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Abstract

Necessary and sufficient conditions are found for the positive Borel
measure v, which provide the boundedness (compactness) of the general-
ized Riemann—Liouville operator from one Lebesgue space into another
Lebesgue space with measure v. The appropriate problem for the gen-
eralized Weyl operator is solved as well.

1 Introduction

In this paper, necessary and sufficient conditions are found, which ensure the
boundedness (compactness) of the generalized Riemann-Liouville operator

Tof(a,t) = / (@ —y+ 0 ) dy, @t € Ry,

from LP(R,) into LZ(]IA@_), where 0 < p,g <oo,p>1,a>1/p, Ry =[0,00)
and v is a positive o-finite Borel measure on ]ﬁi =R; xRy (for ¢ < p it will
be assumed that v is absolutely continuous; i.e., dv(z,t) = v(z,t) dx dt, where
v is a Lebesgue-measurable almost everywhere positive function on I@i)

An analogous problem for the classical Riemann-Liouville operator

Rafto) = | " 9 () dy

was solved in [17], [18]. Necessary and sufficient conditions for the boundedness
of R, from L2 (R, ) into LI(Ry) were found for 1 <p<g<ocand 0 < a <1
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in [9] (see also [10], Chapter 3). A similar problem was solved for 1 < p < ¢ <
oo and o > 1 in [15], [25] and for 1 < ¢ < p < oo and o > 1 in [25]. For the
compactness of the operator R, when 1 < p,q < oo and « > 1 see [26].

The boundedness problem for the generalized Riesz potential

L) = [ (o =yl +0° " f(g)dy, 0<a<n,

from LP(R™) into LI(R™ x R;) (1 < p < ¢ < 00) was solved in [1] (Theorem
C) (see [8] for more general case).

A complete description of weight pairs (v, w) ensuring the validity of weak
(p,q) (1 < p < g < o0) type inequality for I, was given in [7] (see also
[10], Chapter 3). For the related Hérmander type maximal functions see [10],
Chapter 4.

The different (Sawyer type) necessary and sufficient conditions for the va-
lidity of two-weight strong (p,q) type inequality for I, and corresponding
Hoérmander type fractional maximal functions were established in [23].

Similar operators arise in boundary value problems in PDE, particularly
in Polyharmonic Differential Equations. Some applications of operator I, in
weighted estimates for gradients were presented in [27], p. 923.

In this paper, criteria of the boundedness (compactness) from LP (@3_) into
L(R) are also established for the operator

Togly) = / gz, t)(@ -y + 0 du(a, 1),
[y,00) xR

Finally, the upper and lower estimates of the distance of the operator T,
from a space of compact operators are derived in the non-compact case.
Some results of the present paper were announced in [20].

2 Preliminaries

Let v be a positive o-finite Borel measure on Hﬂéi For (0 < g < 00) denote by
L%(R%) the class of all v-measurable functions g : R3 — R! for which

1/q
lollsa) = ([, lote ol aviet) " < .
+

If v is absolutely continuous (i.e., dv(x,t) = v(x,t)dxdt), then instead of
LZ(]INQi), we will use the notation Lg(f@i), and if v =1, then L (I@.i) will be
denoted by L7(R2).

Let
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=/Omf<y)dy

for a measurable function f: R, — RL.

Necessary and sufficient conditions for the boundedness of the operator
H from L? (Ry) into LI(Ry4) were found in [3], [12] (see also [16], §1.3) for
1< p<g<oo,and in [16], §1.3, for 1 < ¢ < p < co. (For the compactness of
H see [5], [22].)

In what follows we will use the notation U, = [r,o0) x Ry, where r > 0.
It is obvious that [r,R) x Ry = U, \ Ug for 0 <r < R < 0.

To prove our main results, we need the following lemma.

Lemma 1. Let 1 < p < g < o0 and p be a positive Borel measure on I@i
Then the operator H is bounded from LP(Ry) into L%(R?Y) if and only if

A = sup(u(U, )Y ? < oo, p'=p/(p—1).
r>0

Moreover, A < ||H|| < 4A.

