Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487. e-mail: hrosen@gp.as.ua.edu

POROSITY IN SPACES OF DARBOUX-LIKE FUNCTIONS

Abstract

It is known that the six Darboux-like function spaces of continuous, extendable, almost continuous, connectivity, Darboux, and peripherally continuous functions $f: \mathbb{R} \to \mathbb{R}$, with the metric of uniform convergence, form a strictly increasing chain of subspaces. We denote these spaces by C, Ext, AC, Conn, D, and PC, respectively. We show that C and D are porous and AC and Conn are not porous in their successive spaces of this chain.

The porosity of special sets in spaces of Darboux-like functions has been studied, for example, in [10] and [11]. For functions $f:\mathbb{R}\to\mathbb{R}$, it is known that $\mathcal{C}\subset \operatorname{Ext}\subset \operatorname{AC}\subset \operatorname{Conn}\subset \mathcal{D}\subset \operatorname{PC}$ [12]. Each function space we study will have on it the metric d of uniform convergence defined by $d(f,g)=\min\{1,\sup\{|f(x)-g(x)|:x\in\mathbb{R}\}\}$. In [2, thm 7, p.445], Bruckner and Ceder show that if $f\in\operatorname{cl}(\mathcal{D})$ and the graph of f is dense in \mathbb{R}^2 , then $f\in\operatorname{cl}(\operatorname{Conn})$ and Conn is dense in each open ball in $\operatorname{cl}(\mathcal{D})$ with radius ≤ 1 and centered at f. Therefore Conn is somewhere dense in \mathcal{D} , and it follows that Conn is not porous at some point of \mathcal{D} . However, we show Conn is a boundary set in \mathcal{D} . We also show \mathcal{C} is porous in Ext , \mathcal{D} is porous in PC , but AC is not porous in Conn . Whether or not Ext is porous in AC is left as an open problem.

A subset K of \mathbb{R}^2 is said to be bilaterally dense (resp. bilaterally c-dense) in itself if for each $z \in K$, each open square which has a vertical side bisected by z contains infinitely many (resp. c-many) points of K.

For a function $f: \mathbb{R} \to \mathbb{R}$ we define:

- 1. $f \in PC$ if the graph of f is bilaterally dense in itself.
- 2. $f \in D$ if f(J) is connected for each connected set $J \subset \mathbb{R}$.

Mathematical Reviews subject classification: 26A15, 54C08, 54C35 Received by the editors July 31, 1999

Key Words: porosity, spaces of continuous, extendable, almost continuous, connectivity, Darboux, peripherally continuous functions

196 HARVEY ROSEN

3. $f \in \text{Conn}$ if the graph of the restriction $f \upharpoonright J$ is connected for each connected set $J \subset \mathbb{R}$.

- 4. $f \in AC$ if each open neighborhood in \mathbb{R}^2 of the graph of f contains the graph of a continuous function $g : \mathbb{R} \to \mathbb{R}$.
- 5. $f \in \text{Ext}$ if there is a function $F : \mathbb{R}^2 \to \mathbb{R}$ such that F(x,0) = f(x) for all $x \in \mathbb{R}$ and the graph of $F \upharpoonright J$ is connected for each connected set $J \subset \mathbb{R}^2$.

For $\epsilon > 0$, $S_{\epsilon}(f) = \{(x,y) : x \in \mathbb{R} \text{ and } |y - f(x)| < \epsilon\}$ denotes the ϵ -strip about f. For a subset K of \mathbb{R}^2 , $\Pi_1(K)$ denotes the x-projection of K and $K_x = K \cap \Pi_1^{-1}(x) = K \cap (\{x\} \times \mathbb{R})$. Suppose A and B are intervals in \mathbb{R} . A blocking set in $A \times B$ is a closed subset K of $A \times B$ which meets every continuous function from A into B and which misses some function from A into B. A function $f: A \to B$ is almost continuous relative to $A \times B$ if and only if it meets every blocking set in $A \times B$. Each blocking set in $A \times B$ contains a minimal blocking set K, and $\Pi_1(K)$ is a nondegenerate connected set and K is a perfect set [8, thm 1, p. 182], [7, lem 3, p. 126].

In a metric space (X,d), B(x,r) denotes the open ball centered at x with radius r>0. Let $M\subset X,\ x\in X,\$ and r>0. Then $\gamma(x,r,M)$ denotes the supremum of the set of all s>0 for which there exists $z\in X$ such that $B(z,s)\subset B(x,r)\setminus M.$ M is porous at x if $\limsup_{r\to 0^+}\frac{\gamma(x,r,M)}{r}>0$. M is porous in X if M is porous at each $x\in X$. A porous set M turns out to be a boundary set in X.

