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HÖLDER SPECTRUM OF TYPICAL
MONOTONE CONTINUOUS FUNCTIONS

Abstract

We compute the Hölder spectrum and the moment sums of the typ-
ical (in the sense of Baire category) monotone continuous function, f .
We show that these functions are of multifractal nature, for example α
equals the Hausdorff dimension of those points where such a function, f
is of exact Hölder class α ∈ [0, 1]. We also prove that f “grows” only at
those points where it has bad Hölder properties, that is, at those points
where it is of Hölder class 0. The upper moment sum τf (q) =∞ if q < 0,
τf (q) = 1 − q if 0 ≤ q ≤ 1, and τf (q) = 0 if 1 < q. The lower moment
sum τf (q) = 1− q if q < 0, τf (q) = 0 if 0 ≤ q ≤ 1, and τf (q) = 1− q if
1 < q.

1 Introduction

In this paper we investigate the multifractal (Hölder) properties of the typical
(in the sense of Baire category) monotone continuous function defined on [0, 1].
We denote the space of monotone increasing continuous functions equipped
with the sup norm by C↗[0, 1]. It is a separable, complete metric space,
being a closed subspace of C[0, 1]. If a property holds for a residual subset of
C↗[0, 1], then we say that the typical function f has this property.

In [11, 12] the differentiability properties of typical monotone, continuous
functions were studied and it was shown that the typical monotone, contin-
uous function, f is a strictly monotone, increasing, singular, function and its
derivative equals 0 wherever it exists. Of course, f ′ exists almost everywhere
in [0, 1].
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Jaffard [2, 3, 4, 5] has studied the multifractal properties of several spe-
cific continuous functions. For these functions many interesting methods, for
example, wavelets, Diophantine approximation etc. were used.

It is not difficult to verify that the typical continuous function on [0, 1]
is quite uninteresting from our point of view; it does not have multifractal
Hölder properties, in fact, it is Hölder class 0 everywhere in [0, 1]. Hence it
is much more interesting to look at the class of typical monotone, continuous
functions which are of multifractal nature. By studying typical monotone,
continuous functions we study typical continuous measures on [0, 1]. We point
out that typical measures on arbitrary separable metric spaces were considered
by [10, 9], for example a typical measure typically has no local dimension.

We denote by Efα those points of [0, 1] where f ∈ C↗[0, 1] is of exact Hölder
class α and by Ef≤α those points where f is of Hölder class β for any β < α
and is not of Hölder class β for any β > α (the detailed definitions will be
given in the preliminaries section).

The main results of this paper are given in Theorem 6. In assertions (i-ii)
of Theorem 6 we show that dimH E

f
α = dimH E

f
≤α = α holds for α ∈ [0, 1],

while Ef≤α = ∅ for α > 1. This implies that for any α ∈ [0, 1] there are “many
points” where the typical f ∈ C↗[0, 1] function is of exact Hölder class α.
In assertion (vi) we will show that if α 6= 0 then f is not “growing” on the
sets Êf≤α ⊃ Efα. In fact, all the growth of f takes place on Ef≤0, by this we
mean that µf (Ef≤0) = µf ([0, 1]) = f(1)− f(0), where µf is the Borel measure
corresponding to f. Thus µf (∪α 6=0Ê

f
α) = 0.

Studying multifractal properties quite often the moment sums, τf (q) (for
the definition see (1) below), are used [1, 6, 7] and in “lucky situations” the
Legendre transform of τf (q) provides the spectrum of f . As one can expect the
typical f ∈ C↗[0, 1] is not the “lucky case”. In assertions (iii-v) of Theorem 6
we compute these moment sums. It turns out that for the typical f ∈ C↗[0, 1]
τf (0) = 1, τf (1) = 0 and τf (q) does not exist for other values of q. If the
upper moment sums are considered we have τf (q) =∞ if q < 0, τf (q) = 1− q
if 0 ≤ q ≤ 1 and τf (q) = 0 if 1 < q. For the lower moment sums, τf (q), we
show that τf (q) = 1− q if q < 0, τf (q) = 0 if 0 ≤ q ≤ 1 and τf (q) = 1− q if
1 < q. It might be worth to mention that an elementary computation shows
that for f(x) = x we have τf (q) = 1− q for all q ∈ R.

In Section 4 we present the main construction of this paper. This construc-
tion will provide the dense Gδ sets in C↗[0, 1] showing that certain properties
are typical. The proof of Theorem 6 will be split into parts according to the
different assertions made.
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2 Preliminaries

The integer part of the real number x; that is, the largest integer not exceeding
x, will be denoted by [x].

We use the notation λ(A) for the Lebesgue measure of the measurable set
A ⊂ [0, 1] while Hs(A) denotes its s-dimensional Hausdorff measure [6, 7].

The space of continuous and continuously differentiable functions on [0, 1]
is denoted by C[0, 1] and by C1[0, 1], respectively.

Definition 1. Given α ≥ 0 and a point x0 ∈ [0, 1] we say that the function f
is Cα(x0) if there exists a polynomial P of degree at most [α] and a constant
C > 0 such that |f(x)−P (x− x0)| ≤ C|x− x0|α for all x ∈ [0, 1]. The Hölder
exponent of f at x0 is defined by

hf (x0) = sup{α : f is Cα(x0)}.

Set

Ef≤α = {x0 : hf (x0) ≤ α} and Efα = {x0 : hf (x0) = α, and f is Cα(x0)}.

The set Efα denotes the set of those points where f is of “exact” Hölder class
α. It is clear that Efα ⊂ Ef≤α \ ∪β<αE

f
≤β = Êfα. However this inclusion is

proper; for example if we take g(x) = − log(x/10) ·
√
x/10 for x ∈ (0, 1] and

g(0)def= 0, then g ∈ C↗[0, 1], hg(0) = 1/2, but g is not C1/2(0).
To compute Hausdorff dimensions we will use Proposition 2.2 of [7] (see

also Proposition 4.9 of [6]).

Proposition 1. Let E ⊂ Rn be a Borel set, let µ be a finite Borel measure
on Rn and 0 < c <∞.

(a) If lim supr→0+ µ(B(x, r))/rs ≤ c for all x ∈ E, then Hs(E) ≥ µ(E)/c.

