M≤|η|≤2M},

where r0 ∈ [R/2, R] and t0 ∈ R. By the heuristic approximation (3.6), the
left-hand side of (4.18) is comparable to

R−n−2
2

(∫ R

R/2

∫
R

∣∣∣∣ ∫ 1+M
1
2

1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

∫
IM

ei[(±r−r0)s2−(t−t0)s2
2]ds2

∣∣∣∣2dt dr

)1/2

.

We choose r ∈ [R/2, R] and t ∈ R such that

|(r − r0) − 2(t − t0)| ≤ M−1/2,

|(r − r0) − 2M(t − t0)| ≤ M−1,

M−1/100 ≤ t − t0 ≤ M−1/50,
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i.e., r and t are located in the intersection area of two tubes which has size
M−1 × M−1/2. Then by similar discussions as Example 4.4, the left-hand
side of (4.18) � R−(n−2)/2M3/4; by direct computations the right-hand side
of (4.18) � R−(n−2)/2M3/4. Hence we see that the estimate L2 × L2 → L2

when R ≥ 1/M is sharp.

The next example shows that the estimates in the region V in Figure 3
determined by the lines q = 4, q = ∞ and q = 3p′ are sharp. In this
example, we will do the computations for the estimates on the line q = ∞.

Example 4.8 (V). If R ≥ 1/M , R−(n−2) × M
n
2
−n−1

p is best possible in the
following inequality

(4.19) ‖(fdσ1)
∨(gdσ2)

∨‖L∞
t,x

� R−(n−2)M
n
2
−n−1

p ‖f‖Lp(S1)‖g‖Lp(S2),

where 1 ≤ p ≤ ∞.
We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤2},

g(|η|2, η) = |η|−n−2
2 ei(−r0|η|+t0|η|2)1{M≤|η|≤2M},

where r0 ∈ [R/2, R] and t0 ∈ R satisfying the L∞ norms ‖(fdσ)∨‖L∞
t,x(R×AR)

and ‖(gdσ)∨‖L∞
t,x(R×AR) can be realized at (t0, x0) with |x0| = r0. By the

heuristic approximation (3.6), the left-hand side of (4.19) is comparable to

R−(n−2)

∣∣∣∣∫
I1

ei(±r0−r0)s1ds1

∫
IM

ei(±r0−r0)s2ds2

∣∣∣∣ .
Then by the same reasoning as Example 3.10, the above � R−(n−2)M . On
the other hand, the right-hand side of (4.19) � R−(n−2)M . Hence the esti-
mates on the line q = ∞ when R ≥ 1/M are sharp.

For lines q = 4, 4 ≤ p ≤ ∞ or q = 3p′, 1 ≤ p < 4, the estimates go back
to (4.9). We will choose r ∈ [R/2, R] and t such that 2 ≤ r − r0 ≤ 4 and
2 ≤ t − t0 ≤ 4. Then by similar reasoning, the estimates on these lines are
sharp.

Case 2: 2 ≤ R ≤ 1/M .

In this subcase, we will construct counterexamples to show the restriction
estimates in Theorem 2.5 are sharp when 2 ≤ R ≤ 1/M . As in the Case 1,
we will start with a “narrow” example which shows that estimates in the
region I in Figure 3 determined by L2 × L2 → L1, L2 × L2 → L2 and
L1 × L1 → L∞ are sharp. In this example, we will do computations for the
estimate L2 × L2 → L1.
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Example 4.9 (I). If 2 ≤ R ≤ 1/M , R
n
2 M

n−3
2 is best possible in

(4.20) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� R
n
2 M

n−3
2 ‖f‖L2(S1)‖g‖L2(S2).

We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤1+M2},

g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where r0 ∈ [R/2, R] and t0 ∈ R. By the heuristic approximation (3.6) only
for (fdσ)∨, we see that the left-hand side of (4.20) is comparable to

R
n−2

2

∫ R

R/2

∫
R

∣∣∣∣∣
∫ 1+M2

1

ei((±r−r0)s1−(t−t0)s2
1)ds1

∫
IM

e−i(t−t0)s2
2(dµ)∨(rse1)ds2

∣∣∣∣∣ dt dr.

