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IRREDUCIBILITY, INFINITE LEVEL SETS,
AND SMALL ENTROPY

Abstract

We investigate continuous piecewise affine interval maps with count-
ably many laps that preserve the Lebesgue measure. In particular, we
construct such maps having knot points (a point x where Dini’s deriva-
tives satisfy D+f(x) = D−f(x) = ∞ and D+f(x) = D−f(x) = −∞)
and estimate their topological entropy. Our main result is: for any ε > 0
we construct a continuous interval map g = gε such that (i) g preserves
the Lebesgue measure; (ii) knot points of g are dense in [0, 1] and for a
Gδ dense set of z’s, the set g−1({z}) is infinite; (iii) htop(g) ≤ log 2 + ε.

1 Introduction

A map f : X → X is called m-fold on Y ⊂ X, if for every y ∈ Y a set f−1(y)
contains at least m points. For a set X, we call a subset Y ⊂ X cocountable if
its complement X \ Y is (at most) countable, and say that a map f : X → X
is cocountably m-fold if it is globally 2-fold and m-fold on some cocountable
subset Y ⊂ X.

In [5] the author proved the following estimate on topological entropy:

Theorem 1.1. The topological entropy of any continuous cocountably m-fold
map f : [0, 1]→ [0, 1] satisfies htop(f) ≥ logm.
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This result is rather delicate, as there is a simple Raith’s example of a
continuous map f : [0, 1] → [0, 1] that is m-fold (for an arbitrarily chosen
m ∈ N) except at y = 1, which has a single preimage point, but its non-
wandering set consists of the fixed endpoints, so that the entropy is zero (see
[6] for more detailed information). It is folklore knowledge that analogous
examples can be constructed on any n-dimensional manifold (orientable or
non-orientable, also with boundary).

Moreover, in [7] the authors showed that the set of points, where the m-
fold conditions fail in the hypotheses of Theorem 1.1, cannot be allowed to be
uncountable, even if it is nowhere dense. Namely, for each integer m > 0 there
exists a continuous map f : [0, 1]→ [0, 1] such that f is globally 2-fold, f is m-
fold on a set Y = [0, 1] \K, where K is a nowhere dense, closed (uncountable)
set and at the same time htop(f) = log 2.

Despite Theorem 1.1 and related examples, the problem of understanding
of relationship of two characteristics of an interval (or a tree) map - its topo-
logical entropy and cardinalities of level sets - is not completely solved. On the
one hand the proofs used in [5], [7] are rather difficult with many technicali-
ties, on the other hand all known (counter)examples work with a “poor” set
of non-wandering points. Thus, one could expect some strengthened version
of Theorem 1.1 stated for a class of irreducible interval maps (transitive, with
a dense set of periodic points) proved by essentially simplified methods.

As a canonical expression of mentioned insufficient grasp of the subject we
can introduce the following conjectures:

Conjecture 1.2. Any continuous nowhere differentiable interval map pre-
serving the Lebesgue measure has infinite topological entropy.

We recall that by a knot point of function f we mean a point x where Dini’s
derivatives satisfy D+f(x) = D−f(x) =∞ and D+f(x) = D−f(x) = −∞.

Conjecture 1.3. Any continuous interval map preserving the Lebesgue mea-
sure λ and with a knot point λ-a.e. has infinite topological entropy.

Note that the existence of continuous interval maps used in the hypotheses
has been proved in [3].

The goal of this paper is to provide more sophisticated examples related
to Conjectures 1.2, 1.3. To this goal we investigate continuous piecewise affine
interval maps with countably many laps and preserving the Lebesgue measure.
We construct such maps having finitely many knot points and estimate their
topological entropy. As the main result of this paper stated in Theorem 4.1
we obtain the following: for any ε > 0 we construct a continuous interval
map g = gε such that (i) g is nowhere monotone and preserves the Lebesgue
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measure (irreducibility); (ii) knot points of g are dense in [0, 1] and for a Gδ
dense set of z’s, the set g−1({z}) is infinite (infinite level sets); (iii) htop(g) ≤
log 2 + ε (small entropy). Two applications are presented in Corollary 4.2 and
Theorem 4.3.

The paper is organized as follows. In Section 2 we give some basic no-
tation, definitions and known results (Theorems 2.3, 2.4, 2.6). Section 3 is
devoted to the both local and global perturbations and the map g cited above
is constructed.

Finally, in Section 4 we prove the main results - Theorem 4.1 and its
Corollary 4.2. We also present one application to the n-dimensional case -
Theorem 4.3.

2 Definitions and known results

As general references one can use [13] or [9].