(b) If lim supr→0+ µ(B(x, r))/rs ≥ c for all x ∈ E, then Hs(E) ≤ 2sµ(E)/c.

3 Elementary Lemmas for the Moment Sums

Given a monotone increasing continuous function g : [0, 1] → R we denote
by µg the Borel measure corresponding to g; that is, for which µg((a, b)) =
g(b)− g(a) for each interval (a, b).

Set

τg,j(q) =
1

j log 2
log

2j−1∑
k=0

(
µg

([
k

2j
,
k + 1

2j

]))q
and τg(q) = lim

j→∞
τg,j(q). (1)
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If the latter limit does not exist, we use τg(q) = lim supj→∞ τg,j(q) and τg(q) =
lim infj→∞ τg,j(q).

It is not difficult to see that τcg(q) = τg(q) holds for any c > 0; so there is
no problem if the finite measure µg is not a probability measure as long as g is
a nonconstant increasing function, actually, when we compute moment sums
we can assume that µg is a probability measure.

Lemma 2. If g ∈ C1[0, 1] and g′ > 0, then for every ε > 0 there exists K > 0
such that τg,j(q) ≥ 1− q − ε for all j ≥ K, q ∈ [0, 1].

Proof. Using the continuity of g′ > 0 we can choose %1 such that g′ > %1 > 0.
Using the mean value theorem for g from the above estimates we infer

µg

([
k

2j
,
k + 1

2j

])
≥ %1

1
2j
.

Then
τg,j(q) ≥

1
j log 2

log
(

2j
(%1

2j
)q)

= 1− q +
q log %1

j log 2
.

This proves the lemma.

Lemma 3. For any q ∈ [0, 1] and g ∈ C↗[0, 1] we have τg(q) ≤ 1 − q and
τg(q) ≥ 0.

Proof. Set µk,j = µg([ k2j ,
k+1
2j ]). If q = 0, then

∑2j−1
k=0 µ0

k,j = 2j and hence

τg(0) = τg(0) = 1. In the sequel, we assume q ∈ (0, 1].Obviously,
∑2j−1
k=0 µk,j =

g(1)− g(0)def=G0 > 0. Since µk,j ≥ 0 we can use some well-known inequalities
between means of nonnegative numbers and obtain∑2j−1

k=0 µqk,j
2j

 1
q

≤
∑2j−1
k=0 µk,j

2j
=
G0

2j
. (2)

This implies
∑2j−1
k=0 µqk,j ≤ Gq02j(1−q) and an easy calculation implies τg(q) ≤

1− q.
Using that τcg = τg for any c > 0 we can assume µg([0, 1]) = G0 = 1. Then

µqk,j ≥ µk,j and hence
∑2j−1
k=0 µqk,j ≥

∑2j−1
k=0 µk,j = G0 = 1. Thus τg,j(q) ≥ 0

and hence τg(q) ≥ 0.

The next two lemmas are the q > 1 versions of the previous two ones.
Their proofs are analogous so we omit some details.
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Lemma 4. If g ∈ C1[0, 1] and g′ ≥ 0, then for every ε > 0 there exists K > 0
such that τg,j(q) ≤ 1− q + ε for all j ≥ K, q ∈ [1, 1/ε].

Proof. Using the continuity of g′ > 0 we can choose %2 such that %2 > g′.
By the mean value theorem we infer

µg

([
k

2j
,
k + 1

2j

])
≤ %2

1
2j
.

Then

τg,j(q) ≤
1

j log 2
log
(

2j
(%2

2j
)q)

= 1− q +
q log %2

j log 2
.

Lemma 5. For any q > 1 and g ∈ C↗[0, 1] we have τg(q) ≥ 1 − q and
τg(q) ≤ 0.

Proof. Define µk,j and G0 as in the proof of Lemma 2. From q > 1 it follows
that we have the reversed inequality in (2); that is,∑2j−1

k=0 µqk,j
2j

 1
q

≥ G0

2j
.

This implies
∑2j−1
k=0 µqk,j ≥ G

q
02j(1−q) and hence τg(q) ≥ 1− q.

As in Lemma 2 we can assume µg([0, 1]) = 1 and using µqk,j ≤ µk,j we

obtain
∑2j−1
k=0 µqk,j ≤ 1 which implies τg,j(q) ≤ 0 and τg(q) ≤ 0.

4 The Main Construction

Assume m ∈ N is given. We choose a countable dense subset, {fn}, in C↗[0, 1],
such that each fn is continuously differentiable and f ′n > 0 on [0, 1]. Using
Lemmas 2 and 4 with ε = 1/n choose Kn > n such that for all q ∈ [0, 1] and
j ≥ Kn we have

τfn,j(q) ≥ 1− q − 1
n

; (3)

and for all q ∈ [1, n] and j ≥ Kn we have

τfn,j(q) ≤ 1− q +
1
n

(4)
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Using the uniform continuity of fn choose and fix Nn ≥ Kn such that

fn

(
k + 1
2Nn

)
− fn

(
k

2Nn

)
= µfn

([
k

2Nn
,
k + 1
2Nn

])
<

1
2n

(5)

holds for k = 0, ..., 2Nn − 1.
We will choose a large integer νn,m > max{N2

n,m} to be determined later.
Set

h∗n,m =
1

4n2mνn,m
<

1
4n
, hn,m =

h∗n,m
2νn,m

, (6)

δn,m = (hn,m)2m 1
4
<

1
2

1
2νn,m

, P (k, n,m) =
k

2νn,m
+ δn,m, (7)

where k ∈ {0, ..., 2νn,m − 1}. In some applications of our construction we will
use different values for h∗n,m. However for all these values we will have 0 <
h∗n,m ≤ 1/4n ≤ 1/4n. Observe that h∗n,m, hn,m, δn,m and P (k, n,m) are all
dyadic rationals.

Set

Wn,m =
2νn,m−1⋃
k=0

(
k

2νn,m
, P (k, n,m)

)
.

6

-�
��

�
��

�
��

�
��

�
�
�
��

�
��

6
?

?

6

�-

k
2νn,m

k+1
2νn,m0 1

P (k, n,m)
δn,m

hn,m

h∗n,m

g∗∗n,m

fn

g∗n

Next we define the auxiliary function g∗n(x) = fn((k′ + 1)/2Nn) if x ∈
(k′/2Nn , (k′ + 1)/2Nn ] \ Wn,m, (k′ = 0, ..., 2Nn − 1) and g∗n(0) = fn(0). On
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Wn,m we define g∗n so that it is continuous on [0, 1] and is linear on each
interval (k/2νn,m , P (k, n,m)).