We choose r ∈ [R/2, R] and t ∈ R such that

R/100 ≤ r − r0 ≤ R/50, M−2/100 ≤ t − t0 ≤ M−2/50.

Then we have |[(r − r0) − 2(t − t0)](s1 − 1)| ≤ c with a small c > 0 and

− (r+r0)+2(t−t0)
2(t−t0)

< −1. From the principle of non-stationary phase and the

triangle inequality, the left-hand side of (4.20) � R
n
2 M . On the other hand,

the right-hand side of (4.20) � R
n
2 M . Thus the estimate L2 × L2 → L1

when 2 ≤ R ≤ 1/M is sharp.

In the next example, we are going to show the estimates in the region II
in Figure 3 determined by the lines q = 1 and q = 2 are sharp. In this
example, we will do computations for the estimates on the line q = 1.

Example 4.10 (II). If 2 ≤ R ≤ 1/M , R
n
2 M

−1+ n−1
p′ is best possible in the

following inequality

(4.21) ‖(fdσ1)
∨(gdσ2)

∨‖L1
t,x

� R
n
2 M

−1+ n−1
p′ ‖f‖Lp(S1)‖g‖Lp(S2),

where 2 ≤ p ≤ ∞. We define an index set J := {j : 1 ≤ j ≤ [M−2]}. For
each j ∈ J , we set

fj(|ξ|2, ξ) = Fj(|ξ|) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1+(j−1)M2≤|ξ|≤1+jM2}.

Then we define

f =
∑

j

εjfj, g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where {εj : j ∈ J} is a set of i.i.d. random variables taking ±1 with an equal
probability 1/2.
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By using the Khintchine inequality, we obtain

E

(
‖(fdσ1)

∨(gdσ2)
∨‖L1

t,x(R×AR)

)
∼ ‖(

∑
j

|(fjdσ1)
∨(gdσ2)

∨|2)1/2‖L1
t,x(R×AR),

where E(X) denotes the expectation of the random variable X. By the heu-
ristic approximation (3.6), the right-hand side of the above is comparable to

R
n−2

2

∫ R

R/2

∫
R

(∑
j

∣∣∣∣∣
∫ cj

cj−M2

ei[(±r−r0)s1−(t−t0)s2
1]ds1×

×
∫

IM

e−i(t−t0)s2
2(dµ)∨(rs2e1)ds2

∣∣∣∣2
)1/2

dt dr,

where cj = 1 + jM2. We choose r ∈ [R/2, R] and t ∈ R such that

R/100 ≤ r − r0 ≤ R/50, M−2/100 ≤ t − t0 ≤ M−2/50.

This gives |[(r−r0)2(t− t0)](s1−cj)| ≤ c and − (r+r0)+2(t−t0)
2(t−t0)

< −1. Then by
the principle of non-stationary phase and the triangle inequality, the above is
bounded below by RM−2|J |1/2M3, where |J | ∼ M−2 denotes the cardinality
of the set J . Hence the left-hand side of (4.21) � Rn/2 and the right-hand
side of (4.21) � Rn/2 for 2 ≤ p ≤ ∞. Thus the estimates on the line q = 1
when 2 ≤ R ≤ 1/M are sharp.

In the following example, we will see the estimates in the region III in
Figure 3 determined by the lines q = 2 and q = 4 are sharp in the case
2 ≤ R ≤ 1/M . We will do computations for the estimates on the line q = 2
below.

Example 4.11 (III). If 2 ≤ R ≤ 1/M , R1/2M (n−1)/p′ is best possible in the
following inequality.

(4.22) ‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� R1/2M (n−1)/p′‖f‖Lp(S1)‖g‖Lp(S2),

where 2 ≤ p ≤ ∞.
We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤2},

g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where r0 ∈ [R/2, R] and t0 ∈ R. Then by the heuristic approximation (3.6),
the left-hand side of (4.22) is comparable to(∫ R

R/2

∫
R

∣∣∣∣∫
I1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

∫
IM

e−i(t−t0)s2
2(dµ)∨(rs2e1)ds2

∣∣∣∣2 dt dr

)1/2

.
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We choose r ∈ [R/100, R/50] and t ∈ R such that r−r0

2(t−t0)
∈ I1. Then r

and t are in the region of size ∼ R2. The principles of stationary phase and
non-stationary phase again give, for any N ≥ 0,∣∣∣∣∫

I1

ei[(r−r0)s1−(t−t0)s2
1]ds1

∣∣∣∣ � R− 1
2 ,

∣∣∣∣∫
I1

e−i[(r+r0)s1+(t−t0)s2
1]ds1

∣∣∣∣ �N R−N .