Let X be a compact metric space and f : X → X be a continuous map. By
M(X) we denote the set of all Borel normalized measures on X. The weak∗

topology on M(X) is defined by taking the sets

Vµ(f1, . . . , fk; ε1, . . . , εk) =
{
ν :

∣∣∣ ∫ fj dµ−
∫
fj dν

∣∣∣ < εj , j = 1, . . . , k
}

as a basis of open neighborhood for µ ∈ M(X) with εj > 0 and fj being
a continuous function defined on X. The map f transports every measure
µ ∈ M(X) into another measure f∗µ ∈ M(X). In what follows if we say
“measure” we in fact mean Borel normalized measure and if we measure some
set then we assume that it is measurable. The support of µ is the smallest
closed set S ≡ suppµ such that µ(S) = 1.

If µ = f∗µ then µ is said to be invariant (µ is preserved by f). It is
equivalent to the condition µ(f−1(S)) = µ(S) for any measurable S ⊂ X.
Let M(f) be the set of measures preserved by f . A point p ∈ X is said to
be periodic if for some positive integer n, fn(p) = p. The set of all periodic
points of f is denoted by Per(f). A measure µ ∈ M(f) the suppµ of which
coincides with one periodic orbit (cycle) is said to be a CO-measure and the
set of all CO-measures which are concentrated on cycles is denoted by P(f).

We say that S ⊂ X is f -invariant if f(S) ⊂ S. A measure µ ∈ M(f) is
called ergodic if for any f -invariant set S ⊂ X either µ(S) = 0 or µ(S) = 1.
We denote the set of all f -invariant ergodic measures by E(f). If µ is ergodic
then either suppµ = orb(p) for some periodic point p ∈ Per(f) or suppµ is a
perfect set.
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For µ ∈M(f), the measure-theoretic entropy of f is a quantity

hµ(f) = sup
ζ

lim
n→∞

Hµ(ζn),

where the supremum is taken over all finite measurable partition ζ of X,

Hµ(ζn) = −
∑
A∈ζn

µ(A) logµ(A)

and ζn = {Ai0 ∩ f−1Ai1 ∩ · · · ∩ f−(n−1)Ain−1 : Aij ∈ ζ}. The topological
entropy htop(f) of f can be defined as [13]

htop(f) = sup
µ
hµ(f),

where the supremum is taken over all µ from M(f).

In particular, when X = [0, 1] and f : [0, 1]→ [0, 1] is continuous the map
f will be called an interval map.

Theorem 2.1. [2] Let f : [0, 1] → [0, 1] be an interval map preserving the
Lebesgue measure. The set P(f) is dense in M(f) (in the weak∗ topology). In
particular, the set of all periodic points of f is dense in [0, 1].

�

Proposition 2.2. Let f : [0, 1] → [0, 1] have a dense set of periodic points
and let f be 2-fold on Y ⊂ X, where [0, 1] \ Y is finite. Then the set {x ∈
[0, 1] : x /∈ Per(f) & f(x) ∈ Per(f)} is dense in [0, 1].

Proof. Choose an interval J ⊂ [0, 1]. By our assumption there are closed
intervals K,J1, J2 such that

J1 ⊂ J , J1 ∩ J2 = ∅, f(J1) = f(J2) = K ⊂ f(J).

Since the set Per(f) is dense, there is a periodic point p ∈ J2 and also a
non-periodic point x ∈ J1 ⊂ J for which f(x) = f(p) ∈ Per(f).

We will need following ergodic decomposition.

Theorem 2.3. [12] Let µ ∈M(f). Then there is a measure m on E(f) such
that µ(S) =

∫
E(f) λ(S) dm for any measurable set S.

�
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Fix f : [0, 1] → [0, 1] and x ∈ [0, 1]. The Lyapunov exponent, λf (x), is
given by

λf (x) = lim
n→∞

1

n
log |(fn)′(x)|

if the limit exists. The Lyapunov characteristic χ : [0, 1] → [0,∞] is defined
as

χf (x) =

{
λf (x), λf (x) > 0,
0, otherwise.

(1)

The following known theorem (its one-dimensional version) will be one of
the key tools when proving Theorem 4.1.

Theorem 2.4. (the Margulis-Ruelle inequality) (see [10, pp. 281-285]). Let
f : [0, 1] → [0, 1] be a piecewise Lipschitz map, let µ be an invariant measure
for f , and assume that f is differentiable µ-a.e. Then

hµ(f) ≤
∫

suppµ
χf dµ.