PROOF. Sufficiency. Let f >0, f € LP(R;) and I(t) = fo f. Assume that
I f € (2m,2mF1] for some m € Z. Then there ex1st zr (k < m) such that
I(x),) = 2. Tt is obvious that 2% = f;:“ f for k < m—1. The sequence {zj}
increases. Moreover, if a = kEIEloo xg, then Ry = [0, ) U (Up<m [Tk, Th+1)),
where xpy1 = co. When fooo f = oo, we have R}y = [0, ] U (Ugez|k, Th+1))
(i.e., m = o0). If y € [0,a], then I(y) = 0, and if y € [xk,Zk+1), then
I(y) < 2+l We have

|| f”Lq R2) = Z HXUZk\Ukarl f“Lq (]R2
k

(k+1) P
<32 Py ”LZ(Ri)
k

:4?2(/

k Tr—1

<o ([ Gray) e - m) (U, \ Vs )

k—1

< 4pAp||fHLp(]R+)

T

F)y)” (14U \ Uy )P/
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Necessity. Let r > 0 and f,(z) = X[o,») (). Then ||f,||rr&,) = r'/P. On the
other hand,

1/
HHfHL;{,(nii) > ||XU7»Hfr| L;{,(]ﬁi) > (N(UT)) r.
Hence the boundedness of H implies that A < oo. O

Lemma 2. Let 0 < g < p < oo, p > 1 and let v be an almost everywhere
positive measurable function on Ri, Then the operator H is bounded from

LP(Ry) into Lg(@i) if and only if

> ﬁ (a=1)p %
A = (/ (/ v(y,t) dydt) x pa dm) < 00.
0 U

T

_ (p=a 1/qll/q — ()14 q1/4a
Moreover, A1 Ay < ||[H|| < Ao A1, where Ay = E g% and Ay = (p') ¢

1
forq > 1, M =X =1forqg=1, A\ = (¢/p)7 @)/7q"/?=2 and

Ao = (L)Wpl/”(p’)“”' for0<qg<1.

pP—q

PROOF. Applying Lemma 1.3.2 from [16] for 1 < ¢ < p < oo and using the
arguments from [24] for 0 < ¢ < 1 < p < oo we find that the condition 4; < oo
is equivalent to the boundedness of H from LP(R}) into LL(R. ), where

(y) :/ v(y, t) dt.
0
But
IH fllLa,) = ||Hf||Lg(J1§i)'

Therefore the condition A; < oo is equivalent to the boundedness of H from
LP(Ry) into LZ(R2). The constants A\; and Ay are from [16] (Section 1.3.2)
for ¢ > 1, and from [24] (see Theorem 2.4 and Remark) for 0 < ¢ < 1. O

We need the following theorem which can be obtained from Lemma 2 in
[11], Chapter XI (see also [13], Chapter 3).

Theorem A. Let 1 < p,q < oo, v be a positive o-finite separable measure on
R?2 (i.e., LY(R?) is separable). If

D1 M e gy < 000 k20,

then the operator K f(z) = fooo k(z,y)f(y)dy, z € I@i, is compact from
LP(Ry) into LI(R2).
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3 Boundedness

In this section, criteria of the boundedness of the operators T, and fa are
established.

Theorem 1. Let 1 < p < g < oo, a > 1/p, v be a positive o-finite measure
on Ri. Then the following conditions are equivalent:

(i) T, is bounded from LP(R,) into Lg(ﬂéi) ;

iy
(ii) B= sup(/ (x+ t)(o‘_l)qdy(x,t)> rY < o00;
r>0 U,

1

(iil) By = Sup(/ (z + t)(@Daga/v’ dy(x,t)) ! < .
keZ UQk\U2k+1

Moreover, there exist positive constants by, ba, by and by depending only on p,
q and o such that

b1 B < ||To|] < b2B, b3By < ||To|| < baBs.

PRrROOF. First we will show that (ii) implies (i). Let f > 0. If a > 1, then
using Lemma 1 we obtain

sty <27 ([ o [ o) dy)qdwx,t))w

< 2T fll Loy -

Now let 1/p < o < 1. We have
z/2 . q 1/q
< _ a—
Tty <( [, ([ s —veorta) o)

+ (/]liz ( ¢ f(y)(x_y+t)a_1dy>qdy(x7t)>1/q

z/2
ESl + SQ.

