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CRITERIA FOR THE BOUNDEDNESS AND
COMPACTNESS OF GENERALIZED

ONE-SIDED POTENTIALS

Abstract

Necessary and sufficient conditions are found for the positive Borel
measure ν, which provide the boundedness (compactness) of the general-
ized Riemann–Liouville operator from one Lebesgue space into another
Lebesgue space with measure ν. The appropriate problem for the gen-
eralized Weyl operator is solved as well.

1 Introduction

In this paper, necessary and sufficient conditions are found, which ensure the
boundedness (compactness) of the generalized Riemann-Liouville operator

Tαf(x, t) =
∫ x

0

(x− y + t)α−1f(y) dy, x, t ∈ R+,

from Lp(R+) into Lqν(R̃2
+), where 0 < p, q <∞, p > 1, α > 1/p, R+ ≡ [0,∞)

and ν is a positive σ-finite Borel measure on R̃2
+ ≡ R+ ×R+ (for q < p it will

be assumed that ν is absolutely continuous; i.e., dν(x, t) = v(x, t) dx dt, where
v is a Lebesgue-measurable almost everywhere positive function on R̃2

+).
An analogous problem for the classical Riemann-Liouville operator

Rαf(x) =
∫ x

0

(x− y)α−1f(y)dy

was solved in [17], [18]. Necessary and sufficient conditions for the boundedness
of Rα from Lpw(R+) into Lqv(R+) were found for 1 < p < q <∞ and 0 < α < 1
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in [9] (see also [10], Chapter 3). A similar problem was solved for 1 < p ≤ q <
∞ and α > 1 in [15], [25] and for 1 < q < p < ∞ and α > 1 in [25]. For the
compactness of the operator Rα when 1 < p, q <∞ and α > 1 see [26].

The boundedness problem for the generalized Riesz potential

Iαf(x, t) =
∫

Rn
(|x− y|+ t)α−nf(y) dy, 0 < α < n,

from Lp(Rn) into Lqν(Rn × R+) (1 < p < q < ∞) was solved in [1] (Theorem
C) (see [8] for more general case).

A complete description of weight pairs (v, w) ensuring the validity of weak
(p, q) (1 < p < q < ∞) type inequality for Iα was given in [7] (see also
[10], Chapter 3). For the related Hörmander type maximal functions see [10],
Chapter 4.

The different (Sawyer type) necessary and sufficient conditions for the va-
lidity of two-weight strong (p, q) type inequality for Iα and corresponding
Hörmander type fractional maximal functions were established in [23].

Similar operators arise in boundary value problems in PDE, particularly
in Polyharmonic Differential Equations. Some applications of operator Iα in
weighted estimates for gradients were presented in [27], p. 923.

In this paper, criteria of the boundedness (compactness) from Lpν(R̃2
+) into

Lq(R+) are also established for the operator

T̃αg(y) =
∫

[y,∞)×R+

g(x, t)(x− y + t)α−1 dν(x, t).

Finally, the upper and lower estimates of the distance of the operator Tα
from a space of compact operators are derived in the non-compact case.

Some results of the present paper were announced in [20].

2 Preliminaries

Let ν be a positive σ-finite Borel measure on R̃2
+. For (0 < q <∞) denote by

Lqν(R̃2
+) the class of all ν-measurable functions g : R̃2

+ → R1 for which

‖g‖Lqν(eR2
+) ≡

(∫
eR2

+

|g(x, t)|q dν(x, t)
)1/q

<∞.

If ν is absolutely continuous (i.e., dν(x, t) = v(x, t) dx dt), then instead of
Lqν(R̃2

+), we will use the notation Lqv(R̃2
+), and if v ≡ 1 , then Lqv(R̃2

+) will be
denoted by Lq(R̃2

+).
Let
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Hf(x) =
∫ x

0

f(y) dy

for a measurable function f : R+ → R1.
Necessary and sufficient conditions for the boundedness of the operator

H from Lpw(R+) into Lqv(R+) were found in [3], [12] (see also [16], §1.3) for
1 < p ≤ q <∞, and in [16], §1.3, for 1 ≤ q < p <∞. (For the compactness of
H see [5], [22].)

In what follows we will use the notation Ur ≡ [r,∞) × R+, where r > 0.
It is obvious that [r,R)× R+ = Ur \ UR for 0 < r < R <∞.

To prove our main results, we need the following lemma.

Lemma 1. Let 1 < p ≤ q < ∞ and µ be a positive Borel measure on R̃2
+.

Then the operator H is bounded from Lp(R+) into Lqµ(R̃2
+) if and only if

A ≡ sup
r>0

(µ(Ur))1/qr1/p
′
<∞, p′ = p/(p− 1).

Moreover, A ≤ ‖H‖ ≤ 4A.