Let $\mathcal{A} \subset \mathcal{B}$ be consecutive spaces in the above chain of Darboux-like spaces. $\mathcal{B} \setminus \operatorname{cl}(\mathcal{A}) \neq \emptyset$ because of [4, thm 9.10, p. 517] and because $y = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

belongs to Ext \ cl(C) = Ext \ C and the characteristic function $\chi_{\mathbb{Q}}$ of the set \mathbb{Q} of rational numbers belongs to PC \ cl(D). \mathcal{A} is porous at each member of the open set $\mathcal{B} \setminus \text{cl}(\mathcal{A})$. So to verify whether \mathcal{A} is porous in \mathcal{B} , it suffices to check porosity at just the functions f in \mathcal{B} that are uniform limits of sequences $\langle f_n \rangle$ in \mathcal{A} .

Theorem 1. C is porous in Ext.

PROOF. According to the last observation, it suffices to show C is porous at $f \in \text{Ext}$ when f is a uniform limit of a sequence in C. But then $f \in C$. Let $0 < r \le 1$ and $x_0 \in \mathbb{R}$. There exists $\delta > 0$ such that $f([x_0 - \delta, x_0 + \delta]) \subset (f(x_0) - \frac{r}{8}, f(x_0) + \frac{r}{8})$. As in the proof of Theorem 2 in [11], define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \notin (x_0 - \delta, x_0 + \delta) \\ l_1(x) & \text{if } x \in [x_0 - \delta, x_0] \\ \frac{r}{8} \sin \frac{1}{x - x_0} + f(x_0) & \text{if } x \in (x_0, x_0 + \frac{\delta}{2}) \\ l_2(x) & \text{if } x \in [x_0 + \frac{\delta}{2}, x_0 + \delta] \end{cases}$$

where l_1 and l_2 are linear functions such that $l_1(x_0 - \delta) = f(x_0 - \delta)$, $l_1(x_0) = f(x_0)$, $l_2(x_0 + \frac{\delta}{2}) = \frac{r}{8}\sin\frac{2}{\delta} + f(x_0)$, and $l_2(x_0 + \delta) = f(x_0 + \delta)$. Then $g \in \operatorname{Ext}$ and $d(g,f) < \frac{r}{4}$. Therefore $B(g,\frac{r}{16}) \subset B(f,r)$ and $B(g,\frac{r}{16}) \cap C = \emptyset$. Since $\gamma(f,r,C) \geq \frac{r}{16}$, $\limsup_{r \to 0^+} \frac{\gamma(f,r,C)}{r} \geq \frac{1}{16} > 0$. This shows C is porous at f.

The next two results are analogous to Theorems 6 and 7 in [2, p.445]. The proof of the second result depends on the part of Natkaniec's Theorem 1 in [9, p. 40] which states the following: Define a condition for any function $f:[0,1]\to\mathbb{R}$ this way: (α) for sufficiently small $\epsilon>0$ and for every blocking set K in $[0,1]\times\mathbb{R}$, either card $(\text{dom}(K\cap S_{\epsilon}(f)))=c$ or $(f(x)-\epsilon,f(x)+\epsilon)\subset K_x$ for some $x\in[0,1]$. Then $(\alpha)\to f\in \text{cl}(AC)$.

He does not prove this part in [9], but he gave the following proof in a preprint of an earlier version of [9] without the Continuum Hypothesis.

Suppose the collection $\{K_{\alpha}: \alpha \in A\}$ of all blocking sets of $[0,1] \times \mathbb{R}$ is well ordered so that for each $\alpha \in A$, $\operatorname{card}(\{K_{\beta}: \beta < \alpha\}) < c$. For sufficiently small $\epsilon > 0$, one can use transfinite induction to choose for each $\alpha \in A$ a point $(x_{\alpha}, y_{\alpha}) \in S_{\epsilon}(f) \cap K_{\alpha}$ such that if $\operatorname{card}(\operatorname{dom}(K_{\alpha} \cap S_{\epsilon}(f))) = c$, then $x_{\alpha} \neq x_{\beta}$ for all $x \in [0, 1]$. But if $\operatorname{card}(\operatorname{dom}(K_{\alpha} \cap S_{\epsilon}(f))) < c$ and $(f(x) - \epsilon, f(x) + \epsilon) \subset (K_{\alpha})_x$ for some $\beta < \alpha$, then choose $x_{\alpha} = x$ and either $y_{\alpha} = y_{\beta}$ whenever $x_{\beta} = x$ for some $\beta < \alpha$ or $y_{\alpha} = f(x)$ otherwise. The function $g: [0, 1] \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} y_{\alpha} & \text{for } x = x_{\alpha} \text{ and } \alpha \in A \\ f(x) & \text{otherwise} \end{cases} \text{ is almost continuous and } g \subset S_{\epsilon}(f).$$

We can replace [0,1] with $\mathbb R$ and we only have to check condition (α) holds for minimal blocking sets.