With this choice of r and t, we have
∣∣∣∫IM

e−i(t−t0)s2
2(dµ)∨(irs2ω)ds2

∣∣∣ � M .

Hence from the triangle inequality, the left-hand side of (4.22) � R1/2M .
On the other hand, the right-hand side of (4.22) � R1/2M . Thus we see
that the estimates on the line q = 2 when 2 ≤ R ≤ 1/M are sharp.

The next example will show that the estimates in the region IV in Fi-
gure 3 determined by L2 × L2 → L2, L4 × L4 → L4 and L1 × L1 → L∞ are
sharp. We will do the computations for the estimate L2 × L2 → L2.

Example 4.12 (IV). If 2 ≤ R ≤ 1/M , R1/2M (n−1)/2 is best possible in the
following inequality.

(4.23) ‖(fdσ1)
∨(gdσ2)

∨‖L2
t,x

� R
1
2 M

n−1
2 ‖f‖L2(S1)‖g‖L2(S2).

We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤1+R−1/2},

g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where r0 ∈ [R/2, R] and t0 ∈ R. By the heuristic approximation for (fdσ)∨,
the left-hand side of (4.23) is comparable to⎛⎝∫ R

R/2

∫
R

∣∣∣∣∣
∫ 1+R−1/2

1

ei[(±r−r0)s1−(t−t0)s2
1]ds1

∫
IM

e−i(t−t0)s2
2(dµ)∨(irs2e1)ds2

∣∣∣∣∣
2

dt dr

⎞⎠1/2

.

We choose r ∈ [R/2, R] and t ∈ R such that

|(r − r0) − 2(t − t0)| ≤ R1/2/100, R1/2/100 ≤ t − t0 ≤ R1/2/50.

Then r and t are located in the intersection area of two tubes which has size
of R×R1/2. Hence the left-hand side of (4.23) � R1/4M . On the other hand,
its right-hand side � R1/4M . Thus we see that the estimate L2 × L2 → L2

when 2 ≤ R ≤ 1/M is sharp.

The following example will show that the estimates in the region V in
Figure 3 determined by the lines q = 4, q = ∞ and q = 3p′ are sharp.
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Example 4.13 (V). If 2 ≤ R ≤ 1/M , R−(n−2)/2M (n−1)/p′ is best possible
in the following inequality

(4.24) ‖(fdσ1)
∨(gdσ2)

∨‖L∞
t,x

� R−n−2
2 M

n−1
p′ ‖f‖Lp(S1)‖g‖Lp(S2),

where 1 ≤ p ≤ ∞.
We take

f(|ξ|2, ξ) = |ξ|−n−2
2 ei(−r0|ξ|+t0|ξ|2)1{1≤|ξ|≤2},

g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where r0 ∈ [R/2, R] and t0 ∈ R. They are chosen such that ‖(fdσ1)
∨‖L∞

t,x

and ‖(gdσ2)
∨‖L∞

t,x
can be realized at (t0, x0) with |x0| = r0. By the heuristic

approximation (3.6),

R−n−2
2

∣∣∣∣∫
I1

ei(±r0−r0)s1ds1

∫
IM

(dµ)∨(rs2e1)ds2

∣∣∣∣ .
Then from the triangle inequality, the left-hand side of (4.24) � R−(n−2)/2M .
On the other hand, its right-hand side � R−(n−2)/2M for 1 ≤ p ≤ ∞. Thus
the estimates on the line q = ∞ when 2 ≤ R ≤ 1/M are sharp.

When q = 4, 4 ≤ p ≤ ∞, or q = 3p′, 1 ≤ p < 4, the estimates go back
to (4.6). We choose r ∈ [R/2, R] and t ∈ R such that 2 ≤ r − r0 ≤ 4 and
2 ≤ t − t0 ≤ 4.