Proof. Sufficiency. Let f ≥ 0, f ∈ Lp(R+) and I(t) ≡
∫ t
0
f . Assume that∫∞

0
f ∈ (2m, 2m+1] for some m ∈ Z. Then there exist xk (k ≤ m) such that

I(xk) = 2k. It is obvious that 2k =
∫ xk+1

xk
f for k ≤ m− 1. The sequence {xk}

increases. Moreover, if α = lim
k→−∞

xk, then R+ = [0, α) ∪ (∪k≤m[xk, xk+1)),

where xk+1 = ∞. When
∫∞
0
f = ∞, we have R+ = [0, α] ∪ (∪k∈Z[xk, xk+1))

(i.e., m = ∞). If y ∈ [0, α], then I(y) = 0, and if y ∈ [xk, xk+1), then
I(y) ≤ 2k+1. We have

‖Hf‖p
Lqµ(eR2

+)
≤
∑
k

‖χUxk\Uxk+1
Hf‖p

Lqµ(eR2
+)

≤
∑
k

2(k+1)p‖χUxk\Uxk+1
‖p
Lqµ(eR2

+)

= 4p
∑
k

(∫ xk

xk−1

f(y)dy
)p(

µ(Uxk \ Uxk+1

)
)p/q

≤ 4p
(∫ xk

xk−1

(f(y))pdy
)

(xk − xk−1)p−1
(
µ(Uxk \ Uxk+1

)
)p/q

≤ 4pAp‖f‖pLp(R+).
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Necessity. Let r > 0 and fr(x) = χ[0,r)(x). Then ‖fr‖Lp(R+) = r1/p. On the
other hand,

‖Hf‖Lqµ(eR2
+) ≥ ‖χUrHfr‖Lqµ(eR2

+) ≥
(
µ(Ur)

)1/q
r.

Hence the boundedness of H implies that A <∞.

Lemma 2. Let 0 < q < p < ∞, p > 1 and let v be an almost everywhere
positive measurable function on R̃2

+. Then the operator H is bounded from
Lp(R+) into Lqv(R̃2

+) if and only if

A1 ≡
(∫ ∞

0

(∫
Ux

v(y, t) dy dt
) p
p−q

x
(q−1)p
p−q dx

) p−q
pq

<∞.

Moreover, λ1A1 ≤ ‖H‖ ≤ λ2A1, where λ1 =
(
p−q
p−1

)1/q′

q1/q and λ2 = (p′)1/q
′
q1/q

for q > 1, λ1 = λ2 = 1 for q = 1, λ1 = (q/p′)
p−q
pq (p′)1/p

′
q1/p p−qp and

λ2 =
(

p
p−q

) p−q
pq

p1/p(p′)1/p
′

for 0 < q < 1.

Proof. Applying Lemma 1.3.2 from [16] for 1 ≤ q < p < ∞ and using the
arguments from [24] for 0 < q < 1 < p <∞ we find that the condition A1 <∞
is equivalent to the boundedness of H from Lp(R+) into Lqev(R+), where

ṽ(y) =
∫ ∞

0

v(y, t) dt.

But
‖Hf‖Lqev(R+) = ‖Hf‖Lqv(eR2

+).

Therefore the condition A1 < ∞ is equivalent to the boundedness of H from
Lp(R+) into Lqv(R̃2

+). The constants λ1 and λ2 are from [16] (Section 1.3.2)
for q ≥ 1, and from [24] (see Theorem 2.4 and Remark) for 0 < q < 1.

We need the following theorem which can be obtained from Lemma 2 in
[11], Chapter XI (see also [13], Chapter 3).

Theorem A. Let 1 < p, q <∞, ν be a positive σ-finite separable measure on
R̃2

+ (i.e., Lqν(R̃2
+) is separable). If

‖ ‖k(z, ·)‖Lp′ (R+)‖Lqν(eR2
+) <∞, k ≥ 0,

then the operator Kf(z) =
∫∞
0
k(z, y)f(y) dy, z ∈ R̃2

+, is compact from
Lp(R+) into Lqν(R̃2

+).
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3 Boundedness

In this section, criteria of the boundedness of the operators Tα and T̃α are
established.

Theorem 1. Let 1 < p ≤ q < ∞, α > 1/p, ν be a positive σ-finite measure
on R̃2

+. Then the following conditions are equivalent:

(i) Tα is bounded from Lp(R+) into Lqν(R̃2
+) ;

(ii) B ≡ sup
r>0

(∫
Ur

(x+ t)(α−1)qdν(x, t)
) 1
q

r
1
p′ <∞;

(iii) B1 ≡ sup
k∈Z

(∫
U2k\U2k+1

(x+ t)(α−1)qxq/p
′
dν(x, t)

) 1
q

<∞.

Moreover, there exist positive constants b1, b2, b3 and b4 depending only on p,
q and α such that

b1B ≤ ‖Tα‖ ≤ b2B, b3B1 ≤ ‖Tα‖ ≤ b4B1.

Proof. First we will show that (ii) implies (i). Let f ≥ 0. If α ≥ 1, then
using Lemma 1 we obtain

‖Tαf‖Lqν ≤ 2α−1

(∫
eR2

+

(x+ t)(α−1)q
(∫ x

0

f(y) dy
)q
dν(x, t)

)1/q

≤ 2α+1‖f‖Lp(R+).