Set g∗∗n,m(x) = (k + 1)hn,m if x ∈ (k/2νn,m , (k + 1)/2νn,m ] \Wn,m, (k =
0, ..., 2νn,m − 1) and g∗∗n,m(0) = 0. On Wn,m we define g∗∗n,m so that it is contin-
uous on [0, 1] and is linear on each interval (k/2νn,m , P (k, n,m)).

Finally we put gn,m(x) = g∗n(x) + g∗∗n,m(x).

6

-

�
�
��

�
��

�
�
��

�
��

�
�
��

�
�
��

�
��

�
��

�
�
��

�
�
��

�
��

�
��

?

6

h∗n,m

gn,m

fn

gn,m + %n,m

gn,m − %n,m

By (5)

|fn(x)− g∗n(x)| < 1
2n

and 0 ≤ g∗∗n,m(x) ≤ g∗∗n,m(1) = h∗n,m. (8)

We also have

|fn(x)− gn,m(x)| ≤ |fn(x)− g∗n(x)|+ h∗n,m ≤
3

4n
(9)

Using

%n,m =
(hn,m)m

8
<
hn,m

8
(10)

we set Gn,m = B(gn,m, %n,m) and Hm = ∪∞n=mGn,m. It is clear that Hm is
open in C↗[0, 1] and using the density of the functions {fn} and (9) it is easy
to see that Hm is dense. To prove the main result of the paper we will use the
residual set F∗ = ∩∞m=1Hm.
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5 Main Results

The purpose of this paper is to prove the following theorem.

Theorem 6. There is a residual subset F ⊂ C↗[0, 1] such that for any f ∈ F
we have

(i) Êfα = ∅ for α > 1;

(ii) dimH E
f
α = dimH Ê

f
α = dimH E

f
≤α = α for all α ∈ [0, 1];

(iii) τf (q) = 1− q and τf (q) = 0 for 0 < q ≤ 1, and τf (0) = τf (0) = τf (0) =
1;

(iv) τf (q) = 0 and τf (q) = 1− q for 1 < q;

(v) τf (q) =∞ and τf (q) = 1− q for q < 0;

(vi) µf (Ef≤0) = f(1)− f(0); that is, µf ([0, 1] \ Ef≤0) = 0.

We will split the proof of the theorem according to the assertions (i-vi). It
is also clear that if for each assertion we can find a suitable dense Gδ set in
C↗[0, 1], then the intersection of these sets will provide F .

5.1 Assertion (i)

Proof. Recall that a monotone function is differentiable almost everywhere
and by [11, 12] there is a residual, dense Gδ subset, F0 of C↗[0, 1] such that
f ′(x) = 0 at all points where f ′ exists. We use a slightly modified version of
the main construction, in equation (6) we set h∗n,m = 1

4n . With these values
of h∗n,m the sets Hm will still remain dense and open in C↗[0, 1]. By choosing
νn,m ≥ m2 sufficiently large we can assume that

hn,m =
h∗n,m
2νn,m

=
1

4n2νn,m
> 2

(
1

2νn,m

)1+ 1
m

. (11)

Denote by F1 = ∩∞m=1Hm the set obtained by the main construction and
suppose that f ∈ F(i)

def=F1 ∩ F0.
Proceeding towards a contradiction assume 1 < α < 2, x0 ∈ [0, 1] and f is

Cα(x0). Then
|f(x)− (a0 + a1(x− x0))| ≤ C|x− x0|α

and, clearly, a0 = f(x0), f ′(x0) exists and a1 = f ′(x0) = 0 where we also used
that f ∈ F0. Hence

|f(x)− f(x0)| ≤ C|x− x0|α. (12)
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Fix m > 2 such that α > 1 + 2
m and C < m. Choose δ > 0 such that

m|r|1/m < 1 holds for 0 < |r| < δ; hence

C|r|α < m|r|α < m|r|1+ 2
m < |r|1+ 1

m

is also true. From f ∈ F1 it follows that there exists n ≥ m such that
f ∈ Gn,m. We can also suppose that νn,m is so large that 2−νn,m < δ. Set
r = 1/2νn,m if x0 + r ∈ [0, 1], otherwise set r = −1/2νn,m . Clearly,

|g∗∗n,m(x0 + r)− g∗∗n,m(x0)| = hn,m and g∗n, g
∗∗
n,m are increasing;

hence
|gn,m(x0 + r)− gn,m(x0)| ≥ hn,m.

Using f ∈ B(gn,m, %n,m) and %n,m < hn,m/8 we obtain

|f(x0 + r)− f(x0)| > |gn,m(x0 + r)− gn,m(x0)| − 2%n,m >
3
4
hn,m.

Therefore by recalling (11) and (12)

3
4
hn,m < |f(x0 + r)− f(x0)| ≤ C|r|α < |r|1+ 1

m =
(

1
2νn,m

)1+ 1
m

<
hn,m

2
,

a contradiction.
We showed that for 1 < α < 2 there is no x0 ∈ [0, 1] for which f is Cα(x0).

If f is Cβ(x0) and 0 < α < β, then f is Cα(x0) as well. Thus we showed that
hf (x0) ≤ 1 for any f ∈ F(i) and x0 ∈ [0, 1].

5.2 Assertion (ii)

Before turning to this assertion we state and prove a lemma.

Lemma 7. Assume g ∈ C↗[a, b] and

Ug = {x ∈ [a, b] : ∃y ∈ [a, b] such that |g(y)− g(x)| ≥ |y − x|}.

Then λ(Ug) ≤ 2(g(b)− g(a)).

Proof. Set

U1 = {x ∈ [a, b] : ∃y ∈ (x, b] such that g(y) > g(x) + (y − x)}

and

U2 = {x ∈ [a, b] : ∃y ∈ [a, x) such that g(y) < g(x) + (y − x)}.
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Clearly, Ug = U1 ∪ U2. We will show that λ(U1) ≤ g(b) − g(a), the proof for
U2 is similar.

Letting g0(x) = g(x)− x we have

U1 = {x ∈ [a, b] : ∃y ∈ (x, b] such that g0(y) > g0(x)}.