If y < x/2, then (z —y + )~ < 217%(z +¢)*~ L. By Lemma 1 we obtain

1/q
S, < 21—@(/~ (Hf(x))(z + t)(a_l)qdy(x,t)) <227°B| fllrr,)-

2
R
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Using the Holder’s inequality, we find that
v q/p /
si< [ ([ twra)" o aew.o,
RZ z/2

where

xr
oz, t) = / (x —y+ t)(a—l)p/ dy.
x/2

Moreover, @(z,t) < ¢1(x+1) @ DP 2, where ¢; = 207" =13((a—1)p/ +1) 1.
Indeed, if t < x then

(e t) < ((a=1)p' + 1) H(@/2+ 1)@ < gy 4 1)@ g,
where ¢y = 2= ~13((oy — 1)p’ +1)~L. Let ¢ > x. Then

oz, t) < @ P g /2 < 2(=p' =1y 4 pyla=1p'y,

Using the Minkowski’s inequality we obtain
q o /v’ ’ arv (a=1)aya/p'
sg<ed™ [ ([ Grdy)” @+ 0@ d(,t)
]ﬁi z/2

/ o0 , p/a alp
<cll” </O (f(y))”</Uy\U2y(x+t)("_”qwq/p dV(%t)) dy)

L/ poo i\l
<ot ([“( [ o maen) e a)
0 U,

< (2cl)q/p Bq”f”%p(]}h)-
Now we will show that (i) = (iii). Let k € Z and fx(x) = Xxo,2t-1)(2).
Then || fx|lzo®, ) = 2*~D/P. On the other hand,

1/q
HTafk”L(](@Q ) > c3 (/ (SC 4 t)(afl)qz(kfl)q dl/(af, t)) )
o Upke \Uzk+1

Therefore ¢4 By < || T, < 0o, where ¢ = 3¢71272/7"+1= if 1 /) < o < 1 and
ey = 217072/P" if oy > 1.

Analogously we can show that ¢sB < ||Th||, where ¢5 = 3*~12l/P—a if
1/p<a<1andcs =27~ for a > 1.
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Let now 7 > 0. Then r € [2™,2™T1) for some m € Z. Therefore

(/ (m 4 t)(a—l)q dl/(SC, t))TQ/I)' < 2(m+1)q/P, / (:L‘ + t)(a—l)q du(m, t)
U, Usm

—+o0
— 9a/p" 9ma/p’ Z / (z+ t)(afl)q dv(z,t)

Uk \Usk 41

< 9a/p’ B‘IQTMJ/P Z o—ka/p" _ 9a/p’ (1—2- Q/P) 1B‘11.

k=m
Thus (iii) implies (ii). So that finally (ii) = (i) = (iii) = (ii). O

Remark 1. For the constants by, bs, b3 and by from Theorem 1 we have: b; =
3(1—121/;17—04’ b2 = 23_0‘ —+ 31/17/21—0((& _ 1)p/ + 1)—1/p/7 b3 — 3(1—12—2/1;’4,-1—@
in the case, where 1/p < av < 1 and by = 21/P=% hy = 20+1 g = 272/p'+1-«
if @ > 1. by =2V/P (1 —2-9/P")=1/ap,,

Let us now consider the case ¢ < p.

Theorem 2. Let 0 < ¢ < p < 00, p > 1 and a > 1/p. Assume that v is
an almost everywhere positive Lebesque-measurable function on Ri. Then the
operator T, is bounded from LP(R.) into L1(R2) if and only if

P—q

b= (/ (/ (y+ 1) Du(y, 1) dydt)mx(qpilq)p d;v) "<
0 x

Moreover, there exist positive constants di and ds depending only on p, q and
a such that

diD < ||T,| < d2D

PROOF. Let f >0 and let a > 1. Then using Lemma 2 we obtain

x q 1/q
Taslls <227 ([ 00 [ g ) oot doat)
Ri 0
< A2°7'D|| fll Loy

where Ay is from Lemma 2. Now let 1/p < o < 1. Then as in the proof of
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Theorem 1, we have

R

z/2 1/q
||TafHLg(]§i) §01</~2 (/o f(y)(x—y—&-t)“_ldy)qv(:v,t) dmdt)

—i—c1</~2 ( ’ f(y)(x—y+t)”‘_1dy>qv(m,t) dmdt)l/q

R% z/2

EE]i + ]é,

where ¢; = 1if ¢ > 1 and ¢; = 27971 if 0 < ¢ < 1. By virtue of Lemma 2, for
I; we obtain