Now let 1/p < α < 1. We have

‖Tαf‖Lqν(eR2
+) ≤

(∫
eR2

+

(∫ x/2

0

f(y)(x− y + t)α−1 dy
)q
dν(x, t)

)1/q

+
(∫

eR2
+

(∫ x

x/2

f(y)(x− y + t)α−1 dy
)q
dν(x, t)

)1/q

≡S1 + S2.

If y < x/2, then (x− y + t)α−1 ≤ 21−α(x+ t)α−1. By Lemma 1 we obtain

S1 ≤ 21−α
(∫

eR2
+

(Hf(x))q(x+ t)(α−1)q dν(x, t)
)1/q

≤ 23−αB‖f‖Lp(R+).
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Using the Hölder’s inequality, we find that

Sq2 ≤
∫

eR2
+

(∫ x

x/2

(f(y))p dy
)q/p

(ϕ(x, t))q/p
′
dν(x, t),

where

ϕ(x, t) ≡
∫ x

x/2

(x− y + t)(α−1)p′ dy.

Moreover, ϕ(x, t) ≤ c1(x+ t)(α−1)p′x, where c1 = 2(1−α)p′−13((α−1)p′+1)−1.
Indeed, if t ≤ x then

ϕ(x, t) ≤ ((α− 1)p′ + 1)−1(x/2 + t)(α−1)p′+1 ≤ c2(x+ t)(α−1)p′x,

where c2 = 2(1−α)p′−13((α− 1)p′ + 1)−1. Let t > x. Then

ϕ(x, t) ≤ t(α−1)p′x/2 ≤ 2(1−α)p′−1(x+ t)(α−1)p′x.

Using the Minkowski’s inequality we obtain

Sq2 ≤ c
q/p′

1

∫
eR2

+

(∫ x

x/2

(f(y))p dy
)q/p

(x+ t)(α−1)qxq/p
′
dν(x, t)

≤ cq/p
′

1

(∫ ∞
0

(f(y))p
(∫

Uy\U2y

(x+ t)(α−1)qxq/p
′
dν(x, t)

)p/q
dy

)q/p
≤ 2q/p

′
c
q/p′

1

(∫ ∞
0

(f(y))p
(∫

Uy

(x+ t)(α−1)q dν(x, t)
)p/q

yp/p
′
dy

)q/p
≤ (2c1)q/p

′
Bq‖f‖qLp(R+).

Now we will show that (i) ⇒ (iii). Let k ∈ Z and fk(x) = χ[0,2k−1)(x).
Then ‖fk‖Lp(R+) = 2(k−1)/p. On the other hand,

‖Tαfk‖Lqν(eR2
+) ≥ c3

(∫
U2k\U2k+1

(x+ t)(α−1)q2(k−1)q dν(x, t)
)1/q

.

Therefore c4B1 ≤ ‖Tα‖ <∞, where c4 = 3α−12−2/p′+1−α if 1/p < α < 1 and
c4 = 21−α−2/p′ if α ≥ 1.

Analogously we can show that c5B ≤ ‖Tα‖, where c5 = 3α−121/p−α if
1/p < α < 1 and c5 = 21/p−α for α ≥ 1.



Criteria of the Boundedness and Compactness 223

Let now r > 0. Then r ∈ [2m, 2m+1) for some m ∈ Z. Therefore

(∫
Ur

(x+ t)(α−1)q dν(x, t)
)
rq/p

′
≤ 2(m+1)q/p′

∫
U2m

(x+ t)(α−1)q dν(x, t)

= 2q/p
′
2mq/p

′
+∞∑
k=m

∫
U2k\U2k+1

(x+ t)(α−1)q dν(x, t)

≤ 2q/p
′
Bq12mq/p

′
+∞∑
k=m

2−kq/p
′

= 2q/p
′
(1− 2−q/p

′
)−1Bq1 .

Thus (iii) implies (ii). So that finally (ii) ⇒ (i) ⇒ (iii) ⇒ (ii).

Remark 1. For the constants b1, b2, b3 and b4 from Theorem 1 we have: b1 =
3α−121/p−α, b2 = 23−α + 31/p′21−α((α − 1)p′ + 1)−1/p′ , b3 = 3α−12−2/p′+1−α

in the case, where 1/p < α < 1 and b1 = 21/p−α, b2 = 2α+1, b3 = 2−2/p′+1−α

if α ≥ 1. b4 = 21/p′(1− 2−q/p
′
)−1/qb2.

Let us now consider the case q < p.

Theorem 2. Let 0 < q < p < ∞, p > 1 and α > 1/p. Assume that v is
an almost everywhere positive Lebesgue-measurable function on R̃2

+. Then the
operator Tα is bounded from Lp(R+) into Lqv(R̃2

+) if and only if

D ≡
(∫ ∞

0

(∫
Ux

(y + t)(α−1)qv(y, t) dy dt
) p
p−q

x
(q−1)p
p−q dx

) p−q
pq

<∞.

