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POROSITY IN SPACES OF
DARBOUX-LIKE FUNCTIONS

Abstract

It is known that the six Darboux-like function spaces of continuous,
extendable, almost continuous, connectivity, Darboux, and peripherally
continuous functions f : R — R, with the metric of uniform convergence,
form a strictly increasing chain of subspaces. We denote these spaces
by C, Ext, AC, Conn, D, and PC, respectively. We show that C and D
are porous and AC and Conn are not porous in their successive spaces
of this chain.

The porosity of special sets in spaces of Darboux-like functions has been
studied, for example, in [10] and [11]. For functions f : R — R, it is known
that C € Ext ¢ AC C Conn C D C PC [12]. Each function space we
study will have on it the metric d of uniform convergence defined by d(f, g) =
min{1, sup{|f(z) — g(z)| : * € R}}. In [2, thm 7, p.445], Bruckner and Ceder
show that if f € cl(D) and the graph of f is dense in R?, then f € cl(Conn)
and Conn is dense in each open ball in cl(D) with radius < 1 and centered at
f. Therefore Conn is somewhere dense in D, and it follows that Conn is not
porous at some point of D. However, we show Conn is a boundary set in D.
We also show C is porous in Ext, D is porous in PC, but AC is not porous in
Conn. Whether or not Extis porous in AC is left as an open problem.

A subset K of R? is said to be bilaterally dense (resp. bilaterally c-dense)
in itself if for each z € K, each open square which has a vertical side bisected
by z contains infinitely many (resp. c-many) points of K.

For a function f: R — R we define:

1. f € PC if the graph of f is bilaterally dense in itself.

2. f eDif f(J) is connected for each connected set J C R.
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3. f € Conn if the graph of the restriction f | J is connected for each
connected set J C R.

4. f € AC if each open neighborhood in R? of the graph of f contains the
graph of a continuous function g : R — R.

5. f € Ext if there is a function F : R? — R such that F(x,0) = f(z) for
all z € R and the graph of F' [ J is connected for each connected set
J C R

For € > 0, S(f) = {(z,y) : © € Rand |y — f(z)| < €} denotes the e-strip
about f. For a subset K of R?, II;(K) denotes the z-projection of K and
K, = KnIj'(z) = KN ({z} x R). Suppose A and B are intervals in R.
A blocking set in A x B is a closed subset K of A x B which meets every
continuous function from A into B and which misses some function from A
into B. A function f : A — B is almost continuous relative to A x B if and
only if it meets every blocking set in A x B. Each blocking set in A x B
contains a minimal blocking set K, and II; (K) is a nondegenerate connected
set and K is a perfect set [8, thm 1, p. 182], [7, lem 3, p.126].

In a metric space (X, d), B(x,r) denotes the open ball centered at z with
radius 7 > 0. Let M C X, z € X, and r > 0. Then ~(z,r, M) denotes
the supremum of the set of all s > 0 for which there exists z € X such that
y(@,r, M) :
——=>0. M is

porous in X if M is porous at each x € X. A porous set M turns out to be a
boundary set in X.

Let A C B be consecutive spaces in the above chain of Darboux-like spaces.
sin % ifx#0
0 ife=20
belongs to Ext \ cl(C) = Ext \ C and the characteristic function Xg of the set
Q of rational numbers belongs to PC \ cl(D). A is porous at each member of
the open set B\ cl(A). So to verify whether A is porous in B, it suffices to
check porosity at just the functions f in B that are uniform limits of sequences

(f.) in A.

Theorem 1. C is porous in Ext.

B(z,s) C B(xz,r)\ M. M is porous at x if limsup,_,+

B\cl(A) # 0 because of [4, thm 9.10, p. 517] and because y =

PRrROOF. According to the last observation, it suffices to show C is porous at
f € Ext when f is a uniform limit of a sequence in C. But then f € C. Let
0 <r <1andxy €R. There exists 6 > 0 such that f([zg — d,20 + ¢]) C
(f(wo) — g, f(x0) + §). As in the proof of Theorem 2 in [11], define g : R — R
by
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f(x) if v & (zg — 0,9 + 0)
o) = I (x) if x € [xg — 0, z0]

Zsin 1_1L0 + f(zo) if z € (wo, 20 + g)

la(x) if 2 € [xo + &, w0 + 6]

where 7 and [y are linear functions such that Iy (zo — ) = f(xg — 0), 1 (z0) =
f(zo), la(zo + g) = gsin% + f(z0), and la(xg + &) = f(zo + 9). Then g € Ext
and d(g, f) < 7. Therefore B(g, 15) C B(f,r) and B(g, {57) N C = 0. Since

v(f,7,C) > 15, limsup, o+ M > % > 0. This shows C is porous at

f O

The next two results are analogous to Theorems 6 and 7 in [2, p.445].
The proof of the second result depends on the part of Natkaniec’s Theorem 1
in [9, p. 40] which states the following: Define a condition for any function
f:[0,1] — R this way: («) for sufficiently small € > 0 and for every blocking
set K in [0, 1] xR, either card(dom(K NS.(f))) = cor (f(x)—e, f(x)+e) C K,
for some x € [0,1]. Then (a) — f € cl(AC).

He does not prove this part in [9], but he gave the following proof in a
preprint of an earlier version of [9] without the Continuum Hypothesis.