I <2179 (/~ (H f(x))9(z + t) @Dy (z, 1) dxdt)l/q

RL

<12 7D fll o, )-

Applying the Holder’s inequality twice, we find

<X ([ uwra)”([

(z 4 1)@ D99/P 4 (2, 1) das dt)

ok \Usk+1

P pP—q

x (Z (/U (z + 1) (@D y (2, 1) da:dt)ﬁ) v

keZ 2k \Usk+1
<297y f11%, m., B

where ¢y = ¢4(3- 20707 =1 (o — 1)p/ + 1)~ 1)%/?" and

D

(Z (/ (2 + 1) @039/ (5. 1) d dt) “) ’
kez 7 Usk \Uskt1

p—qg

= <Z§1k> "

kEZ

B
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For B ; we have

(k+1)a(p—1) L

By <2 v-a / (z+t) @ Vy(z, t) da dt) v
Uk \Usk 41

2k 1 _p_
< 03/ yp(quq) (/ (z +t) @ V(e t) de dt) " dy,
2 U

k—1
Y

— — -1 ~ p—g
where ¢3 = 454 % (2 = _ 1) . Therefore By < (¢3) 7 D9. Finally,
we obtain Iy < ¢4 D||f|Lr(r,), Where cq = 21/P(cq) M 1(c5) Fa .

Now let us prove the necessity. Let T, be bounded from LP(Ry) into
L%(R%). Then for each z € (0, 00) we have

/ v(y, t)(y + 1)V dy dt < co.
Uz

Let n € Z and

where

w@ = ([ "ol )+ DO Xy (1),

The boundedness of T, implies that f,(z) < oo for each € Ry. Applying
integration by parts, we obtain

o0 o0 _p_ 1/p
_ p—q pla—=1)
I fnllLe @) = </ (/ T (y) dy) 2" dx)
0 T
4 oo 0 . B 1/p
= <p/ (/ Un(y) dy) T ()a dx) < 0.
q Jo z
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On the other hand,
z/2 q 1/q
pe > " o a—1
ety = ([, ([ #@e =y e0 ar) vie o)

2(/@ (/:o Un(y) dy) o (/OI/Q(:C —y )Ty dy)qv(m, t) dx dt)l/q

2
+

& quq a(p—1 1/
205(/~ v(x,t)(/ Un(y) dy) (@ + )@V 5 dt) !
x

(/OOO (/000 v(x, t)(x 4 1) @D dt) (/:O T (y) dy)ﬁx% dx) Ha
ZC‘”’(/OOO ”"(I)(/Ioovn(y) dy>ﬁx% dx>1/q
_ ( P

with cg = (q/p’)l/qQ_z%;Z:‘fc% where ¢; = (2)*71if 1/p < @ < 1 and
c7 = (3)* " if @ > 1. Therefore

o [C([ mw )" ) <.

By virtue of Fatou’s lemma we finally conclude that cgD < ||T,|| < oc. O

Remark 2. It follows from the proof of Theorem 2 that for the constants

g 1,
dy and dy we have: d; = (ﬁ) Bi= Ey(a), where y1(a) = (3/2)*7 1 if

1/p<a<land y1(a) = (1/2)> L if a > 1, dy = X\2%7! for a > 1, and if
1/p < a < 1, then

dy =Aoyya(q)2' % + 22/P=a3VP (o — 1)p! 4 1)~ VP 41/¥
— 1 L? r—1)q _L?
X <7q(p >) ! (2% — 1) ! Y2(q),

pP—q
where v2(q) = 1 for ¢ > 1, y2(q) =297 for 0 < ¢ < 1.
Using dual arguments, we readily obtain the following theorems:

Theorem 3. Let 1 < p < ¢ < o0, a > (g —1)/q . Then the following
conditions are equivalent:
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i) T, is bounded from LP R2) into L9 R4);
v\t
~ ’ % 1
ii) B=su 2+ 1) P du(z, 1)) " re < oo;
(i) ([ @+1) : :
r>0 U,

(111) él = Sup(/ (IE + t)(a—l)p’xp’/q dV(I,t)) P < .
keZ UZk\U2k+1

Moreover, there exist positive constants gl, gg, 53 and Z4 depending only on p,
q and o such that

b1B < |[Tall < b2B, b3By < || Tl < babB.

Theorem 4. Let 1 < ¢ < p < o0 and a > (¢ — 1)/q. Let v be absolutely

continuous, i.e. dv(x,y) = w(z,t)dxdt. Then R, is bounded from LQ(@i)
into L1(Ry) if and only if

a(p—1) =g

D= </ (/ (y+t)(a71)plw(y,t) dydt> = dz) B < oo0.
0 U,

Moreover, (%ZN) < ||fa|| < Jgﬁ, where the positive constants 51 and (72 depend
only on p, q and «.