Theorem 2. If $g \in cl(Conn)$ has a point x_0 of continuity, then there exist balls in cl(Conn) arbitrarily close to g and containing no members of AC.

PROOF. Let $0 < \epsilon < 1$. There is a $\delta > 0$ such that whenever $|x - x_0| < \delta$, then $|g(x) - g(x_0)| < \frac{\epsilon}{4}$. In [5], Jastrzebski gives an example of a function h from [0,1] onto [-1,1] such that $h \in \operatorname{Conn} \setminus \operatorname{cl}(AC)$. Let f_0 be a scaled-down copy of h to $[x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}] \times [g(x_0) - \frac{\epsilon}{4}, g(x_0) + \frac{\epsilon}{4}]$ instead of $[0,1] \times [-1,1]$. Since $g \in \operatorname{cl}(\operatorname{Conn})$, we can extend the domain of f_0 to all of $\mathbb R$ in such a way that $f_0 \in \operatorname{Conn}$ and $|f_0(x) - g(x)| < \epsilon$ for all x. Therefore there is a ball in $\operatorname{cl}(\operatorname{Conn})$ centered at f_0 and missing AC because $h \notin \operatorname{cl}(\operatorname{AC})$ implies $f_0 \notin \operatorname{cl}(\operatorname{AC})$. \square

198 HARVEY ROSEN

Theorem 3. If $f \in cl(Conn)$ is dense in \mathbb{R}^2 , then AC is dense in each open ball in cl(Conn) of radius ≤ 1 with center f.

PROOF. If $g \in \operatorname{cl}(\operatorname{Conn})$ is dense in R^2 , then we initially show $g \in \operatorname{cl}(\operatorname{AC})$ according to [9] by verifying that g obeys (α) . Suppose K is a minimal blocking set in \mathbb{R}^2 . Let $S_{\epsilon}(K)$ denote the set obtained by replacing each point of K by an open vertical interval of length 2ϵ centered at the point. Because $\Pi_1(S_{\epsilon}(K)) = \Pi_1(K)$ is a nondegenerate interval [7], then by the Baire Category Theorem, $S_{\epsilon}(K)$ contains a rectangle B with a vertical side of length ϵ . Since $g \in \operatorname{cl}(\operatorname{Conn})$ is dense in \mathbb{R}^2 , then $\operatorname{card}(g \cap B) = c$ and so $\operatorname{card}(g \cap S_{\epsilon}(K)) = c$. That is, $\operatorname{card}(\operatorname{dom}(S_{\epsilon}(g) \cap K) = c$ and therefore g obeys (α) .

Next, if $f_0 \in \text{cl}(\text{Conn})$ and $d(f_0, f) < 1$, then f_0 must be dense in \mathbb{R}^2 and so, as shown first, $f_0 \in \text{cl}(\text{AC})$. This shows AC is dense in every open ball in cl(Conn) of radius ≤ 1 and with center f.

The next result follows immediately from Theorem 3.

Theorem 4. AC is not porous in Conn.

Theorem 5. Conn is not porous in D [2], but Conn is a boundary set in D.

PROOF. We must show that for each $f \in D$ and r > 0, there exists $g \in B(f,r) \setminus \text{Conn.}$ According to the proof of Theorem 6 in [2], for the case when $f \in D$ and has a point of continuity, there exist balls in D arbitrarily close to f and missing Conn. This implies $D \setminus \text{Conn}$ has points arbitrarily close to f. (According to their proof, Conn is actually porous at this f.) Now consider the case when $f \in D$ and has no point of continuity. Then the graph of f is somewhere dense in \mathbb{R}^2 [6], [1]. Let L be a closed line segment having positive slope and lying in a circular open neighborhood $U \subset \text{cl}(f)$ with radius $\leq \frac{r}{2}$. A function $g : \mathbb{R} \to \mathbb{R}$ belonging to D can be obtained from f by shifting vertically any points of $f \cap L$ off L to points in U. Then $g \in B(f,r) \setminus \text{Conn.}$ Together both cases show Conn is a boundary set in D.