�

For a pair (T, g) with T ⊂ R closed and continuous g : T → T , gT : convT →
convT (by convT we mean the convex hull of T ) is a piecewise affine “connect-
the-dots” interval map given by (T, g). An interval map f : [0, 1]→ [0, 1] has
a subsystem (T, g) if T ⊂ [0, 1] is closed, g = f |T and g(T ) ⊂ T . A subsystem
(T, g) of f is piecewise monotone, respectively strictly ergodic if gT is piecewise
monotone, respectively if there is exactly one measure µ ∈ M(f) such that
suppµ = T and no other measure has its support as a subset of T .

Proposition 2.5. Let f : [0, 1]→ [0, 1] be piecewise affine possibly with count-
ably many laps and having a piecewise monotone strictly ergodic subsystem
(T, g) supporting an invariant measure µ with hµ(f) > 0. Then for each
x ∈ T ,

λf (x) =

∫
[0,1]

log |f ′|dµ ∈ (0,∞).

Proof. We have

1

n
log |(fn)′| = 1

n
log
( n−1∏
j=0

|f ′(f j)|
)

=
1

n

n−1∑
j=0

log |f ′(f j)|

and the right-hand sums converge on the set T uniformly to a constant λµ =∫
[0,1]

log |f ′|dµ - see [13, Theorem 6.19, p.160]. The value λµ is positive by
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(1), our assumption hµ(f) > 0 and Theorem 2.4. Since (T, g) is piecewise
monotone, the number λµ is less than ∞.

The Variational principle represents a basic relationship between measure-
theoretic and topological entropy. In the context of interval maps one can
restrict attention to the subset of strictly ergodic piecewise monotone pairs
and corresponding invariant measures.

Theorem 2.6. [4]. Let f be an interval map. Then

htop(f) = sup
(T,g)

hµ(f),

where the supremum is taken over all strictly ergodic piecewise monotone sub-
systems (T, g) of f and corresponding invariant measures µ.

�

3 Constructions

3.1 Local perturbation.

In the first subsection of this section we describe a specific local perturbation
of an interval map, i.e. a change of definition of a map on a “small” subset of
its domain. All is summarized in Definition 3.1.

For n ≥ 1, the maps α5 are “connect-the-dots” maps with the dots (see
Figure 1(a))

{(0, 0), (1/5, 1), (2/5, 0), (3/5, 1), (4/5, 0), (1, 1)}.

In order to describe how we will perturb maps we start with a map κ : [0, 1]→
[0, 1] defined as the uniform limit of a sequence {κn}n≥1: fix a sequence
{δn}n≥1 of positive real numbers with δ1 = 1/2 and such that 10δn+1 < δn;
then the intervals Kn = [1/2− δn, 1/2 + δn] satisfy

[0, 1] = K1 ⊃ K2 ⊃ K3 · · · , 10λ(Kn+1) < λ(Kn). (2)

We construct maps κn : [0, 1]→ [0, 1] inductively:
(n = 1): κ1 = α5.
(n > 1): If the map κn−1 is already defined, we put (see Figure 1(b) for
n = 3) κn = κn−1 on [0, 1] \ Kn and κn = h ◦ α5 ◦ h−1n on Kn, where hn,
respectively h is affine, preserves orientation and maps the unit interval onto
Kn, respectively κn−1(Kn).
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Figure 1: Figure 1. (a) The map α5; (b) The map κ3.

Clearly, each κn is continuous and it preserves the Lebesgue measure.
Moreover, by our construction and (2)

sup
x∈[0,1]

|κn(x)− κn−1(x)| ≤ 5nλ(Kn) <
5n

10n−1
=

5

2n−1
,

hence the map κ = limn κn exists, it is continuous and the Lebesgue measure
preserving again. Since the map κ depends on the sequence ∆ = {δn}n≥1, we
will sometimes use the notation κ = κ[∆].

Let f : [0, 1]→ [0, 1] be an interval map, consider a point x ∈ (0, 1) and a
β > 0 such that 0 ≤ x− β < x+ β ≤ 1 and f(x− β) < f(x+ β), let κ[∆] be
as above for some ∆.

Definition 3.1. By an increasing (x, β,∆)-perturbation of f we mean a
continuous map f̃ : [0, 1]→ [0, 1] given by f̃ = f on [0, 1] \ [x− β, x+ β] and
f̃ = rx,β ◦ κ[∆] ◦ d−1x,β on [x− β, x+ β], where dx,β , respectively rx,β is affine,
preserves orientation and maps the unit interval onto [x−β, x+β], respectively
[f(x−β), f(x+β)]. If f(x−β) > f(x+β), a decreasing (x, β,∆)-perturbation
of f is defined analogously by using the map 1− κ[∆] instead of κ[∆].