Set g1(x) = max{g0(t) : t ∈ [x, b]}. Then g1(b) = g0(b), g1(a) ≥ g0(a) and
g′1(b) ≥ −1 where this derivative exists.

It is easy to see that g1(x) is monotone decreasing and hence (by using
Theorem 2.9.19 of [8])∫

[a,b]

g′1 ≤ g1(b)− g1(a) ≤ g0(b)− g0(a) = g(b)− g(a) + (a− b).

On the other hand g′1 = 0 almost everywhere on U1 and hence∫
[a,b]

g′1 ≥
∫

[a,b]\U1

(−1) = (a− b) + λ(U1).

By the above two displayed inequalities it follows that λ(U1) ≤ g(b)−g(a).

Now we verify assertion (ii).

Proof. Any f ∈ F1 is almost everywhere differentiable, and hence it is
C1(x0) at almost every x0 ∈ [0, 1]. This and assertion (i) imply dimH(Ef1 ) = 1.

Fix 0 < α < 1 and 1 > β > α. Next we show that dimH E
f
≤α ≤ α.

Actually, this is valid for any f ∈ C↗[0, 1] and follows easily from Proposition
1. If x0 ∈ Ef≤α, then f is not Cβ(x0) and hence there exists xn → x0 such
that

|f(xn)− f(x0)| ≥ |xn − x0|β .

Letting rn = |xn − x0| we have

µf (B(x0, rn))

rβn
≥ 1.

This implies lim supr→0+ µf (B(x0, r))/rβ ≥ 1. From Proposition 1 it follows
that Hβ(Ef≤α) ≤ 2βµf (Ef≤α) <∞ and hence dimH E

f
≤α ≤ β. Since this holds

for any β > α we obtain dimH E
f
≤α ≤ α.

We turn to the much more difficult task to verify that dimH E
f
α ≥ α, where

0 < α < 1 is fixed. Since Efα ⊂ Ef≤α this will imply dimH E
f
α = dimH E

f
≤α =

α. We will use the main construction again with h∗n,m = 1/4n and assume
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that f ∈ F1 = ∩∞m=1Hm. This means that for each m there exists n(m) ≥ m
such that f ∈ ∩∞m=1Gn(m),m. We will choose a suitable subsequence m` ≥ `.
For ease of notation we let G` = Gn(m`),m` , N` = Nn(m`), ν` = νn(m`),m` ,
h` = hn(m`),m` , δ` = δn(m`),m` , %` = %n(m`),m` , and P`(k) = k

2N`
+ δ` for

k = 0, ..., 2N`−1. Observe that each of the above numbers is a dyadic rational.
We choose h′` such that it is a dyadic rational and

2`−1h
1/α
` ≤ h′` ≤ 2`h1/α

` . (13)

Set h′′` = h′`/2
`. Thus

h
1/α
`

2
≤ h′′` ≤ h

1/α
` . (14)

We assume that the subsequence m` is sufficiently rapidly increasing; name-
ly, 2m`+1 exceeds the denominator of the above numbers at “level `”. This
assumption will be convenient; for example, this way the intervals used in
the definitions of g∗`+1 = g∗n(m`+1) and g∗∗`+1 = g∗n(m`+1),m`+1

, will belong to a
subdivision of the intervals occurring at “level `”.

Next we define closed sets F ′` and F` and using their intersection we define
some Cantor type sets. Using Proposition 1 we will estimate the Hausdorff
dimension of these sets. Furthermore we will also obtain information about
the Hölder properties of f on these sets. Put

F ′` =
2ν`⋃
k=0

[P`(k) + h′′` , P`(k) + h′`] and F` =
⋂
`′≤`

F ′` .

We also let F∞ = ∩∞`=1F`.
It is clear that if we choose the sequence m` to be sufficiently rapidly

increasing, then each F` consists of κ(`) > 2` many intervals of the form
J`,k = [P`(k)+h′′` , P`(k)+h′`]. By repeated subdivision ([7] pp. 9-10) we define
a Borel probability measure, µα with support on F∞ by setting µα(J`,k) =
1/κ(`), that is, we assign equal weight to each interval J`,k.

Assume ` ≥ 2. Choose a component of F`−1. This component is a closed
interval of length h′′′`−1

def=h′`−1−h′′`−1 and F ′` has one subinterval in each interval
[k/2ν` , (k+1)/2ν` ]. (We assumed that m(`) is increasing sufficiently fast; hence
from h′′′`−1 being at “level `−1” it follows that it is an integer multiple of 1/2ν` .)
Then κ(`) ≥ h′′′`−12ν` and hence

µα(J`,k) ≤ 1
h′′′`−12ν`

. (15)
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Our next purpose is to show that for all x ∈ F∞ we have

lim sup
r→0+

µα(B(x, r))
rα−ε

< 1 (16)

for all ε ∈ (0, α). We consider r ∈ (1/2ν`+1 , 1/2ν` ] for each ` = 2, 3, ... . We
split each such case into two subcases

I. h′` < r ≤ 1/2ν` ;

II. 1/2ν`+1 < r ≤ h′`.

Assuming ε ∈ (0, α) is fixed first we consider subcase I. In this case B(x, r)
can intersect at most three different J`,k and using (13) and (6)

µα(B(x, r))
rα−ε

≤
3

h′′′`−12ν`

(h′`)α−ε
≤

3
h′′′`−12ν`

2(`−1)(α−ε)h
(α−ε)/α
`

=
3 · 2(ε−α)(`−1)

h′′′`−1(h∗` )(α−ε)/α 2ν`(
α−ε
α −1) ≤ 3 · 4m`

h′′′`−1

2ν`(
α−ε
α −1)

<
3 · 4m`
h′′′`−1

2m
2
`(
α−ε
α −1) <

1
4

where the last inequality holds when m` is chosen to be sufficiently large.
Subcase II. In this case B(x, r) can intersect less than (2r/2−ν`+1) + 2 ≤

4r2ν`+1 many components of F`+1, each of µα measure µα(J`,k)2−ν`+1/h′′′` . By
(15)

µα(B(x, r)) ≤ 4r
h′′′`

µα(J`,k) ≤ 4
r

h′`

1
h′′′`−12ν`

.