Moreover, there exist positive constants d1 and d2 depending only on p, q and
α such that

d1D ≤ ‖Tα‖ ≤ d2D.

Proof. Let f ≥ 0 and let α ≥ 1. Then using Lemma 2 we obtain

‖Tαf‖Lqv ≤ 2α−1

(∫
eR2

+

(x+ t)(α−1)q
(∫ x

0

f(y) dy
)q
v(x, t) dx dt

)1/q

≤ λ22α−1D‖f‖Lp(R+),

where λ2 is from Lemma 2. Now let 1/p < α < 1. Then as in the proof of
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Theorem 1, we have

‖Tαf‖Lqv(eR2
+) ≤c1

(∫
eR2

+

(∫ x/2

0

f(y)(x− y + t)α−1 dy
)q
v(x, t) dx dt

)1/q

+ c1

(∫
eR2

+

(∫ x

x/2

f(y)(x− y + t)α−1 dy
)q
v(x, t) dx dt

)1/q

≡I1 + I2,

where c1 = 1 if q ≥ 1 and c1 = 21/q−1 if 0 < q < 1. By virtue of Lemma 2, for
I1 we obtain

I1 ≤ 21−αc1

(∫
eR2

+

(Hf(x))q(x+ t)(α−1)qv(x, t) dx dt
)1/q

≤ c1λ221−αD‖f‖Lp(R+).

Applying the Hölder’s inequality twice, we find

Iq2 ≤c2
∫

eR2
+

(∫ x

x/2

(f(y))p dy
)q/p

(x+ t)(α−1)qxq/p
′
v(x, t) dx dt

≤c2
∑
k∈Z

(∫ 2k+1

2k−1
(f(y))p dy

)q/p(∫
U2k\U2k+1

(x+ t)(α−1)qxq/p
′
v(x, t) dx dt

)
≤c2

(∑
k∈Z

∫ 2k+1

2k−1
(f(y))p dy

)q/p
×
(∑
k∈Z

(∫
U2k\U2k+1

(x+ t)(α−1)qxq/p
′
v(x, t) dx dt

) p
p−q
) p−q

p

≤2q/pc2‖f‖qLp(R+)B̃1,

where c2 = cq1(3 · 2(1−α)p′−1((α− 1)p′ + 1)−1)q/p
′

and

B̃1 ≡
(∑
k∈Z

(∫
U2k\U2k+1

(x+ t)(α−1)qxq/p
′
v(x, t) dx dt

) p
p−q
) p−q

p

≡
(∑
k∈Z

B̃1,k

) p−q
p

.
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For B̃1,k we have

B̃1,k ≤ 2
(k+1)q(p−1)

p−q

(∫
U2k\U2k+1

(x+ t)(α−1)qv(x, t) dx dt
) p
p−q

≤ c3
∫ 2k

2k−1
y
p(q−1)
p−q

(∫
Uy

(x+ t)(α−1)qv(x, t) dx dt
) p
p−q

dy,

where c3 = 4
(p−1)q
p−q q(p−1)

p−q

(
2

(p−1)q
p−q − 1

)−1

. Therefore B̃1 ≤ (c3)
p−q
p Dq. Finally,

we obtain I2 ≤ c4D‖f‖Lp(R+), where c4 = 21/p(c2)1/q(c3)
p−q
pq .

Now let us prove the necessity. Let Tα be bounded from Lp(R+) into
Lqv(R̃2

+). Then for each x ∈ (0,∞) we have

∫
Ux

v(y, t)(y + t)(α−1)q dy dt <∞.

Let n ∈ Z and

fn(x) =
(∫ ∞

x

vn(y) dy
) 1
p−q

x
q−1
p−q ,

where

vn(x) =
(∫ ∞

0

v(x, t)(x+ t)(α−1)q dt
)
χ(1/n,n)(x).

The boundedness of Tα implies that fn(x) < ∞ for each x ∈ R+. Applying
integration by parts, we obtain