4 Compactness

In this section, criteria for the compactness of the operators T, and fa are
established. First we will prove

Lemma 3. Let 1 <p < g < oo, a>1/p and let v be separable measure. If

(i) B < oo;
(ii) lim B = lim B® =0, where
a—0 b— 400
(@) (e-1) a1
B = sup ( (x +1) qdl/(a:,t)) /P
o<r<a NJu\U,

1/ !
B® = sup (/ (z + )@ Da dV(:z:,t)) /e ,
U

r>b

then Ty, is compact from LP(Ry) into Lg(]ﬁi)
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PROOF. Let us represent T, as

Tof =xv, Ta(X[0,0) f) + xvi\v, Ta(X(0,5)f) + XU, Ta (X (0,6/2) f)
+ xv, Ta(X(b/2,00)f) = P1f + Pof + P3f + Py f,

where V,. = [0,7) x Ry. (It is obvious that [a,b) x Ry =V}, \ V,.)
For P, we have

Pafiat) = [ ) F() dy,

where k(z,t,y) = xv\v. (@, 6)X(0,.0) W) (@ — y + ).

inequality

Moreover, using the

x
/ (z —y+ )V dy < bz + )P,
0
where the constant b > 0 is independent of = and ¢, we get
_ z v a/v’ 1/q
G oo gy =( [ ()@= wr o0 an)ivte, )
b a

’ 1/‘1
< (/ (z + )@ Daga/? gy (s, t)) < oo.
Vb\Va

For Ps; we obtain Psf(z,t) = fooo E(x,t,y)f(y) dy, where

k(z,t,y) = xv, (%, t)X(0,6/2)(¥)(x —y + 1)

a—1

It can be easily verified that [||[k(z, t, )| . ()l Ls (@2 ) < 00. Using Theorem
v(RY

A we conclude that P, and P are compact operators.
By Theorem 1 we have

|Py|| <bB@ <00 and ||Py]| < by B/ < o0, (1)
where by is from Theorem 1. Hence we obtain
[To — P> — B3| < [|Pr|| + || Pal| — O (2)

as a — 0 and b — +o00. Therefore Ty, is compact as a limit of the sequence of
compact operators. O

Theorem 5. Let p,q,a and v satisfy the conditions of Lemma 3. Then the
following conditions are equivalent:
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(i) Ty is compact from LP(R,) to L,‘i(ﬂii) ;

(i) B < oo and lim B = , Jim B® =0;
a— ——400

(iii) B < o0 and lir% B(r) = lim B(r) =0, where

r——400

B(r) = (/U (x+t)(a71)qdu(x,t))%rﬁ;

(iv) By < o and klim By (k) = klim Bi(k) =0, where

——+00
, 1
Bi(k) = / (z 4 )@ Dagd/P" gy (g, t)) .
Uy \Usk 1

PRrROOF. By Lemma 3 we have (ii) = (i). Now let us show that (iii) = (ii).
Since
B < sup B(r) and B® = sup B(r),
0<r<a r>b

we obtain B(® — 0 as a — 0 and B®) — 400 as b — co. Therefore (iii)
= (ii). Let now T, be compact from LP(R;) into Lg(ﬂii) Let 7 > 0 and
fr(z) = X(O,T/g)(x)rfl/p. Now it can be easily verified that f, weakly converges
to 0 if » — 0. On the other hand, ||T04f’f’HLg(]1~{2+) > c¢1B(r) — 0 asr — 0, since

T, fr strongly converges to 0. Now, if we take

gr(z,t) = xu, (z,t)(z + t)<a71><q71></

-1/q
(y+t) D dy(y, t)) :
U,

then we readily find that g, weakly converges to 0 as 7 — +o0o. Since fa is
compact from L% (R%) into L? (Ry) and ||Tugy| 10 (R,) = c2B(r), we obtain
lim B(r) = 0. Therefore (i) = (iii).

r—+400
Now we will prove that (ii) follows from (iv). Using Theorem 1, we establish
the fact that B < b;By. Let a > 0. Then a € [2™,2™+1) for some m € Z.