Thus

µα(B(x, r))
rα−ε

≤
4 r
h′`

1
h′′′`−12ν`(

r
h′`
h′`

)α−ε
= 4

(
r

h′`

)1−(α−ε) 1
h′′′`−12ν`

(h′`)α−ε
≤ 4

1
h′′′`−12ν`

(h′`)α−ε
< 1

where in the last line we used an estimate similar to the one used in subcase
I. Hence for all x ∈ F∞ we have (16).

Next we investigate the Hölder properties of f at points of F∞.
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Since f ∈ B(g`, %`), we have

|f(y)− f(x)| ≥ |g`(y)− g`(x)| − 2%` ≥ |g`(y)− g`(x)| − h`/4. (17)

Recall that g` = g∗` +g∗∗` and g∗∗` increases by h` on each interval [k/2ν` , P`(k)].

Assume x ∈ F∞ ⊂ F` and α+ 1
` < β < 1. Then using δ` < h′` there exists

y ∈ [x− 2h′`, x] such that |g∗∗` (y)− g∗∗` (x)| = h` and hence using (17) and (13)
we obtain

|f(y)− f(x)| ≥ 3
4
h` ≥

3
4

(
h′`
2`

)α
≥ 3

8
1

(h′`)1/`2`α
(2h′`)

α+ 1
`

≥ 3
16

1

h
1/`α
` 2`α

(2h′`)
β ≥ 3

16
1

h
1/`α
` 2`α

|x− y|β > |x− y|β

where the last inequality holds if we choose a sufficiently large ` and ν`, namely,
choosing ν` > m3

` ≥ `3 we have

3
16

1

h
1/`α
` 2`α

=
3
16

1
(h∗` )1/`α

2
ν`
`α−`α >

3
16

2
`2
α −`α > 1.

Since the above type estimations are valid for all β ∈ (α, 1) when ` is suf-
ficiently large we obtain that F∞ ⊂ Ef≤α. From (16) and Proposition 1 it
follows that dimH F∞ ≥ α which implies dimH(Ef≤α) ≥ α.

Next we refine our argument to obtain dimH E
f
α ≥ α. To obtain this re-

sult we find a subset F 0
∞ ⊂ F∞ for which µα(F 0

∞) > 0 and F 0
∞ ⊂ Efα.

By Proposition 1 this will imply the result about the Hausdorff dimension.
To obtain F 0

∞ we delete some components of F` to obtain the closed sets
F 0
` . We will have a lower estimate on the µα measures of these sets yielding
µα(F 0

∞) = µα(∩∞`=1F
0
` ) > 0.
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g` + %`

f

g`

g` − %`

-�

k
2ν`

P`(k) P`(k) + h′`
k+1
2ν`

h′′`
-�

h′′′`

Assume x ∈ F ′` . Then x ∈ [P`(k) + h′′` , P`(k) + h′`] ⊂ [k/2ν` , (k + 1)/2ν` ]
for a suitable k. If y ∈ [P`(k), (k + 1)/2ν` ], then g∗∗` (x) − g∗∗` (y) = 0. If
y 6∈ [P`(k), (k + 1)/2ν` ], then h′′` ≤ |y − x| and one can easily see that

|g∗∗` (y)− g∗∗` (x)| ≤
([
|y − x|
2−ν`

]
+ 1
)
h` ≤ h` + |y − x|2ν`h`

= h` + |y − x|h∗` < (2h′′` )α + |y − x|
≤ 2α|y − x|α + |y − x| ≤ 3|y − x|α,

(18)

where we also used (6) and (14).
In the next argument we assume that `0 is sufficiently large and ` > `0.

We define the sets F 0
` by induction on `.

We assume that `0 is so large that for all ` ≥ `0 we have

2h`` < h
1
α+2

` . (19)

To start our induction we choose a component J`0
def= [P`0(k′)+h′′`0 , P`0(k′)+h′`0 ]

of F`0 in a way that g∗`0 is constant on J ′`0
def= [k′/2ν`0 , (k′ + 1)/2ν`0 ] and set

F 0
`0

= J`0 .
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-
k′

2ν`−1
P`−1(k′)

h′`−1 k′+1
2ν`−1

h′′`−1

J`−1

J ′′`−1

J ′`−1

6

6

?

�

h`−1

f

g`−1

Assume ` > `0 and J`−1
def= [P`−1(k′) + h′′`−1, P`−1(k′) + h′`−1] is a com-

ponent of F 0
`−1. Then J`−1 ⊂ J ′`−1

def= [k′/2ν`−1 , (k′ + 1)/2ν`−1 ]. We also sup-
pose that g∗`−1 is constant on J ′`−1. Set J ′′`−1 = [P`−1(k′), (k′ + 1)/2ν`−1 ]. Ob-
serve that g∗∗`−1 is constant on J ′′`−1; hence g`−1 is also constant there. From
f ∈ B(g`−1, %`−1) we infer

f

(
k′ + 1
2ν`−1

)
− f(P`−1(k′)) ≤ 2%`−1 =

h
m`−1
`−1

4
< h`−1

`−1 < h
1
α+2

`−1 (20)

where we used (10), m` ≥ ` and (19).

From f ∈ B(g`, %`) and 2%` < h
1
α+2

` it follows that

|g`(y)− g`(x)| − 2h
1
α+2

` ≤ |f(y)− f(x)| ≤ |g`(y)− g`(x)|+ 2h
1
α+2

` (21)

for all x, y.
Assume x ∈ J`−1 ⊂ F`−1 and y ∈ [k′/2ν`−1 , P`−1(k′)]. Then (18), (14),
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|y − x| ≥ h′′`−1 and |f − g`−1| ≤ %`−1 < h
1
α+2

`−1 yield

|f(y)− f(x)| ≤ 2h
1
α+2

`−1 + |g`−1(y)− g`−1(x)|

= 2h
1
α+2

`−1 + |g∗∗`−1(y)− g∗∗`−1(x)|

≤ 2h
1
α

`−1h
2
`−1 + 3|y − x|α

≤ 4h′′`−1h
2
`−1 + 3|y − x|α

≤ |y − x|+ 3|y − x|α ≤ 4|y − x|α.

(22)

Using (20) and (21) we obtain

g`

(
k′ + 1
2ν`−1

)
− g`(P`−1(k′)) ≤ h

1
α+2

`−1 + 2h
1
α+2

` < 2h
1
α+2

`−1 .