‖fn‖Lp(R+) =
(∫ ∞

0

(∫ ∞
x

vn(y) dy
) p
p−q

x
p(q−1)
p−q dx

)1/p

=
(
p′

q

∫ ∞
0

(∫ ∞
x

vn(y) dy
) q
p−q

vn(x)x
q(p−1)
p−q dx

)1/p

<∞.
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On the other hand,

‖Tα‖Lqv(eR2
+) ≥

(∫
eR2

+

(∫ x/2

0

fn(y)(x− y + t)α−1 dy
)q
v(x, t) dx dt

)1/q

≥
(∫

eR2
+

(∫ ∞
x

vn(y) dy
) q
p−q
(∫ x/2

0

(x− y + t)α−1y
q−1
p−q dy

)q
v(x, t) dx dt

)1/q

≥c5
(∫

eR2
+

v(x, t)
(∫ ∞

x

vn(y) dy
) q
p−q

(x+ t)(α−1)qx
q(p−1)
p−q dx dt

)1/q

=c5
(∫ ∞

0

(∫ ∞
0

v(x, t)(x+ t)(α−1)q dt
)(∫ ∞

x

vn(y) dy
) q
p−q

x
(p−1)q
p−q dx

)1/q

≥c5
(∫ ∞

0

vn(x)
(∫ ∞

x

vn(y) dy
) q
p−q

x
(p−1)q
p−q dx

)1/q

=c6
(∫ ∞

0

(∫ ∞
x

vn(y) dy
) p
p−q

x
(q−1)p
p−q dx

)1/q

,

with c6 = (q/p′)1/q2−
p−1
p−q p−q

p−1c7, where c7 = ( 3
2 )α−1 if 1/p < α < 1 and

c7 = ( 1
2 )α−1 if α ≥ 1. Therefore

c6

(∫ ∞
0

(∫ ∞
x

vn(y) dy
) p
p−q

x
(q−1)p
p−q dx

) p−q
pq ≤ ‖Tα‖.

By virtue of Fatou’s lemma we finally conclude that c6D ≤ ‖Tα‖ <∞.

Remark 2. It follows from the proof of Theorem 2 that for the constants

d1 and d2 we have: d1 =
(
q
p′

)1/q

2
1−p
p−q p−q

p−1γ1(α), where γ1(α) = (3/2)α−1 if

1/p < α < 1 and γ1(α) = (1/2)α−1 if α ≥ 1, d2 = λ22α−1 for α ≥ 1, and if
1/p < α < 1, then

d2 =λ2γ2(q)21−α + 22/p−α31/p′((α− 1)p′ + 1)−1/p′41/p′

×
(q(p− 1)

p− q

) p−q
pq
(

2
(p−1)q
p−q − 1

)− p−qpq
γ2(q),

where γ2(q) = 1 for q ≥ 1, γ2(q) = 21/q−1 for 0 < q < 1.

Using dual arguments, we readily obtain the following theorems:

Theorem 3. Let 1 < p ≤ q < ∞, α > (q − 1)/q . Then the following
conditions are equivalent:
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(i) T̃α is bounded from Lpν(R̃2
+) into Lq(R+);

(ii) B̃ ≡ sup
r>0

(∫
Ur

(x+ t)(α−1)p′dν(x, t)
) 1
p′
r

1
q <∞;

(iii) B̃1 ≡ sup
k∈Z

(∫
U2k\U2k+1

(x+ t)(α−1)p′xp
′/q dν(x, t)

) 1
p′
<∞.

Moreover, there exist positive constants b̃1, b̃2, b̃3 and b̃4 depending only on p,
q and α such that

b̃1B̃ ≤ ‖T̃α‖ ≤ b̃2B̃, b̃3B̃1 ≤ ‖T̃α‖ ≤ b̃4B̃1.

Theorem 4. Let 1 < q < p < ∞ and α > (q − 1)/q. Let ν be absolutely
continuous, i.e. dν(x, y) = w(x, t) dx dt. Then R̃α is bounded from Lpw(R̃2

+)
into Lq(R+) if and only if

D̃ ≡
(∫ ∞

0

(∫
Ux

(y + t)(α−1)p′w(y, t) dydt
) q(p−1)

p−q
x

q
p−q dx

) p−q
pq

<∞.

Moreover, d̃1D̃ ≤ ‖T̃α‖ ≤ d̃2D̃, where the positive constants d̃1 and d̃2 depend
only on p, q and α.

4 Compactness

In this section, criteria for the compactness of the operators Tα and T̃α are
established. First we will prove

Lemma 3. Let 1 < p ≤ q <∞, α > 1/p and let ν be separable measure. If

(i) B <∞;

(ii) lim
a→0

B(a) = lim
b→+∞

B(b) = 0, where

B(a) ≡ sup
0<r<a

(∫
Ur\Ua

(x+ t)(α−1)q dν(x, t)
)1/q

r1/p
′
,

B(b) ≡ sup
r>b

(∫
Ur

(x+ t)(α−1)q dν(x, t)
)1/q

r1/p
′
,

then Tα is compact from Lp(R+) into Lqν(R̃2
+).
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Proof. Let us represent Tα as

Tαf =χVaTα(χ[0,a)f) + χVb\VaTα(χ(0,b)f) + χUbTα(χ(0,b/2]f)
+ χUbTα(χ(b/2,∞)f) ≡ P1f + P2f + P3f + P4f,

where Vr ≡ [0, r)× R+. (It is obvious that [a, b)× R+ = Vb \ Va.)
For P2 we have

P2f(x, t) =
∫ ∞

0

k(x, t, y)f(y) dy,

where k(x, t, y) = χVb\Va(x, t)χ(0,x)(y)(x − y + t)α−1. Moreover, using the
inequality ∫ x

0

(x− y + t)(α−1)p′ dy ≤ b(x+ t)(α−1)p′x,

where the constant b > 0 is independent of x and t, we get

‖‖k(x, t, y)‖Lp′ (R+)‖Lqν(eR2
+) =

(∫
Vb\Va

(∫ x

0

(x− y + t)(α−1)p′ dy
)q/p′

dν(x, t)
)1/q

≤c1
(∫

Vb\Va
(x+ t)(α−1)qxq/p

′
dν(x, t)

)1/q

<∞.