Case 3: R ≤ 1.

In this subcase, we will construct counterexamples to show the estima-
tes (4.1) and (4.2) are sharp. We will omit the computations for simplicity.

The following example shows that the estimates in the region I deter-
mined by L2 × L2 → L1, L2 × L2 → L2 and L1 × L1 → L∞ are sharp.

Example 4.14 (I). We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−(n−2)eit0|ξ|21{1≤|ξ|≤1+M2},

g(|η|2, η) = G(|η|) = |η|−(n−2)eit0|η|21IM
,

where t0 ∈ R. The r and t are chosen such that R
2
≤ r ≤ R and 1

100M2 ≤
t − t0 ≤ 1

50M2 .

The next example shows that the estimates in the region II determined
by the lines q = 1 and q = 2 are sharp.
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Example 4.15 (II). We define an index set J := {j : 1 ≤ j ≤ [M−2]}. For
each j ∈ J , we set

fj(|ξ|2, ξ) = Fj(|ξ|) = |ξ|−(n−2)eit0|ξ|21{1+(j−1)M2≤|ξ|≤1+jM2}.

Then we define

f =
∑

j

εjfj, g(|η|2, η) = |η|−(n−2)eit0|η|21IM
,

where {εj : j ∈ J} is a set of i.i.d. random variables taking ±1 with an
equal probability 1/2, and the r and t are chosen such that R/2 ≤ r ≤ R
and 1/2 ≤ t − t0 ≤ 1.

The third example shows that the estimate (4.2) is sharp. Hence the
estimates in the regions III, IV and V when R ≤ 1 are sharp.

Example 4.16 (III, IV, V). We take

f(|ξ|2, ξ) = F (|ξ|) = |ξ|−(n−2)eit0|ξ|21I1,

g(|η|2, η) = G(|η|) = |η|−(n−2)eit0|η|21IM
,

where t0 ∈ R. The r and t will be are chosen such that R
2
≤ r ≤ R and

1
2
≤ t − t0 ≤ 1.

Thus the proof of Theorem 2.5 is complete.

5. Connection with the restriction estimates for the

sphere or the hypersurface of elliptic type

In this section we are concerned with whether the analogous results of The-
orems 2.1 and 2.5 remain valid if S is replaced with the lower third of the
sphere Sn−1 or a cylindrically symmetric and compact hypersurface of ellip-
tic type.

Let us first consider the case where the paraboloid is replaced by the
sphere Sn−1 in R

n. Suppose f is a cylindrically symmetric function sup-
ported on a compact set of Sn−1, S := {(−√1 − |ξ|2, ξ) ∈ R × R

n−1 : M ≤
|ξ| ≤ 2M}, where 0 < M ≤ 1/6. Then

(5.1) (fdµ)∨(t, x) =

∫
M≤|ξ|≤2M

ei(x·ξ−t
√

1−|ξ|2)F (|ξ|)dξ,

where dµ is the surface measure of the sphere and F (|ξ|) = f(−√1 − |ξ|2, ξ).
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Since f is cylindrically symmetric, we see that (fdµ)∨ is also cylindrically
symmetric. Then if we change (5.1) to the polar coordinates to obtain

(5.2) (fdµ)∨(t, r) =

∫
I

F (s)e−it
√

1−s2
(dµ)∨(rse1)s

n−2ds,

where I = [M, 2M ]. By the Taylor expansion of
√

1 − s2 at s = 0,

(5.3) −√
1 − s2 = −1 +

1

2
s2 + C1(s)s

4,

where C1(s) ∼ 1 for all s ∈ I. Then from (5.2),

(5.4)
∣∣∣(fdµ)∨(2t, r)

∣∣∣ = ∣∣∣∣∫
I

F (s)eit(s2+C2s4)(dµ)∨(rse1)s
n−2ds

∣∣∣∣ ,
where C2(s) ∼ 1 for all s ∈ I. The factor “2” in (fdµ)∨(2t, r) is artificial
since we are going to integrate t in R. We make two key observations similar
to those we used in Theorem 2.1 and 2.5 as follows.

