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Abstract

Let (X, A, 1) be a finite measure space, E a locally convex Hausdorff
space, L% the space of functions f : X — FE which are u-integrable
by semi-norms, P(u, F) the space of Pettis integrable functions and
Py (u, E) those elements of P(u, E) which are measurable by semi-norms.
We prove that a linear continuous mapping T : Ly — E is of the form
T(f) = [gfdu (g € L) if and only if h(T(f)) = 0 whenever ho f =0
for any f € Lk,h € E’. Similar results are proved for P(u, E) and
P1 (/L, E) .

1 Introduction and notation

In this paper R stands for the set of real numbers, K will denote the field of
real or complex numbers (we will call them scalars), (X, A, i) a finite measure
space and F a locally convex space space over K with topology generated by an
increasing and closed under multiplications with positive real numbers family
of semi-norms |.||,, p € P; E' will denote the topological dual of E. If z € E
and f € E’ then f(x) will also be denoted by < z, f >or < f,x >. Forap € P,
Vp ={x € E : ||z||, < 1}; polars will be taken in the duality < E,E’ >. For
locally convex spaces, the notation and results of [6] will be used. For measure
theory, notation and results of ([2], [1], [7], [8], [3] are used. All locally convex
spaces are assumed to be Hausdorff and over K. L' will denote the space of
p-integrable functions and L* will denote the space of u essentially bounded
functions. As done in ([1], p. 95), the locally convex space L}, will denote the
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space of functions f : X — E which are p-integrable by semi-norms. P(u, E)
denote the locally convex space of Pettis integrable functions; its topology is
generated by semi-norms: || f||, = sup{|ho fl, : h € V'}. Pi(u, E) denotes
the subspace of P(u, E), with induced topology, consisting of those elements
of P(u, EY) which are measurable by semi-norms.

In [4] an interesting result is proven about some special operator T': L —
FE when E is a Banach space. In this paper we extend this result to the some
cases when F is a locally convex space and give a different proof.

2 Main results

Theorem 1. ([4], Theorem 2.5) Let (X, A, ) be a finite measure space, E
a locally convex space and T : LY, — E a continuous linear operator. Then
there is a g € L> such that T(f) = [gfdp < for any f € L}, and h € E’
with ho f =0, we have < h,T(f) >=0.

Proof. (<) Fixanz € E and an f € L. We first prove that T(f®z) = cz
for some c € K. If T(f®x) = 0 there is nothing to prove. Assume T(f®z) =y
where x and y are linearly independent. By Hahn-Banach theorem there is a
h e E' with h(z) =0, h(y) = 1. Now < f®z,h >=0andso < T(f®z),h >=
0 a contradiction. Now we prove that for any y,z € E, y # 0,z # 0, if
T(f®y) =pyand T(f®z) = ¢z, then p = q. If y and z are linearly dependent,
then there is nothing to prove. So assume that y, z are linearly independent.
This means y,y — z are linearly independent. By Hahn-Banach theorem there
isahe E with h(y) =1, h(y—2) = 0. Now < f ® (y — 2z),h >= 0 and so
<T(f®y—=2),h>=0. Bt < T(f®(y—2),h >= p—q # 0, a contradiction.

Fix an x € E, x # 0 and put T((f ® ) = v(f)z. It is easily verified that
v : L' — K is continuous and so there is a g € L*> such that v = gu. Thus
T()=[.gdpon L' ® E. Since L' ® E is dense in L}, ([1], Theorem 3.1, p.
95), it is a simple verification that T'(.) = [ . g du on L1,

(=) It is a trivial verification.

Now we consider the locally convex space P(u, E) of Pettis integrable func-
tions. Here we assume that the (X, A, u) is perfect—this will insure that simple
functions are dense in P(u, E) ([7]).

Theorem 2. ([4]) Let (X, A, ) be a perfect finite measure space, E a locally
convezx space, P(u, E) the locally convex space of Pettis integrable functions,
and T : P(X,E) — E a continuous linear operator. Then there is a g € L™
such that T(f) = [gfdu < for any f € P(X,E) and h € E' with ho f =0,
we have < h,T(f) >=0.
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Proof. (<) Fixanz € E and an f € L'. We first prove that T(f®z) = cz
for some ¢ € K. If T(f®x) = 0 there is nothing to prove. Assume T(f®z) =y
where x and y are linearly independent. By Hahn-Banach theorem there is a
h € E' with h(z) =0, h(y) = 1. Now < f®z,h >=0andso < T'(f®x),h >=
0 a contradiction. Now we prove that for any y,z € E, y # 0,z # 0, if
T(f®y) =pyand T(f®z) = gz, then p = q. If y and z are linearly dependent,
then there is nothing to prove. So assume that y, z are linearly independent.
This means y,y — 2z are linearly independent. By Hahn-Banach theorem there
isahe F with h(y) =1, h(y —2) = 0. Now < f® (y — 2),h >= 0 and so
<T(fey—2),h>=0. But < T(f®(y—2),h >=p—q # 0, a contradiction.

Fix an x € E, x # 0 and put T((f ® =) = v(f)z. It is easily verified that
v: L' — K is continuous and so there is a ¢ € L™ such that v = gu. Thus
T()=[.gduon L' ® E. Since L' ® E is dense in L}, ([1], Theorem 3.1, p.
95), it is a simple verification that T'(.) = [ . g du on L.

(=) It is a trivial verification.

In the locally convex space P;(X, E), simple functions are dense in P;(X, E)
([2]), and so proceeding as in Theorem 2, we get:

Theorem 3. Let (X, A, i) be a finite measure space, E a locally convez space,
Py (u, E) the locally convex space of Pettis integrable functions which are mea-
surable by semi-norms, and T : P1(X,E) — E a continuous linear operator.
Then there is a g € L™ such that T(f) = [gfdu < for any f € Pi(X,E)
and h € E' with ho f =0, we have < h,T(f) >=0.

If F' is another locally convex space whose topology is generated by in-
creasing family of seminorms {q : ¢ € Q} and T : L% — F a continuous
mapping, then we get, in a canonical way, a unique measure v : A — L(E, F)
which is countably additive when the topology of pointwise convergence on E,
with the original topology of F, is considered on L(F, F); also it is of finite
semi-variation in the sense that, for every ¢ € @, sup{|>_(r(A4;)(z;)|q} < o0
as {A;} varies as a finite disjoint collection of elements from 4 along with
{z;} C E having |z;|, < 1 Vi. Conversely given such a measure we get a
unique continuous T : L}, — F. The Theorem 1 can now be stated in terms
of this measure:

Theorem 4. ([4], Theorem 3.16) Let (X, A, u) be a finite measure space, E
a locally convex space and T : LY, — E a continuous linear operator with
v: A — L(E,E) the associated measure. Then there is a finite measure X
absolutely continuous with respect to p such that (v(A))(z) = (A(A))z for
every A € A and every x € E < For any f € LY, and h € E' with ho f =0,
we have < h,T(f) >=0.
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