Therefore B < sup Bym, = B?") where
0<r<2m

i
Bom , = (/ (x + t)(a_l)qdu(x7t)) e
U, \Usm

If r € [0,2™), then r € [2771,27) for some j € Z, j < m. Furthermore,

Jq i q
Bl . <27 Z/ (z+ ) Vdy(z,t) < 03( sup By (k — 1)) .
k=j Usk—1\Usp k<m
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Hence we have B2") < ¢, B™, where B\"™ = sup By (k — 1). If a — 0, then
k<m

m — —oo and B§m) — 0. Therefore lim B(*) = 0.

a—

Let now 7 > 0. Then 7 € [2™,2™%!) and we have

+oo
BY(r) < csBU(2™) = ¢52% Y / (z + 1) Dy (2, 1)
k=m 7 Uzk\Uzkt1
< ¢g(sup Bi(k))4.
k>m
Hence it readily follows that lirf B(1) < ¢7 hI}rl sup Bi(k) = 0 and
T—T00 m— OOkZm

bliIJP B® = 0. Thus (iv) = (ii). Let now T, is compact from LP(R,)

into Lz(@i), k € Z and fi(z) = X[2k—2,2k—1)($)2_k/p. Then the sequence fj

weakly converges to 0 as k — —oo or k — +0o0. Moreover, it is easy to show

that HTOéfk”LQ(u@) > cg By (k). Therefore (iv) is valid. Finally, we obtain (i)
v{R3

< (iih), (iv) = (i) = (1) = (iv). O

Our next theorem is proved in a similar manner. It is also a corollary of
the well-known Ando’s theorem (see, e.g., [2] and [14], §5).

Theorem 6. Let p, q, o and v satisfy the condition of Theorem 2. Then T,
is compact from LP(Ry) into LI(R2) if and only if D < co.

By dual arguments we obtain the following theorems.

Theorem 7. Let 1 <p<qg< oo, o> % It is assumed that v is a positive

o-finite measure such that the space L{i(f@i) is separable. Then the following
conditions are equivalent:

(i) Tw is compact from Lﬁ(ﬂii) into L1(Ry) ;

(ii) B < oo and lir% B@ = blir+n B® =0, where

/ 1/ !
B = sup (/ (z+t)@=bp dV(I,t)) : ri/a,
U\Us

0<r<a
S0 = cun B(r) = (a—1)p’ RAORY
B'"™ = sup B(r) = sup ( (x+1) P du(x,t)) r/4;
r>b r>b U,

(iii) B < oo and lim B(r)= lim B(r)=0;

r——400
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(iv) By < oo and klim By (k) = klim By (k) =0, where

— 400
=~ ’ ’ l
Bi(k) = (/ (x4 )@ DP gp'/a dV(x,If)) ‘.
U,k \Usk41

Theorem 8. Let 1 < g < p < o0 and o > q%l. Suppose that dv(z,t) =

w(z,t) dxdt, where w is a measurable a.e. positive function on @i Then fa
is compact from LP (R2) into LY(Ry) if and only if D < oc.

5 Measure of Non-Compactness

In this section, the distance of the operator T, from a space of compact oper-
ators is estimated.

Let X and Y be Banach spaces. Denote by B(X,Y) a space of bounded
operators from X into Y. Let K(X,Y) be a class of all compact operators
from X into Y, F,.(X,Y) be a space of operators of finite rank.

It is assumed that v is a Lebesgue-measurable almost everywhere positive
function on R

We need the following lemmas.

Lemma 4. [[4], Chapter V, Corollary 5.4]. Let 1 < ¢ < oo and P € B(X,Y),
where Y = L(R?). Then

dist (P, K(X,Y)) = dist(P, F,.(X,Y)).

Our next lemma is proved like Lemma V.5.6 in [4] (see also [21], Lemma
2.2).

Lemma 5. Letl1 <g<ooandY = Lq(@i), It is assumed that P € F.(X,Y)
and € > 0. Then there exist T € F.(X,Y) and [o, 8] C (0,00) such that
|IP—T| <€ and suppTf C [, ] x Ry for any f € X.

Let T.(0 < a < 1) be an operator of the form T/, f (2, t) = v'/9(x,t) T f (x, ).
We denote

I = dist(T,, K(X, LI(R2)), and T = dist(T%,, K(X, L¢(R2)).
Lemma 6. Let 1 < q < oo. Then I=1.

PROOF. Let E = {f:|fllx <1} and P € K(X, L%(R2)). Then
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ITe — Pl = sup | (T — P)fll o e
E +

= Slép HT(;f - ’Ul/quHLq(ﬂii) = ||T(; _ﬁHa

where P = v¥/9P. But P € K(X,L(R%)). Therefore I < I. Similarly, we
obtain INS 1. O