• Since 0 ≤ M ≤ 1/6,

d(s2 + C2(s)s
4)

ds
∼ s,

d2(s2 + C2(s)s
4)

d2s
∼ 1.

Heuristically, this condition means that if we change variables s2 +
C2(s)s

4 → a, it is almost like changing s2 → a. Hence the analogous
result to Proposition 3.6 will hold for the lower third of the sphere.

• Form the geometric properties of the sphere,

‖dµ1 ∗ dµ2‖L∞
t,r

� O(1),

when dµ1 and dµ2 are the canonical Lebesgue measure of two arcs
of size O(1) supported on the sphere S1 but separated by a distance
O(1). Hence the analogous result to Proposition 3.5 will hold.

Those observations enable us to run all the arguments in Theorems 2.1
and 2.5.

We now turn to the case where S is replaced by a cylindrically symmetric
and compact hypersurface S of elliptic type, i.e., S is of the form

(5.5) S := {(τ, ξ) ∈ R × R
n−1 : τ = |ξ|2 + εφ(ξ)}

where the error function φ(ξ) is radial and smooth, and ε is a sufficiently
small parameter depending on the smooth norms of φ and on the size of S,
or more generally on the separation of S1 and S2. In other words, S is the
small perturbation of the standard paraboloid. By similar observations we
made on the sphere, we can establish the analogous results to Theorems 2.1
and 2.5 for the cylindrically symmetric functions compactly supported on S
defined in (5.5).
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6. Connection with Strichartz inequalities of the Schrö-
dinger equation

6.1. Linear Strichartz estimates

The restriction problem is closely related to that of estimating solutions
to linear PDE such as the wave equation and the Schrödinger equation.
Strichartz first observed this connection in [16], which initiated the inten-
sive study on various Strichartz estimates. In this section we will interpret
our restriction estimates regarding (fdσ)∨ in terms of the solutions to the
Schrödinger equations.

Suppose f(τ, ξ) is a function supported on the paraboloid S in R×R
n−1.

Functions of the form u(t, x) := (fdσ)∨, where dσ is the canonical Lebesgue
measure on S, can be easily seen to solve the free Schrödinger equation

(6.1) iut + �u = 0, u(0, x) = u0(x),

where the spatial Fourier transform û0(ξ) = f(|ξ|2, ξ). It is easy to deduce
that f is cylindrically symmetric on R×R

n−1 if u0 is radial on R
n−1. By this

interpretation, the linear estimate Lp → Lq or the bilinear restriction esti-
mate Lp × Lp → Lq will correspond to certain Strichartz estimates. For
instance, the Tomas-Stein restriction estimate L2 → L2(n+1)/(n−1) implies
the Strichartz estimate

‖eit�u0‖
L

2(n+1)
n−1

t,x (R×Rn−1)

� ‖u0‖L2(Rn−1),

where we have denoted u by eit�u0(x) =
∫

Rn−1 ei(xξ+t|ξ|2)û0(ξ)dξ. This is
known to be best possible simply by the scaling property associated to the
Schrödinger equation. In fact, we have the following optimal result called
the linear Strichartz estimates [8],

(6.2) ‖eit�u0‖Lq
t Lr

x(R×Rn−1) � ‖u0‖L2(Rn−1)

if and only if

(6.3)
2

q
+

n − 1

r
=

n − 1

2
, q ≥ 2, r ≥ 2, (q, r, n) = (2,∞, 3).

A natural question arises: if we assume that û0 is radial and supported on
a compact set U := {ξ ∈ R

n−1 : M ≤ |ξ| ≤ 2M} with dyadic M > 0, do we
have further estimates available? The answer is confirmed in Corollary 2.3.
In particular, we have

Corollary 6.2. Suppose u0 is defined as above. Then for any q > 4n−2
2n−3

,

(6.4) ‖eit�u0‖Lq
t,x(R×Rn−1) � M

n−1
2

−n+1
q ‖u0‖L2(Rn−1).



1164 S. Shao

Remark 6.3. For such functions, one can easily extend the current ran-
ge (6.3) for the linear mixed norm Strichartz estimates (6.2) by interpolating
them with the estimate (6.4).