Theorem 6. D is porous in PC.

PROOF. Let $f \in PC$. We may suppose $f \in cl(D)$. Let \mathcal{U} denote the class of all functions $f: R \to \mathbb{R}$ such that for every interval $J \subset \mathbb{R}$ and every set A of cardinality less than c, $f(J \setminus A)$ is dense in $[\inf_{x \in J} f(x), \sup_{x \in J} f(x)]$. According to [3, thm 4.3, p. 71], $\mathcal{U} = cl(D)$. Then $f \in \mathcal{U} \subset PC$. First suppose f is not a constant function. For each sufficiently small r > 0 with $r \leq 1$, there exists an interval J = [a, b] such that $\frac{r}{4} < |f(a) - f(b)| < \frac{r}{2}$. For argument's sake, suppose f(a) < f(b). Let $B = (a, b) \cap f^{-1}((f(a), f(b)))$. It follows that $f \upharpoonright B$ is bilaterally c-dense in itself.

We show $B = E \cup F$, where E and F are disjoint bilaterally dense in itself sets and $f \upharpoonright E$ and $f \upharpoonright F$ are each dense in $f \upharpoonright B$. According to Theorem 3.2 in [3, pp. 67–68], since $f \in \mathcal{U}$, for each open interval N, $f^{-1}(N)$ is empty or c-dense in itself. Each such nonempty $f^{-1}(N)$, like $f^{-1}((f(a), f(b)))$, is actually bilaterally c-dense in itself. Let P be a countable dense subset of the graph of $f \upharpoonright B$, and let $E = \Pi_1(P)$. E is bilaterally dense in itself and $f \upharpoonright E = P$ is dense in $f \upharpoonright B$. Since $f((a,b) \backslash E)$ is dense in $[\inf_{x \in J} f(x), \sup_{x \in J} f(x)]$, the set $F = B \backslash E$ is bilaterally c-dense in itself and $f \upharpoonright F$ is dense in $f \upharpoonright B$. So $B = E \cup F$.

Define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} f(a) & \text{if } x \in E \\ f(b) & \text{if } x \in F \\ f(x) & \text{if } x \in \mathbb{R} \setminus B. \end{cases}$$

Then $g \in PC \setminus \mathcal{U}$, and $g \in B(f, \frac{r}{2})$ because $|f(a) - f(b)| < \frac{r}{2}$. $B(g, \frac{r}{8}) \subset B(f, r) \setminus D$ because $|f(a) - f(b)| > \frac{r}{4}$. Since $\gamma(f, r, D) \geq \frac{r}{8}$, it follows that $\limsup_{r \to 0^+} \frac{\gamma(f, r, D)}{r} \geq \frac{1}{8} > 0$ and so D is porous at f. When f is a constant function with value k and 0 < r < 1, define

$$g(x) = \begin{cases} k + \frac{r}{2} & \text{if } x \in \mathbb{Q} \\ k & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Then $B(g, \frac{r}{4}) \subset B(f, r) \setminus D$, and it follows that D is porous at f.

References

- J. B. Brown, Nowhere dense Darboux graphs, Colloq. Math. 20 (1969), 243–247.
- [2] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22 (1972), 435–448.
- [3] A. M. Bruckner, J. G. Ceder, and M. Weiss, *Uniform limits of Darboux functions*, Colloq. Math., **15** (1966), 65–77.
- [4] R. G. Gibson and T. Natkaniec, Darboux like functions, Real Anal. Exchange 22 (1996-97), 492–533.
- [5] J. Jastrzebski, An answer to a question of R. G. Gibson and F. Roush, Real Anal. Exchange 15 (1989-90), 340-341.

200 Harvey Rosen

[6] F. B. Jones and E. S. Thomas, Jr. , Connected G_{δ} graphs, Duke Math. J. **33** (1966), 341–345.

- [7] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125–128.
- [8] K. R. Kellum and B. D. Garrett, *Almost continuous real functions*, Proc. Amer. Math. Soc. **33** (1972), 181–184.
- [9] T. Natkaniec, On some problems concerning almost continuity, Real Anal. Exchange 17 (1991-92), 40-41.
- [10] R. J. Pawlak, On some properties of the spaces of almost continuous functions, Internat. J. Math. Math. Sci. 19 (1996), 19–23.
- [11] P. J. Pawlak, J. Kucner, and B. Swiatek, On small subsets of the space of Darboux functions, Real Anal. Exchange, 25 (1999-2000), 343–357.
- [12] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.