3.2 Global perturbation.

In the second subsection we apply above local perturbation repeatedly to ob-
tain a global change of definition of a map on a dense subset of its domain.
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For a piecewise affine map f (possibly with countably many laps) let W (f)
be the set consisting of all points in which f is not differentiable and endpoints
0, 1. Let {Jm}m≥1 be the sequence of all rational subintervals of (0, 1). Con-
sider the full tent map f : [0, 1]→ [0, 1] given by f(x) = 1−|1−2x|, x ∈ [0, 1].

Fix an ε > 0. We inductively define maps gm:
(m = 0): g0 = f , x0 = 1, p0 = 0.
(m > 0): Since by Theorem 2.1 the map gm−1 has a dense set of periodic points
and each point from [0, 1) has at least two gm−1-preimages, by Proposition 2.2
there is a point xm such that

xm ∈ Jm, xm /∈ Per(gm−1), gm−1(xm) = pm ∈ Per(gm−1), (3)

pm /∈
m−1⋃
j=1

orb(pj), xm /∈W (gm−1) ∪ {x0, . . . , xm−1}; (4)

for a sequence {kmn }n≥1 of positive integers fulfilling

∞∑
n=1

log(|5ng′m−1(xm)|)
kmn + 1

<
ε

2m
, (5)

there is a sequence ∆m = {δmn }n≥1 (of sufficiently small delta’s, shortly, suffi-
ciently small ∆m) and a corresponding (increasing or decreasing) (xm, βm,∆m)-
perturbation gm of gm−1 such that for each j ∈ {1, . . . ,m} and n ≥ 1
(Kj

n = [1/2− δjn, 1/2 + δjn]),

x ∈ dxj ,βj
(Kj

n) =⇒ {gim(x)}k
j
n
i=1 ∩ dxj ,βj

(Kj
n) = ∅, (6)

max{λ(gim(dxj ,βj
(Kj

n)) : i = 0, . . . , kjn} < 1/n (7)

and, in particular, for [xm − βm, xm + βm] = dxm,βm
([0, 1]),

λ(gm([xm − βm, xm + βm])) < 1/m. (8)

We will argue the properties (6), (7) in more details.

Claim 3.2. If (6), (7) is true for j ∈ {1, . . . ,m−1} and gm−1 then the sequence
∆m = {δmn }n≥1 fulfilling (6), (7) for j ∈ {1, . . . ,m} and corresponding gm also
exists.

Proof. Since by (4)

orb(pm) ∩
m−1⋃
j=1

orb(pj) = ∅,
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Figure 2: Figure 2. (a) The map g2; (b) The map g3.

the (7) applied on gm−1 means that for a sufficiently small ∆̃m and corre-
sponding g̃m the properties (6), (7) remain true for g̃m up to finitely many
n’s. Taking appropriately ∆m smaller than ∆̃m (if necessary), we obtain the
map gm fulfilling (6), (7) for j ∈ {1, . . . ,m} and every n.

Claim 3.3. For any m ∈ N and any invariant measure µ ∈M(gm),

∫
[xm−βm,xm+βm]

log |g′m|dµ ≤
∞∑
n=1

log(|5ng′m−1(xm)|)
kmn + 1

.

Proof. By the representation Theorem 2.3 it is sufficient to assume that
µ is ergodic. Let x ∈ suppµ be a generic point for µ (see [13]). Putting
Ln = dxm,βm

(Km
n ), from (6) we get

µ(Ln) ≤ 1

kmn + 1
; (9)

by our definition of (xm, βm,∆m)-perturbation (gm of gm−1)

|g′m| = |5ng′m−1(xm)| on Ln \ Ln+1. (10)
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Since [xm − βm, xm + βm] =
⋃∞
n=1(Ln \ Ln+1), from (9) and (10) we obtain∫

[xm−βm,xm+βm]

log |g′m|dµ =

∞∑
n=1

∫
Ln\Ln+1

log |g′m|dµ ≤

≤
∞∑
n=1

∫
Ln

log |g′m|dµ ≤
∞∑
n=1

log(|5ng′m−1(xm)|)
kmn + 1

.

Notice that each gm preserves the Lebesgue measure and by (8)

sup
x∈[0,1]

|gm(x)− gm−1(x)| < 1/m;

the reader can easily see that

g = lim
m
gm (11)

is defined well and it preserves the Lebesgue measure again.

4 The main result

Theorem 4.1. The continuous interval map g defined by (11) has the follow-
ing properties:

(i) g is nowhere monotone and preserves the Lebesgue measure;

(ii) knot points of g are dense in [0, 1] and for a Gδ dense set Z of z’s, the
set g−1({z}) is infinite;

(iii) htop(g) ≤ log 2 + ε.