In another direction, one can also obtain various weighted Strichartz
estimates. This type of estimates for radial data has proven very useful
in establishing the global well-posedness and scattering results for certain
Schrödinger equations, see e.g., [24]. In [26], Vilela showed that, assuming
u0 ∈ L2(Rn−1) to be radial,

(6.5) ‖Ds
xe

it�u0‖L2
t,x(|x|−α) � ‖u0‖L2 ,

if and only if α = 2(1 − s), 1 < α < n − 1 and n ≥ 3, where Ds
xf is defined

via the spatial Fourier transform by D̂s
xf(ξ) = |ξ|sf̂(ξ). The “only if” part

is given in [26] by the decay estimate of (dσ)∨ and scaling. Here we will
give another proof of the “if” part by using the linear dyadic restriction
restriction estimates given by Theorem 2.1.

Proof. We first assume that u0 has dyadically localized frequency, i.e., û0

supported on the set {ξ : M/2 ≤ |ξ| ≤ M} with dyadic M . Then we set
f(|ξ|2, ξ) = û0(Mξ), i.e., f ∈ L1. Then from the estimate L2 → L2 in
Theorem 2.1, we obtain, ∀ ε > 0,∥∥|x|−(1+ε)/2(fdσ)∨

∥∥
L2(R×{|x|≥1}) �ε ‖f‖L2(Rn−1).

If we restrict 0 < ε < n − 2, by the Plancherel theorem in t,∥∥|x|−(1+ε)/2(fdσ)∨
∥∥

L2(R×{|x|≤1}) �ε ‖f‖L2(Rn−1).

Hence ∥∥|x|−(1+ε)/2(fdσ)∨
∥∥

L2(R×Rn−1)
�ε ‖f‖L2(Rn−1).

By re-scaling by M ,∥∥|x|−(1+ε)/2M (1−ε)/2eit�u0

∥∥
L2(R×Rn−1)

�ε ‖u0‖L2(Rn−1).

By the weighted Hörmander-Mikhlin theorem [24, Lemma 2.2],

‖D(1−ε)/2eit�u0‖L2(|x|−(1+ε)) �ε ‖u0‖L2(Rn−1).

Setting s = (1 − ε)/2 and α = 1 + ε, we obtain (6.5) for frequency local-
ized u0. Then we follow the approach of using the Khintchine inequality
to prove the Littlewood-Paley inequality and use the weighted inequalities
for singular integrals[14, Chapter 5, Corrollary 4.2] (|x|−α is a A2 weight) to
obtain (6.5). �
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6.4. Bilinear Strichartz estimates

Form the linear Strichartz estimates (6.2), we see their bilinear analogues,

(6.6) ‖eit�u0e
it�v0‖Lq

t Lr
x(R×Rn−1) � ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1)

if and only if

(6.7)
2

q
+

n − 1

r
= n − 1; q, r ≥ 1; (q, r, n) = (1,∞, 3).

For the necessity of excluding the endpoint (1,∞, 3), see [21].

The estimate (6.6) becomes more interesting when we assume u0 and v0

are compactly supported and separated by a distance comparable to O(1).
In this case, we expect that there are more estimates available. For instance,
when q = r, Klainerman and Machedon [9] conjectured that (6.6) holds if
and only if q = r ≥ (n + 2)/n. The exponent (n + 2)/n is best possible,
see e.g., [23], [20]. This conjecture has been verified by Tao in [20] up to
the endpoint (n + 2)/n. The analogous results in the cone setting were
established by Wolff in the non-endpoint case [28] and Tao in the endpoint
case [19].

As shown in Corollary 2.7, we have further estimates available if we
assume that û0 and v̂0 are radial functions and compactly supported on U1 =
{ξ ∈ R

n−1 : M1/2 ≤ |ξ| ≤ M1} and U2 = {(ξ ∈ R
n−1 : M2/2 ≤ |ξ| ≤ M2},

respectively. Here M1 > 0, M2 > 0 are dyadic numbers satisfying M2 ≤
M1/4. For instance, as a corollary of Theorem 2.5, we have the following
bilinear Strichartz estimates by interpolation and summing in dyadic R.