For P3 we obtain P3f(x, t) =
∫∞
0
k̃(x, t, y)f(y) dy, where

k̃(x, t, y) = χUb(x, t)χ(0,b/2](y)(x− y + t)α−1.

It can be easily verified that ‖‖k̃(x, t, y)‖Lp′ (R+)‖Lqν(eR2
+) <∞. Using Theorem

A we conclude that P2 and P3 are compact operators.
By Theorem 1 we have

‖P1‖ ≤ b2B(a) <∞ and ‖P4‖ ≤ b2B(b/2) <∞, (1)

where b2 is from Theorem 1. Hence we obtain

‖Tα − P2 − P3‖ ≤ ‖P1‖+ ‖P4‖ → 0 (2)

as a→ 0 and b→ +∞. Therefore Tα is compact as a limit of the sequence of
compact operators.

Theorem 5. Let p, q, α and ν satisfy the conditions of Lemma 3. Then the
following conditions are equivalent:
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(i) Tα is compact from Lp(R+) to Lqν(R̃2
+) ;

(ii) B <∞ and lim
a→0

B(a) = lim
b→+∞

B(b) = 0;

(iii) B <∞ and lim
r→0

B(r) = lim
r→+∞

B(r) = 0, where

B(r) ≡
(∫

Ur

(x+ t)(α−1)qdν(x, t)
) 1
q

r
1
p′ ;

(iv) B1 <∞ and lim
k→−∞

B1(k) = lim
k→+∞

B1(k) = 0, where

B1(k) ≡
(∫

U2k\U2k+1

(x+ t)(α−1)qxq/p
′
dν(x, t)

) 1
q

.

Proof. By Lemma 3 we have (ii) ⇒ (i). Now let us show that (iii) ⇒ (ii).
Since

B(a) ≤ sup
0<r<a

B(r) and B(b) = sup
r>b

B(r),

we obtain B(a) → 0 as a → 0 and B(b) → +∞ as b → ∞. Therefore (iii)
⇒ (ii). Let now Tα be compact from Lp(R+) into Lqν(R̃2

+). Let r > 0 and
fr(x) = χ(0,r/2)(x)r−1/p. Now it can be easily verified that fr weakly converges
to 0 if r → 0. On the other hand, ‖Tαfr‖Lqν(eR2

+) ≥ c1B(r)→ 0 as r → 0, since
Tαfr strongly converges to 0. Now, if we take

gr(x, t) = χUr (x, t)(x+ t)(α−1)(q−1)
(∫

Ur

(y + t)(α−1)q dν(y, t)
)−1/q′

,

then we readily find that gr weakly converges to 0 as r → +∞. Since T̃α is
compact from Lq

′

ν (R̃2
+) into Lp

′
(R+) and ‖T̃αgr‖Lp′ (R+) ≥ c2B(r), we obtain

lim
r→+∞

B(r) = 0. Therefore (i) ⇒ (iii).

Now we will prove that (ii) follows from (iv). Using Theorem 1, we establish
the fact that B ≤ b1B1. Let a > 0. Then a ∈ [2m, 2m+1) for some m ∈ Z.
Therefore B(a) ≤ sup

0<r<2m
B2m,r ≡ B(2m), where

B2m,r ≡
(∫

Ur\U2m

(x+ t)(α−1)qdν(x, t)
) 1
q

r
1
p′ .

If r ∈ [0, 2m), then r ∈ [2j−1, 2j) for some j ∈ Z, j ≤ m. Furthermore,

Bq2m,r ≤ 2
jq
p′

m∑
k=j

∫
U2k−1\U2k

(x+ t)(α−1)qdν(x, t) ≤ c3
(

sup
k≤m

B1(k − 1)
)q
.
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Hence we have B(2m) ≤ c4B(m)
1 , where B(m)

1 ≡ sup
k≤m

B1(k − 1). If a→ 0, then

m→ −∞ and B
(m)
1 → 0. Therefore lim

a→0
B(a) = 0.

Let now τ > 0. Then τ ∈ [2m, 2m+1) and we have

Bq(τ) ≤ c5Bq(2m) = c52
mq
p′

+∞∑
k=m

∫
U2k\U2k+1

(x+ t)(α−1)qdν(x, t)

≤ c6( sup
k≥m

B1(k))q.