Suppose the collection {K, : o € A} of all blocking sets of [0,1] x R is
well ordered so that for each o € A, card({Kp : 8 < a}) < ¢. For sufficiently
small € > 0, one can use transfinite induction to choose for each o € A a point
(Ta, Ya) € Se(f)NK, such that if card(dom(K,NSe(f))) = ¢, then z, # g for
all z € [0,1]. But if card(dom(K,NSe(f))) < cand (f(x)—¢, f(z)+€) C (Ka)a
for some § < «, then choose x, = z and either y, = yg whenever 23 = x for
some 8 < « or y, = f(x) otherwise. The function ¢ : [0,1] — R defined by

Yo forx =z, and a € A

g(z) = is almost continuous and g C Sc(f).

f(x) otherwise
We can replace [0, 1] with R and we only have to check condition («) holds
for minimal blocking sets.

Theorem 2. If g € cl(Conn) has a point xg of continuity, then there exist
balls in cl(Conn) arbitrarily close to g and containing no members of AC.

PROOF. Let 0 < € < 1. There is a § > 0 such that whenever |z — x| < ¢, then
lg(x) — g(x0)| < . In [5], Jastrzebski gives an example of a function h from
[0,1] onto [—1, 1] such that h € Conn \ cl(AC). Let fy be a scaled-down copy
of hto [xo — 5,20+ 5] x [g(z0) — &, g(x0) + £] instead of [0,1] x [—1,1]. Since
g € cl(Conn), we can extend the domain of fj to all of R in such a way that
fo € Conn and | fo(z) —g(z)| < € for all z. Therefore there is a ball in cl(Conn)
centered at fo and missing AC because h ¢ cl(AC) implies fo & cl(AC). O
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Theorem 3. If f € cl(Conn) is dense in R?, then AC is dense in each open
ball in cl(Conn) of radius < 1 with center f.

PrOOF. If g € cl(Conn) is dense in R?, then we initially show g € cl(AC)
according to [9] by verifying that g obeys («). Suppose K is a minimal blocking
set in R2. Let S.(K) denote the set obtained by replacing each point of K by an
open vertical interval of length 2e centered at the point. Because II; (S (K)) =
IT; (K) is a nondegenerate interval [7], then by the Baire Category Theorem,
Se(K) contains a rectangle B with a vertical side of length e. Since g €
cl(Conn) is dense in R?, then card(g N B) = ¢ and so card(g N S.(K)) = c.
That is, card(dom(Sc(g) N K) = ¢ and therefore g obeys («).

Next, if fo € cl(Conn) and d(fo, f) < 1, then fy must be dense in R? and
so, as shown first, fo € cl(AC). This shows AC is dense in every open ball in
cl(Conn) of radius < 1 and with center f. O

The next result follows immediately from Theorem 3.
Theorem 4. AC is not porous in Conn.
Theorem 5. Conn is not porous in D [2], but Conn is a boundary set in D.

PrOOF. We must show that for each f € D and r > 0, there exists g €
B(f,r)\ Conn. According to the proof of Theorem 6 in [2], for the case when
f € D and has a point of continuity, there exist balls in D arbitrarily close to
f and missing Conn. This implies D \ Conn has points arbitrarily close to f.
(According to their proof, Conn is actually porous at this f.) Now consider
the case when f € D and has no point of continuity. Then the graph of f is
somewhere dense in R? [6], [1]. Let L be a closed line segment having positive
slope and lying in a circular open neighborhood U C cl(f) with radius < .
A function g : R — R belonging to D can be obtained from f by shifting
vertically any points of f N L off L to points in U. Then g € B(f,r) \ Conn.
Together both cases show Conn is a boundary set in D. O

Theorem 6. D is porous in PC.

PRrROOF. Let f € PC. We may suppose f € cl(D). Let U denote the class
of all functions f : R — R such that for every interval J C R and every set
A of cardinality less than ¢, f(J \ A) is dense in [infzey f(x),sup,es f(2)].
According to [3, thm 4.3, p. 71|, U = cl(D). Then f € U C PC. First suppose
f is not a constant function. For each sufficiently small » > 0 with r» < 1, there
exists an interval J = [a,b] such that § < |f(a) — f(b)| < §. For argument’s
sake, suppose f(a) < f(b). Let B = (a,b) N f=1((f(a), f(b))). It follows that
f | B is bilaterally c-dense in itself.
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We show B = EUF, where E and F are disjoint bilaterally dense in itself
sets and f [ E and f | F are each dense in f [ B. According to Theorem 3.2
in [3, pp. 67-68], since f € U, for each open interval N, f~1(N) is empty or c-
dense in itself. Each such nonempty f~1(N), like f=1((f(a), f(b))), is actually
bilaterally c-dense in itself. Let P be a countable dense subset of the graph of
f I B, and let E = II1(P). E is bilaterally dense in itself and f | E = P is
dense in f | B. Since f((a,b) \ E) is dense in [inf,c; f(z),sup,c; f(x)], the
set F' = B\ E is bilaterally c-dense in itself and f [ F is dense in f | B. So
B=FUF.

Define g : R — R by

fla) ifzeFE
glx) =< fb) ifzekF
f(z) ifzeR\B.
Then g € PC\U, and g € B(f,5) because |f(a) — f(b)] < 5. B(g,5) C
B(f,7) \ D because |f(a) — f(b)| > . Since v(f,7,D) > £, it follows that
y(fir.D)

limsup, o+ == > % > 0 and so D is porous at f. When f is a constant

function with value k£ and 0 < r < 1, define

(z) = k+5 ifrxreQ
TE= if 2 €R\ Q.

Then B(g, ;) C B(f,r)\ D, and it follows that D is porous at f. O
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