Corollary 6.5. Suppose u0, v0 are defined as above. Then

• for n
n−1

< q ≤ 2,

‖eit�u0e
it�v0‖Lq

t,x(R×Rn−1) � M
− 1

2
1 M

2n−1
2

−n+1
q

2 ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1).

• for 2 ≤ q ≤ 2(2n−1)
2n−3

,

‖eit�u0e
it�v0‖Lq

t,x(R×Rn−1) � M
− 3

2q
+ 1

4

1 M
4n−5

4
− 2n−1

2q

2 ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1).

• for q ≥ 2(2n−1)
2n−3

,

‖eit�u0e
it�v0‖Lq

t,x(R×Rn−1) � M
n−1

2
−n+1

q

1 M
n−1

2
2 ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1).
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Remark 6.6. It is clear that, ∀ q > n
n−1

, n ≥ 3 and M1, M2 ∼ 1,

‖eit�u0e
it�v0‖Lq

t,x(R×Rn−1) � ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1),

which improves q > n+2
n

.

Remark 6.7. When q = 2 and n ≥ 3, we have the following sharp estimates
for u0, v0 defined as above,

‖eit�u0e
it�v0‖L2

t,x(R×Rn−1) � M
− 1

2
1 M

n−2
2

2 ‖u0‖L2(Rn−1)‖v0‖L2(Rn−1),

which generalizes Bourgain’s following estimates to all dimensions

‖eit�u0e
it�v0‖L2

t,x(R×R2) � M
− 1

2
1 M

1
2
2 ‖u0‖L2(R2)‖v0‖L2(R2),

‖eit�u0e
it�v0‖L2

t,x(R×R3) � M
− 1

2
1 M2‖u0‖L2(R3)‖v0‖L2(R3).

But we remark that Bourgain’s estimates are for general u0 and v0 without
the radial assumption, see [2], [4].
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[5] Carleson, L. and Sjölin, P.: Oscillatory integrals and a multiplier
problem for the disc. Studia Math. 44 (1972), 287–299. (errata insert).

[6] Cordoba, A.: The Kakeya maximal function and the spherical summation
multipliers. Amer. J. Math. 99 (1977), no. 1, 1–22.

[7] Fefferman, C. and Stein, E. M.: Some maximal inequalities. Amer. J.
Math. 93 (1971), 107–115.

[8] Keel, M. and Tao, T.: Endpoint Strichartz estimates. Amer. J. Math.
120 (1998), no. 5, 955–980.

[9] Klainerman, S. and Machedon, M.: Space-time estimates for null
forms and the local existence theorem. Comm. Pure Appl. Math. 46 (1993),
no. 9, 1221–1268.



Sharp linear and bilinear restriction estimates 1167

[10] Lee, S. and Vargas, A.: Sharp null forms estimates for the wave equa-
tion. Amer. J. Math. 130 (2008), no. 5, 1279–1326.

[11] Moyua, A., Vargas, A. and Vega, L.: Schrödinger maximal function
and restriction properties of the Fourier transform. Internat. Math. Res.
Notices (1996), no. 16, 793–815.

[12] Moyua, A., Vargas, A. and Vega, L.: Restriction theorems and max-
imal operators related to oscillatory integrals in R

3. Duke Math. J. 96
(1999), no. 3, 547–574.

[13] Stein, E. M.: Some problems in harmonic analysis. In Harmonic analy-
sis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll.,
Williamstown, Mass., 1978), Part 1, 3–20. Proc. Sympos. Pure Math.
XXXV. Amer. Math. Soc., Providence, RI, 1979.

[14] Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals. Princeton Mathematical Series 43. Princeton Uni-
versity Press, Princeton, NJ, 1993.

[15] Stein, E. M. and Weiss, G.: Introduction to Fourier analysis on Euclid-
ean spaces. Princeton Mathematical Series 32. Princeton University Press,
Princeton, NJ, 1971.

[16] Strichartz, R. S.: Restrictions of Fourier transforms to quadratic sur-
faces and decay of solutions of wave equations. Duke Math. J. 44 (1977),
no. 3, 705–714.

[17] Tao, T.: Recent progress on the restriction conjecture. In Fourier analysis
and convexity, 217–243. Appl. Numer. Harmon. Anal. Birkhäuser Boston,
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