Theorem 9. Letl <p<g<oo,a>1/pandlet X = LP(Ry), Y = Lg(]lif_)
Assume that B < oo for dv(x,t) = v(x,t)dxdt. Then there exist positive
constants €1 and €s depending only on p, q and o such that

e < dist(T,, K(X,Y)) < €3,

where J = lin%) J(@ 4 dlim J(@

— 400

Ve
J@ = sup (/ v(x, t)(x + )@ e dxdt) /P
U \Uq

0<r<a

Va o,

JD = sup (/ v(a, t)(z 4 )@ Da dxdt) /v
r>d U,

PROOF. By the inequalities (1) and (2) from the proof of Lemma 3, we obtain

I = dist(T,, K(X,Y)) < byJ, where by is from Theorem 1. Let A > I. By

Lemma 6 we have [ = I. Using Lemma 4, we find that there exists an operator
of finite rank P : X — L%(R?) such that | T, — P|| < A. From Lemma 5 it

follows that for ¢ = (A — ||T), — PJ|)/2 there are T € FT(X,LQ(@i)) and
[a, 8] C (0,00) such that ||P —T| < € and suppT'f C [«, 3] x R4. Therefore
for all f € X we have ||T/,f — Tf||Lq(H~{2+) < Al fllx- Moreover,

T f(x,t)|dx dt + T f(z,t)|dx dt < \|| f]|% . (3
| « « LP(]R )
[0,a] xR [8,00) xRy +

Let now d > 3 and r € (d,00). Assume that f.(y) = Xo,r/2)(y). Then
||fquLp(R+) = 279/Pya/P_ On the other hand,

r/2
/ |0 fr(z,t)|%5 dt > / (/ (xnyrt)a*ldy)qv(x,t) dx dt
U, U, NJo

> Cl(/ U(z,t)(a:—kt)(o‘*l)q dmdt)rq,
U

T
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where ¢; = 3(@~Dag—aq jf 1/p<a<1andc =2 for @ > 1. Therefore
1/q51/ (a—1) /a 1/p/
A> 2 p( v(z, t)(x +t) qudt) rr
Ur

for all r > d. Hence we have ¢y J(@ < X for any d > 3 and, finally, we
obtain ¢, lim J@ < X\ Since X is arbitrarily close to I, we conclude that

d——+oo

¢y lim J@ < f, where ¢y = c}/q21/”.
d—400
Let us choose n € Z such that 2™ < «. Assume that j € Z, j <n — 1 and

fi(¥) = X(0,27-1)(y). Then we obtain

2i—1 q
/ sl de it > | v<x,y>( / <x—y+t>a-1dy),dxdt
Uyi\Uyj+1 Uyi\Uyj+1 0

>c3 / v(z,y)(x + )@ D20=Da gg gy,
Usi\Uyj+1

where ¢z = (3/2)(®~14 in the case, where 1/p < a < 1 and ¢3 = (1/2)(@~14
for a > 1. On the other hand, || f;||% = 2U~Y4/?. By (3) we find that

e/ 1477 B (j) < A

for every integer j, 7 < n — 1, where

1/q
B(j) = (/ v(x, t)(z 4 t) @ Dage/p da:dt) .
Ui \Upjt1

Consequently cé/qél_l/p/ SUp,<p B1(j) < X for every integer n with the condi-

tion 2" < a. Let a < 2" < a. Then a € [2™,2™F1) for some m, m < n — 1.
As in the proof of Theorem 5 we have that

B@ < B@™ < ol/¥ (1 — 2=9/¥y=1a qup B, (),

j<m

where

1/q
B®") = sup (/ v(a, t)(z 4+ t) @Dy dt) P/
o<r<2m™ \ JU,\Upm

Therefore ¢y lin%) B < X\ with ¢y = 2_3/1’/c§/q(1 — 279/P"\1/a_ Finally we
a—

obtain ¢5J < I, where ¢5 = 1/2min{cy, ¢4} O
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An analogous theorem for the classical Riemann-Liouville operator R, is
proved for o > 1/p in [19]. Estimates of the distance of R, from the class of
compact operators in the case of two weights for a@ > 1 are obtained in [6],
[21] (for the case o =1 see [5]).

Remark 3. For the constants €; and €5 from Theorem 9 we have: eg = bo,
€1 = 1/2min{f, B2}, where B, = 2'/P~3, By = 273/”/(1 — 2"1/7’/)1/‘174 with
v3 =3 127% for I/p < a < 1,73 =27% for @ > 1 and 4 = (3/2)*" ! for
Ip<a<l,y=(1/2)>tifa>1.

Acknowledgements. 1 express my gratitude to Prof. V. Kokilashvili for
drawing my attention to the above-considered problems and for his helpful
remarks and to the referee for useful comments.