Proof. The property (i) directly follows from our construction of g.
Let us prove (ii). It follows from (3) and our choice of the intervals Jm

that the sequence {xm} is dense in [0, 1]. We will show that g has a knot point
at every xm. By the property (4) of our construction, for every k ≥ m hold
true equalities

g(x) = gk(x) = gm(x) for every x ∈ {xm} ∪ dxm,βm(W (κ[∆m])). (12)

Since the map κ[∆m] has a knot point at 1/2 and the maps rxm,βm
, dxm,βm

are affine, Definition 3.1 and (12) give us that also each of the maps gk, g,
k ≥ m has a knot point at xm = dxm,βm(1/2). It means that each of the sets

Sm := {z ∈ [0, 1] : #g−1({z}) > m}◦



Irreducibility, infinite level sets, and small entropy 459

is open and dense in [0, 1] hence Z =
⋂
m Sm is Gδ dense.

(iii) Let us fix gm.
Using Theorem 2.6 let us fix a continuous strictly ergodic invariant measure

µ ∈ M(gm) with hµ(gm) > 0, denote S = suppµ. Then (S, ι = gm|S) is an
infinite minimal subsystem of gm and each point of S is (uniformly) recurrent.
The map gm is piecewise affine with countably many laps accumulated exactly
in points x1, . . . , xm. By (3), S ∩ {x1, . . . , xm} = ∅ hence the set S is a subset
of finitely many laps of gm. It implies that the map ιS is Lipschitz and since
the measure with respect to µ of any countable set is zero, both the piecewise
affine maps gm, ιS are differentiable µ-a.e. Applying Theorem 2.4, Proposition
2.5 and (1) we get

0 < hµ(gm) = hµ(ιS) ≤
∫
[0,1]

λιS dµ =

∫
[0,1]

log |g′m|dµ.

Putting J =
⋃m
j=1[xj−βj , xj +βj ], Claim 3.3 and the properties (3)-(6) imply

∫
[0,1]

log |g′m|dµ ≤
m∑
j=1

∫
[xj−βj ,xj+βj ]

log |g′j |dµ+

∫
[0,1]\J

log |g′m|dµ ≤

≤

 m∑
j=1

∞∑
n=1

log(|5ng′j−1(xj)|)
kjn + 1

+ log 2 ≤
m∑
j=1

ε

2j
+ log 2,

i.e., using Theorem 2.6 and the Variational principle (see [13]),

hµ(gm) ≤ htop(gm) ≤
m∑
k=1

ε

2k
+ log 2. (13)

Since the topological entropy is lower semicontinuous on the space of all
continuous interval maps equipped with the supremum norm (see [11]) and
g = limm gm, the conclusion htop(g) ≤ log 2 + ε follows from (13).

It can be rather easily shown (and we leave it to the reader) that the map
g satisfies: for every open subsets U, V of [0, 1] there is an n0 ∈ N such that
gn(U) ∩ V 6= ∅ whenever n ≥ n0 (g is topologically mixing).

Corollary 4.2. There is a continuous interval map f : [0, 1] → [0, 1] such
that

(i) f is topologically mixing;
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(ii) for some Gδ dense Y ⊂ [0, 1] of the full Lebesgue measure, f−1({y}) is
infinite for each y ∈ Y ;

(iii) htop(f) ≤ log 2 + ε.

Proof. Let Z be a Gδ dense set having the property (ii) of Theorem 4.1.
Obviously one can consider an Fσ set Z̃ ⊂ Z which is c-dense in [0, 1] hence
by [8] for some homeomorphism h : [0, 1]→ [0, 1]

1 = λ(Ỹ = h(Z̃)) = λ(Y = h(Z)).

Then for f = h ◦ g ◦ h−1 and each y ∈ Y we get

#f−1({y}) = #h((g−1(h−1(h(z))) =∞,

i.e. the property (ii) is fulfilled. The properties (i), (iii) remain preserved for
the conjugated map f .

As a direct consequence of Theorem 4.1 we will leave to the reader the
proof of the following natural generalization.

Theorem 4.3. Let us consider the map G : [0, 1]n → [0, 1]n defined as the
product map G = g × g × · · · × g︸ ︷︷ ︸

n−times

. The map G fulfills:

(i) G is topologically mixing and preserves the Lebesgue measure;

(ii) for a Gδ dense set of z’s, the set G−1({z}) is infinite;

(iii) htop(G) ≤ n log 2 + ε.
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