Since g` = g∗` + g∗∗` and the functions g`∗, g∗∗` are monotone, we also have

g∗`

(
k′ + 1
2ν`−1

)
− g∗` (P`−1(k′)) < 2h

1
α+2

`−1 ≤ 4h′′`−1h
2
`−1 <

1
2
h′′′`−1h`−1 (23)

where we assumed that `0 ≤ ` is sufficiently large and hence 4h`−1 < 1/2.
Now Lemma 7 implies that there is an exceptional set Ψ∗ such that

λ(Ψ∗) < 2
(
g∗`

(
k′ + 1
2ν`−1

)
− g∗` (P`−1(k′))

)
< h′′′`−1h`−1

and from x ∈ J ′′`−1 \ Ψ∗ it follows that |g∗` (y) − g∗` (x)| ≤ |y − x| holds for all
y ∈ J ′′`−1.

We can assume that ν` is chosen so large that 2/2ν` is less than all the
jumps g∗` ((k′ + 1)/2Nn) − g∗` (k′/2Nn) > 0, (k′ ∈ {0, ..., 2Nn − 1}). Hence g∗`
is either constant on an interval [k/2ν` , (k + 1)/2ν` ] or increases by at least
2/2ν` .

This implies that (b−a) > 1/2ν` for each component (a, b) of Ψ∗. Denote by
Ψ∗0 the union of those intervals of the form [k/2ν` , (k+ 1)/2ν` ] which intersect
Ψ∗. By adding to each component (a, b) of Ψ∗ those intervals [k/2ν` , (k+1)/2ν` ]
which contain a and b we obtain Ψ∗0. Hence λ(Ψ∗0) ≤ 3λ(Ψ∗) < 3h′′′`−1h`−1.
Denote by F ∗` the union of those components of F`∩J ′′`−1 which do not intersect
Ψ∗0. We define F 0

` so that F 0
` ∩ J ′′`−1 equals F ∗` . Observe that F` ∩ J`−1 = F` ∩

J ′`−1 consists of h′′′`−12ν` many components and we need to delete λ(Ψ∗0)2ν` <
3h`−1h

′′′
`−12ν` many of them to obtain F 0

` ∩ J ′`−1 = F 0
` ∩ J`−1.

Since the µα measure of each component of F` is µα(F` ∩ J`−1)2−ν`/h′′′`−1,
we obtain

µα(F 0
` ∩ J`−1) ≥ (1− 3h`−1)µα(F` ∩ J`−1) = (1− 3h`−1)µα(F 0

`−1 ∩ J`−1).
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Adding the above inequalities for all J`−1 type components of F 0
`−1 we have

µα(F 0
` ) ≥ (1− 3h`−1)µα(F 0

`−1). (24)

Using ν` ≥ n` ≥ m` ≥ ` and (6) we infer

µα(F 0
∞) ≥

∞∏
`=`0+1

(1− 3h`−1)µα(F 0
`0) > 0. (25)

For each x ∈ F 0
` and y ∈ J ′′`−1 we have |g∗` (y) − g∗` (x)| ≤ |y − x|. We also

know that x ∈ F 0
` ⊂ F ′` and (18) implies

|g∗∗` (y)− g∗∗` (x)| ≤ 3|y − x|α.

Hence |g`(y) − g`(x)| ≤ 4|y − x|α holds for all x ∈ F 0
` and y ∈ J ′′`−1. By (21)

we obtain |f(y)−f(x)| ≤ 4|y−x|α+2h
1
α+2

` . We also note that if J`
def= [P`(k)+

h′′` , P`(k) + h′`] is a component of F 0
` , then J` ⊂ J ′`

def= [k/2ν` , (k + 1)/2ν` ] and
g∗` is constant on J ′`, since otherwise |g∗` (y)− g∗` (x)| ≤ |y − x| cannot hold for
all y ∈ J ′`. (Recall that we assumed that the jumps of g∗` are at least 2 · 2ν` .)

Assume x ∈ F 0
` and y ∈ J ′′`−1 \ J ′`. Then |y − x| ≥ h′′` ≥ h

1/α
` /2; hence

2α|y − x|α ≥ h`. Therefore

|f(y)− f(x)| ≤ 4|y − x|α + 2h
1
α+2

` ≤ 4|y − x|α + 4h2
` |y − x| ≤ 5|y − x|α.

If x ∈ F 0
` ⊂ F`−1 and y ∈ [k′/2ν`−1 , P`−1(k′)) = J ′`−1 \ J ′′`−1, we have already

seen in (22) that |f(y) − f(x)| ≤ 4|y − x|α. Hence |f(y) − f(x)| ≤ 5|y − x|α
holds for all x ∈ F 0

` and y ∈ J ′`−1 \ J ′`.
Finally, if x ∈ ∩∞`=`0F

0
` = F 0

∞ and x 6= y ∈ J ′`0 , then there exists ` ≥ `0 + 1
such that y ∈ J ′`−1 \ J ′` and hence |f(y)− f(x)| ≤ 5|y − x|α holds. Therefore
F 0
∞ ⊂ Efα and by Proposition 1, (25) and (16) we infer dimH(F 0

∞) ≥ α.
This shows that for functions in F(ii)

def=F1 assertion (ii) holds.

5.3 Assertion (iii)

Proof. Assume F(iii) is the dense open set F∗ of the main construction (used
with the value of h∗n,m given in (6)) and f ∈ F(iii). Given j0 ∈ N set m = j0
and choose n ≥ m such that f ∈ Gn,m. Then Nn ≥ Kn > n ≥ m = j0; using
(5) and the definition of g∗n we obtain

µfn,k′
def=µfn

([
k′

2Nn
,
k′ + 1
2Nn

])
= g∗n

(
k′ + 1
2Nn

)
− g∗n

(
k′

2Nn

)
.
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Since f ′n > 0 on [0, 1], we have 0 < µfn,min
def= min{µfn,k′ : k′ = 0, ..., 2Nn −

1} and we can assume that νn,m was chosen so large that 2−νn,m < µfn,min/8;
hence h∗n,m < 2−νn,m < µfn,min/8 and %n,m < hn,m/8 < h∗n,m/8 < µfn,min/8.