Hence it readily follows that lim
τ→+∞

B(τ) ≤ c7 lim
m→+∞

sup
k≥m

B1(k) = 0 and

lim
b→+∞

B(b) = 0. Thus (iv) ⇒ (ii). Let now Tα is compact from Lp(R+)

into Lqν(R̃2
+), k ∈ Z and fk(x) = χ[2k−2,2k−1)(x)2−k/p. Then the sequence fk

weakly converges to 0 as k → −∞ or k → +∞. Moreover, it is easy to show
that ‖Tαfk‖Lqν(eR2

+) ≥ c8B1(k). Therefore (iv) is valid. Finally, we obtain (i)
⇔ (iii), (iv) ⇒ (ii) ⇒ (i) ⇒ (iv).

Our next theorem is proved in a similar manner. It is also a corollary of
the well-known Ando’s theorem (see, e.g., [2] and [14], §5).

Theorem 6. Let p, q, α and v satisfy the condition of Theorem 2. Then Tα
is compact from Lp(R+) into Lqv(R̃2

+) if and only if D <∞.

By dual arguments we obtain the following theorems.

Theorem 7. Let 1 < p ≤ q <∞, α > q−1
q . It is assumed that ν is a positive

σ-finite measure such that the space Lpν(R̃2
+) is separable. Then the following

conditions are equivalent:

(i) T̃α is compact from Lpν(R̃2
+) into Lq(R+) ;

(ii) B̃ <∞ and lim
a→0

B̃(a) = lim
b→+∞

B̃(b) = 0, where

B̃(a) ≡ sup
0<r<a

(∫
Ur\Ua

(x+ t)(α−1)p′ dν(x, t)
)1/p′

r1/q,

B̃(b) ≡ sup
r>b

B̃(r) ≡ sup
r>b

(∫
Ur

(x+ t)(α−1)p′ dν(x, t)
)1/p′

r1/q;

(iii) B̃ <∞ and lim
r→0

B̃(r) = lim
r→+∞

B̃(r) = 0;
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(iv) B̃1 <∞ and lim
k→−∞

B̃1(k) = lim
k→+∞

B̃1(k) = 0, where

B̃1(k) ≡
(∫

U2k\U2k+1

(x+ t)(α−1)p′xp
′/q dν(x, t)

) 1
q

.

Theorem 8. Let 1 < q < p < ∞ and α > q−1
q . Suppose that dν(x, t) =

w(x, t) dx dt, where w is a measurable a.e. positive function on R̃2
+. Then T̃α

is compact from Lpw(R̃2
+) into Lq(R+) if and only if D̃ <∞.

5 Measure of Non-Compactness

In this section, the distance of the operator Tα from a space of compact oper-
ators is estimated.

Let X and Y be Banach spaces. Denote by B(X,Y ) a space of bounded
operators from X into Y . Let K(X,Y ) be a class of all compact operators
from X into Y , Fr(X,Y ) be a space of operators of finite rank.

It is assumed that v is a Lebesgue-measurable almost everywhere positive
function on R̃2

+.
We need the following lemmas.

Lemma 4. [[4], Chapter V, Corollary 5.4]. Let 1 ≤ q <∞ and P ∈ B(X,Y ),
where Y = Lq(R̃2

+). Then

dist(P,K(X,Y )) = dist(P,Fr(X,Y )).

Our next lemma is proved like Lemma V.5.6 in [4] (see also [21], Lemma
2.2).

Lemma 5. Let 1 ≤ q <∞ and Y = Lq(R̃2
+). It is assumed that P ∈ Fr(X,Y )

and ε > 0. Then there exist T ∈ Fr(X,Y ) and [α, β] ⊂ (0,∞) such that
‖P − T‖ < ε and suppTf ⊂ [α, β]× R+ for any f ∈ X.

Let T ′α(0 < α < 1) be an operator of the form T ′αf(x, t) = v1/q(x, t)Tαf(x, t).
We denote

Ĩ ≡ dist(Tα,K(X,Lqv(R̃2
+)), and I ≡ dist(T ′α,K(X,Lq(R̃2

+)).

Lemma 6. Let 1 ≤ q <∞. Then Ĩ = I.

Proof. Let E ≡ {f : ‖f‖X ≤ 1} and P ∈ K(X,Lqv(R̃2
+)). Then
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‖Tα − P‖ = sup
E
‖(Tα − P )f‖Lqv(eR2

+)

= sup
E
‖T ′αf − v1/qPf‖Lq(eR2

+) = ‖T ′α − P‖,

where P = v1/qP . But P ∈ K(X,Lq(R2
+)). Therefore I ≤ Ĩ. Similarly, we

obtain Ĩ ≤ I.

Theorem 9. Let 1 < p ≤ q <∞, α > 1/p and let X = Lp(R+), Y = Lqv(R̃2
+).

Assume that B < ∞ for dν(x, t) = v(x, t) dx dt. Then there exist positive
constants ε1 and ε2 depending only on p, q and α such that

ε1J ≤ dist(Tα,K(X,Y )) ≤ ε2J,

where J = lim
a→0

J (a) + lim
d→+∞

J (d),

J (a) ≡ sup
0<r<a

(∫
Ur\Ua

v(x, t)(x+ t)(α−1)q dx dt
)1/q

r1/p
′
,

J (d) ≡ sup
r>d

(∫
Ur

v(x, t)(x+ t)(α−1)q dx dt
)1/q

r1/p
′
.