References

[1] D. R. Adams, A trace inequality for generalized potentials, Studia Math.
48 (1973), 99-105.

[2] T. Ando, On the compactness of integral operators, Indag. Math. (N.S.)
24 (1962), 235-239.

[3] J. S. Bradley, Hardy inequality with mized norms, Canad. Math. Bull. 21
(1978), 405-408.

[4] D. E. Edmunds and W.D. Evans, Spectral theory and differential opera-
tors, Oxford Univ. Press, Oxford, 1987.

[5] D. E. Edmunds, W. D. Evans and D. J. Harris, Approzimation numbers
of certain Volterra integral operators, J. London Math. Soc. 37 (1988),
No. 2, 471-489.

[6] D. E. Edmunds and V. D. Stepanov, The measure of non-compactness
and approzimation numbers of certain Volterra integral operators, Math.
Ann. 298 (1994), 41-66.

[7] M. Gabidzashvili, I. Genebashvili and V. Kokilashvili, Two-weight in-
equalities for generalized potentials. (Russian) Trudy Mat. Inst. Steklov
194(1992), 89-96. English transl. Proc. Steklov Inst. Math. 94 (1993),
Issue 4, 91-99.

[8] I. Genebashvili, Carleson measures and potentials defined on the spaces of
homogeneous type. Bull. Georgian Acad. Sci. 135(1989), No. 3, 505-508.



CRITERIA OF THE BOUNDEDNESS AND COMPACTNESS 235

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[19]

[20]

I. Genebashvili, A. Gogatishvili and V. Kokilashvili, Solution of two-
weight problems for integral transforms with positive kernels, Georgian
math. J. 3 (1996), No. 1, 319-342.

I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight
theory for integral transforms on spaces of homogeneous type, Pitman
Monographs and Surveys in Pure and Applied Mathematics, 92, Long-
man, Harlow, 1998.

L. P. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon, Ox-
ford, 1982.

V. M. Kokilashvili, On Hardy’s inequalities in weighted spaces. (Russian)
Soobsch. Akad. Nauk Gruz. SSR 96 (1979), 37-40.

H. Konig, Figenvalue distribution of comapct operators. Birkéuser,
Boston, 1986.

M. A. Kransnoselskii, P. P. Zabreiko, E. I. Pustilnik and P.E. Sobolevskii,
Integral operators in spaces of summable functions. (Russian) Nauka,
Moscow, 1966, English transl. Noordhoft International Publishing, Lei-
den, 1976.

Martin-Reyes and E. Sawyer, Weighted inequalities for Riemann-Liouville
fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106
(1989), 727-733.

V. G. Mazya, Sobolev spaces, Springer, Berlin, 1985.

A. Meskhi, Solution of some weight problems for the Riemann-Liouville
and Weyl operator, Georgian math. J. 5 (1998), No. 6, 565-574.

A. Meskhi, Boundedness and compactness weighted criteria for Riemann-
Liouville and one-sided mazimal operators, Proc. A.Razmadze Math. Inst.
117 (1998), 126-128.

A. Meskhi, Criteria for the boundedness and compactness of integral
transforms with positive kernels, Proc. Edinburgh Math. Soc. (to appear).

A. Meskhi, Boundedness and compactness criteria for the generalized
Riemann-Liouville operator, Proc. A. Razmadze Math. Inst. 121 (1999),
161-162.

B. Opic, On the distance of the Riemann-Liouville operators from compact
operators, Proc. Amer. Math. Soc. 122 (1994), No. 2, 495-501.



236

[22]

[23]

[24]

[25]

[26]

[27]

A. MESKHI

S. D. Riemenschneider, Compactness of a class of Volterra operators.
Tohoku Math. J. (2) 26 (1974), 285-387.

E. T. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities
for operators of potential type and fractional mazximal functions, Potential
Analysis, 5 (1996), 523-580.

G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new
proofs and the case p =1, J. London Math. Soc. 54 (1996), 89-101.

V. D. Stepanov, Two-weighted estimates for Riemann-Liouville integrals.
Report No. 39, Math. Inst. Czechoslovak Acad. Sci., 1988, p. 28.

V. D. Stepanov, Weigted inequalities of Hardy type for higher derivatives,
and their applications. (Russian) Soviet Math. Dokl., 38 (1989), 389-393.

R. L. Wheeden and J. M. Wilson, Weighted norm estimates for gradients
of half-space extensions, Indiana Univ. Math. J. 44 (1995), No. 3, 917-
969.