Recalling (8) we obtain

µf

([
k′

2Nn
,
k′ + 1
2Nn

])
=
∣∣∣∣f (k′ + 1

2Nn

)
− f

(
k′

2Nn

)∣∣∣∣
≥
∣∣∣∣gn,m(k′ + 1

2Nn

)
− gn,m

(
k′

2Nn

)∣∣∣∣− 2%n,m

≥
∣∣∣∣g∗n(k′ + 1

2Nn

)
− g∗n

(
k′

2Nn

)∣∣∣∣− 2%n,m − 2h∗n,m

>
µfn,k′

2
.

(26)

Thus, using (3) we have

τf,Nn(q) ≥ 1
Nn log 2

log
2Nn−1∑
k′=0

(µfn,k′/2)q = τfn,Nn(q)− q

Nn
≥ 1− q − 2

j0
.

This implies τf (q) = lim supj→∞ τf,j(q) ≥ 1 − q. By Lemma 3 we obtain
τf (q) = 1− q.

Since f is strictly monotone increasing, one can easily show that τf (0) = 1.

Assume 0 < q ≤ 1 is given and fixed. We verify that τf (q) = 0.
Given f ∈ F(iii) and j0 > 1/q we choose n,m as above. Observe that out

of the 2νn,m intervals of the form [k/2νn,m , (k+ 1)/2νn,m ], (k = 0, ..., 2νn,m −1)
there are only 2Nn many intervals on which g∗n is nonconstant. We call these
intervals irregular and the remaining intervals are called regular. We denote
by Γ the set of those k ∈ {0, ..., 2νn,m − 1} for which [k/2νn,m , (k + 1)/2νn,m ]
is regular. For irregular k’s we use the trivial estimate(

µf

([
k

2νn,m
,
k + 1
2νn,m

]))q
≤ µf ([0, 1]) = 1,

where we used that replacing f by cf we can assume that µf is a probability
measure. For k ∈ Γ using g∗n((k + 1)/2νn,m)− g∗n(k/2νn,m) = 0 we obtain

µf

([
k

2νn,m
,
k + 1
2νn,m

])
= f

(
k + 1
2νn,m

)
− f

(
k

2νn,m

)
≤ gn,m

(
k + 1
2νn,m

)
− gn,m

(
k

2νn,m

)
+ 2%n,m
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= g∗∗n,m

(
k + 1
2νn,m

)
− g∗∗n,m

(
k

2νn,m

)
+ 2%n,m

= hn,m + 2%n,m < 2hn,m.

If j0 and hence n ≥ m = j0 > 1/q is sufficiently large, then we can assume
that νn,m > N2

n satisfies 2νn,m · 2qhqn,m = 2νn,m · 2q(h∗n,m/2νn,m)q = 2νn,m ·
2q(1/4n2(m+1)νn,m)q ≤ 1 < 2Nn . Now using #({0, ..., 2νn,m − 1} \ Γ) = 2Nn
#Γ < 2νn,m , and the above estimates we obtain

τf,νn,m(q) ≤ 1
νn,m log 2

log(2Nn + 2νn,m · 2qhqn,m)

≤ 1
νn,m log 2

log(2 · 2Nn) ≤ 1
νn,m log 2

log(2
√
νn,m)

≤ 1
√
νn,m

≤ 1
j0
,

(27)

Hence τf (q) ≤ 0 and Lemma 3 completes the proof showing that τf (q) = 0.

5.4 Assertion (iv)

The proof of this assertion is similar at many places to that of Assertion (iii).

Proof. Assume q > 1 is fixed. Let F(iv) = F∗ of the main construction
and for given j0 ∈ N choose m,n and define µfn,k′ , µfn,min as in the proof
of Assertion (iii). We can again assume that h∗n,m < µfn,min/8 and %n,m <
µfn min/8.

Then similarly to (26) we obtain

µf

([
k′

2Nn
,
k′ + 1
2Nn

])
≤
∣∣∣∣g∗n(k′ + 1

2Nn

)
− g∗n

(
k′

2Nn

)∣∣∣∣+

2%n,m + 2h∗n,m < 2µfn,k′ .

We can use (4) when n ≥ j0 ≥ q and we have

τf,Nn(q) ≤ 1
Nn log 2

log
2Nn−1∑
k′=0

(2µfn,k′)
q ≤ 1− q +

q + 1
j0

.

This implies τf (q) ≤ 1− q. By Lemma 5 we obtain τf (q) = 1− q.

Next we show τf (q) ≥ 0.
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Observe that from νn,m > N2
n and (7) it follows that if we choose jn such

that 2−jn = δn,m, then
√
jn > Nn. We can also assume that j0 ≤ m ≤ n is so

large that

g∗n(1)− g∗n(0) ≥ f(1)− f(0)− 2%n,m − h∗n,m ≥
f(1)− f(0)

2
.

Observe that if k′′ ∈ {0, ..., 2jn − 1} is chosen so that k′′/2jn = k′/2Nn for
a suitable k′ ∈ {0, ..., 2Nn − 1}, then

g∗n

(
k′′ + 1

2jn

)
− g∗n

(
k′′

2jn

)
= µfn,k′ ,

we denote the set of these k′′ by Γ′′.
For k′′ ∈ Γ′′ similarly to (26) we obtain

µf

([
k′′

2jn
,
k′′ + 1

2jn

])
≥ g∗n

(
k′ + 1
2Nn

)
− g∗n

(
k′

2Nn

)
− 2%n,m − 2h∗n,m ≥

µfn,k′

2
.

By using an inequality between means of non negative numbers we have∑2Nn−1
k′=0 µqfn,k′

2Nn

 1
q

≥
∑2Nn−1
k′=0 µfn,k′

2Nn
=
g∗n(1)− g∗n(0)

2Nn
.

Hence
2Nn−1∑
k′=0

µqfn,k′ ≥ (g∗n(1)− g∗n(0))q2Nn(1−q) ≥
(
f(1)− f(0)

2

)q
2Nn(1−q).