Proof. By the inequalities (1) and (2) from the proof of Lemma 3, we obtain
Ĩ ≡ dist(Tα,K(X,Y )) ≤ b2J , where b2 is from Theorem 1. Let λ > Ĩ. By
Lemma 6 we have Ĩ = I. Using Lemma 4, we find that there exists an operator
of finite rank P : X → Lq(R̃2

+) such that ‖T ′α − P‖ < λ. From Lemma 5 it
follows that for ε = (λ − ‖T ′α − P‖)/2 there are T ∈ Fr(X,Lq(R̃2

+)) and
[α, β] ⊂ (0,∞) such that ‖P − T‖ < ε and suppTf ⊂ [α, β]× R+. Therefore
for all f ∈ X we have ‖T ′αf − Tf‖Lq(eR2

+) ≤ λ‖f‖X . Moreover,∫
[0,α]×R+

|T ′αf(x, t)|q dx dt+
∫

[β,∞)×R+

|T ′αf(x, t)|q dx dt ≤ λq‖f‖qLp(R+). (3)

Let now d > β and r ∈ (d,∞). Assume that fr(y) = χ0,r/2)(y). Then
‖fr‖qLp(R+) = 2−q/prq/p. On the other hand,∫

Ur

|T ′αfr(x, t)|qj dt ≥
∫
Ur

(∫ r/2

0

(x− y + t)α−1 dy
)q
v(x, t) dx dt

≥ c1
(∫

Ur

v(x, t)(x+ t)(α−1)q dx dt
)
rq,
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where c1 = 3(α−1)q2−αq if 1/p < α < 1 and c1 = 2−αq for α ≥ 1. Therefore

λ ≥ c1/q1 21/p
(∫

Ur

v(x, t)(x+ t)(α−1)q dx dt
)1/q

r1/p
′
.

for all r > d. Hence we have c2J
(d) ≤ λ for any d > β and, finally, we

obtain c2 lim
d→+∞

J (d) ≤ λ. Since λ is arbitrarily close to Ĩ, we conclude that

c2 lim
d→+∞

J (d) ≤ Ĩ, where c2 = c
1/q
1 21/p.

Let us choose n ∈ Z such that 2n < α. Assume that j ∈ Z, j ≤ n− 1 and
fj(y) = χ(0,2j−1)(y). Then we obtain∫
U2j \U2j+1

|T ′αf(x, t)|q dx dt ≥
∫
U2j \U2j+1

v(x, y)
(∫ 2j−1

0

(x− y + t)α−1 dy

)q
, dx dt

≥ c3
∫
U2j \U2j+1

v(x, y)(x+ t)(α−1)q2(j−1)q dx dt,

where c3 = (3/2)(α−1)q in the case, where 1/p < α < 1 and c3 = (1/2)(α−1)q

for α ≥ 1. On the other hand, ‖fj‖qX = 2(j−1)q/p. By (3) we find that

c
1/q
3 4−1/p′B1(j) ≤ λ

for every integer j, j ≤ n− 1, where

B(j) ≡
(∫

U2j \U2j+1

v(x, t)(x+ t)(α−1)qxq/p
′
dx dt

)1/q

.

Consequently c1/q3 4−1/p′ supj≤nB1(j) ≤ λ for every integer n with the condi-
tion 2n < α. Let a < 2n < α. Then a ∈ [2m, 2m+1) for some m, m ≤ n − 1.
As in the proof of Theorem 5 we have that

B(a) ≤ B(2m) ≤ 21/p′(1− 2−q/p
′
)−1/q sup

j≤m
B1(j),

where

B(2m) ≡ sup
0<r<2m

(∫
Ur\U2m

v(x, t)(x+ t)(α−1)q dx dt

)1/q

r1/p
′
.

Therefore c4 lim
a→0

B(a) ≤ λ with c4 = 2−3/p′c
1/q
3 (1 − 2−q/p

′
)1/q. Finally we

obtain c5J ≤ Ĩ, where c5 = 1/2 min{c2, c4}.
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An analogous theorem for the classical Riemann-Liouville operator Rα is
proved for α > 1/p in [19]. Estimates of the distance of Rα from the class of
compact operators in the case of two weights for α > 1 are obtained in [6],
[21] (for the case α = 1 see [5]).

Remark 3. For the constants ε1 and ε2 from Theorem 9 we have: ε2 = b2,
ε1 = 1/2 min{β1, β2}, where β1 = 21/pγ3, β2 = 2−3/p′(1 − 2−q/p

′
)1/qγ4 with

γ3 = 3α−12−α for 1/p < α < 1, γ3 = 2−α for α ≥ 1 and γ4 = (3/2)α−1 for
1/p < α < 1, γ4 = (1/2)α−1 if α ≥ 1.

Acknowledgements. I express my gratitude to Prof. V. Kokilashvili for
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remarks and to the referee for useful comments.
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