Thus

τf,jn(q) =
1

jn log 2
log

2jn−1∑
k′′=0

(
µf

([
k′′

2jn
,
k′′ + 1

2jn

]))q
≥ 1
jn log 2

log
∑
k′′∈Γ′′

(
µf

([
k′′

2jn
,
k′′ + 1

2jn

]))q
≥ 1
jn log 2

log
((

f(1)− f(0)
2

)q
2Nn(1−q) 1

2q

)
≥ 1
jn log 2

log
((

f(1)− f(0)
4

)q
2
√
jn(1−q)

)

≥ 1− q√
jn

+
log
((

f(1)−f(0)
4

)q)
jn log 2

.

This implies τf (q) ≥ 0. By Lemma 5 we obtain τf (q) = 0.
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5.5 Assertion (v)

Proof. First we show τf (q) ≥ 1−q. Assume f ∈ F(v)
def=F(i) = F1∩F0. Then

f ′ = 0 almost everywhere and hence there exists δ > 0 and a measurable set
H ⊂ [0, 1] such that λ(H) > 1/2 and for any x ∈ H, y ∈ (x− δ, x+ δ) we have

|f(y)− f(x)| < |y − x|. (28)

Assume j is chosen so that 1/2j < δ. Denote by ΓH the set of those
k ∈ {0, ..., 2j − 1} for which H ∩ [k/2j , (k + 1)/2j ] 6= ∅. From λ(H) > 1/2 it
follows that #ΓH > 2j−1. From (28) it follows that µf ([k/2j , (k+1)/2j ]) < 2−j

holds when k ∈ ΓH . Hence using q < 0 we have

τf,j(q) ≥
1

j log 2
log

∑
k∈ΓH

(
µf

([
k

2j
,
k + 1

2j

]))q
>

1
j log 2

log(2j−12−jq) =
j(1− q)− 1

j
.

This implies τf (q) ≥ 1− q.

Next we show τf (q) ≤ 1− q. For any n ≥ m we have

gn,m

(
k + 1
2νn,m

)
− gn,m

(
k

2νn,m

)
≥ hn,m.

Since %n,m < hn,m/8 we have

µf,n,m,k = f

(
k + 1
2νn,m

)
− f

(
k

2νn,m

)
> gn,m

(
k + 1
2νn,m

)
− gn,m

(
k

2νn,m

)
− 2%n,m

>
3
4
hn,m =

3
4n+12νn,m

>
1

42n2νn,m
.

Keeping in mind that q < 0 we infer

τf,νn,m(q) =
1

νn,m log 2
log

2νn,m−1∑
k=0

µqf,n,m,k

<
1

νn,m log 2
log(2νn,m4−2nq2−qνn,m) = (1− q) +

−4nq
νn,m

.

From νn,m > N2
n ≥ K2

n > n2 ≥ m2 easily follows that −4nq
νn,m

→ 0 as m, and
hence n, tends to ∞. Therefore τf (q) ≤ 1− q.
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Now we verify that τf (q) =∞.
Observe that by (7), P (k, n,m) < (2k + 1)/2νn,m+1 and hence gn,m is

constant on [(2k + 1)/2νn,m+1, (k + 1)/2νn,m ]. Therefore,

f

(
k + 1
2νn,m

)
− f

(
2k + 1
2νn,m+1

)
< 2%n,m =

(hn,m)m

4
.

Thus in line (29) below recalling (11) we obtain

τf,νn,m+1(q) =
1

(νn,m + 1) log 2
log

2νn,m+1−1∑
k′=0

(
f

(
k′ + 1

2νn,m+1

)
− f

(
k′

2νn,m+1

))q

>
1

(νn,m + 1) log 2
log

2νn,m−1∑
k=0

(
f

(
k + 1
2νn,m

)
− f

(
2k + 1
2νn,m+1

))q
>

1
(νn,m + 1) log 2

log
(

2νn,m
(hn,m)mq

4q

)
=

1
(νn,m + 1) log 2

log(2νn,m(4n2νn,m)−mq4−q) (29)

=
νn,m(1−mq)
νn,m + 1

+
−2mnq log 2 + log(4−q)

(νn,m + 1) log 2
.

Recalling that q < 0 and νn,m > N2
n ≥ K2

n > n2 ≥ m2 we obtain τf (q) =∞.

5.6 Assertion (vi)

Assume f ∈ F(vi)
def=F(ii). We will use the notation and choice of h∗n,m intro-

duced in the proof of assertion (ii) and hence choose a suitable subsequence
m` ≥ `. We will denote W` = Wn(m`),m` . Clearly,

µg`(W`) =
2ν`−1∑
k=0

g`(P`(k))− g`
(
k

2ν`

)
=

2ν`−1∑
k=0

g`

(
k + 1
2ν`

)
− g`

(
k

2ν`

)
= g`(1)− g`(0) ≥ f(1)− f(0)− 2%`.

Assuming m` ≥ 2, we have by (6) and (10) %` < h2
`/2 < h`/2ν`+1. There-
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fore

µf (W`) =
2ν`−1∑
k=0

f(P`(k))− f
(
k

2ν`

)

≥
2ν`−1∑
k=0

(
g`(P`(k))− g`

(
k

2ν`

)
− 2%`

)
≥ f(1)− f(0)− 2ν`+1%`

> f(1)− f(0)− h` > f(1)− f(0)− 1
2`
.

Thus µf ([0, 1] \ W`) < 1/2`. By the Borel-Cantelli lemma µf -almost every
x ∈ [0, 1] belongs to finitely many of the sets [0, 1]\W`; that is, for µf - almost
every x there exists `x such that for all ` ≥ `x we have x ∈W`.

If x ∈W`; that is, x ∈ (k/2ν` , P`(k)) for a suitable k, then

f(P`(k))− f
(
k

2ν`

)
≥ g`(P`(k))− g`

(
k

2ν`

)
− 2%`

≥ g∗∗` (P`(k))− g∗∗`
(
k

2ν`

)
− 2%` = h` − 2%`

>
h`
2
>
δ

1
2m`
`

2
>
δ

1
2`
`

2
.

Taking y = k/2ν` or y = P`(k) we have

|f(y)− f(x)| ≥ f(P`(k))− f(k/2ν`)
2

>
δ

1
2`
`

4
.

On the other hand |y − x| < δ` and hence |f(y) − f(x)| > |y − x|1/2`/4.
Since we can choose any ` ≥ `x, we have hf (x) = 0. This shows hf = 0,
µf -almost everywhere in [0, 1]; that is, µf (Ef≤0) = f(1)− f(0) = µf ([0, 1]).
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