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DIMENSIONS OF GRAPHS OF FUNCTIONS
AND LACUNARY DECOMPOSITIONS OF

SPLINE APPROXIMATIONS

Abstract

A construction is put forward which shows how to decompose an
arbitrary continuous function f ∈ C[0, 1] into a sum of two continuous
functions each having a graph of Hausdorff dimension one. An example
is given where the terms in the decomposition have graphs of Hausdorff
dimension 1 and packing dimension 2.

1 Introduction

In [4] Mauldin and Williams proved, by an easy Baire category argument that
it is possible to decompose an arbitrary function f(x) ∈ C[0, 1] into a sum
of two functions s(x) ∈ C[0, 1] and t(x) ∈ C[0, 1] such that the Hausdorff
dimensions of the graphs of s and t are one. This decomposition is surprising
since there are functions in C[0, 1] which have graphs of any dimension in the
interval [1,2].

We believe that it is of interest to see how the decomposition can be con-
structed. From our construction one sees that the decomposition is far from
unique and that it is possible to generalize it to C(Rn).

One can expect that a constructive proof gives more information than an
existence proof. Indeed, it is possible to carry out the construction so that the
decomposition functions s and t have graphs of lower box dimension 1. This
is done in Theorem 1. Moreover it is possible to make a detailed investigation
of the decomposition functions s = sf and t = tf for special cases of f . This is
done in Theorem 2 and it gives an answer to an interesting question posed by
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an anonymous referee concerning the packing dimension of the decomposition
functions. We prove that there are functions f such that

dimP (sf ) = dimP (tf ) = 2

and hence the irregularity coefficient [6]

dimP (·)− dimH(·)

attains the maximum value 1 if the arguments are sf and tf respectively.
Noteworthy is that this value is as large as the maximum value for arbitrary
real valued functions defined on [0,1].

Before we begin with the proofs we give a rough outline of the construction.
The first step is to approximate f(x) by the functions in a uniformly convergent
sequence {fn} of linear spline functions of increasing frequency and accuracy.
A telescopic series is then formed from the sequence and the terms in the series
are sorted in two sums s and t with partial sums si and ti so that

1. f = si + ti + f − fni
i = 1, 2, . . . and

2. si and ti converge uniformly to s and t on [0, 1].

From this it follows that
f = s+ t

where s and t are continuous. We now arrive at the heart of the construction.
The pair (s, t) in the decomposition s+t may be varied extensively. We use this
to choose a very high convergence speed for {si} and {ti} and we distribute
the oscillation for f so unevenly between s and t that graph(s) and graph(t)
inherit (almost linear) covering properties from graph(si) and graph(ti) for
long sequences of scales. This will imply that s and t inherit the property of
having graphs of lower box dimension 1 and hence of Hausdorff dimension 1
from the graphs of the spline functions si and ti.

In Theorem 2 we prove, for a special function f and by a detailed inves-
tigation of the corresponding functions s and t, that their graphs have upper
box dimension 2 and since the graphs are very homogenous it is possible to
prove that their packing dimensions are 2.

We now leave this rough description and prepare for theorems and proofs by
recalling some definitions. In the following, we use the squares In,k×In,j where
In,k = [k · 2−n, (k+ 1)2−n], n ∈ Z+ and k, j ∈ Z. We call these squares dyadic
2-cubes. It is well known that the s-dimensional net measure defined by dyadic
2-cubes defines the same dimension as the s-dimensional Hausdorff measure
(see e.g. [3, p. 33]). We will use the net measure, as in our construction, it
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is a little easier to handle. Define for F ⊂ R2 the s-dimensional net measure
Ms(F ) by

Ms(F ) := lim
n→∞

inf
2−n

∑
i

|Qi|s (1)

where the Q′is are dyadic 2-cubes which cover F and which are of side length
less than or equal to 2−n. The infimum is taken over all coverings of such
cubes. Roughly speaking the s-dimensional net measure is a measure of how
effective F can be covered by dyadic 2-cubes in the xs-sense.

In the proof, we call
∑

i |Qi|s the covering sum. The Hausdorff dimension
of F is defined by

dimH(F ) := inf{s : Ms(F ) is finite}. (2)

If every dyadic cube in a covering sum has the same side length 2−n, then

S(s) = lim inf
n→∞

∑
i

|Qi|s and S(s) = lim sup
n→∞

∑
i

|Qi|s

may be used to define the lower- and the upper box dimension given by

dimB = inf{s : S(s) is finite} and dimB = inf{s : S(s) is finite}

respectively. If the reader would like to investigate how the constructions in
the proofs work for various functions then we suggest trying those functions
whose construction is based either upon dyadic decomposition, the Takagi
function [5, p. 176] and the family of functions in [1, p. 873] with dimH = 1,
the Ursell-Besicovith functions [2, p. 115] with dimH = α, α ∈ (1, 2) or the

function
∞∑

n=0
2−n inf{|22n

x− y| : y integer} [7, p. 104] with dimH = 2.

2 Decomposition of an Arbitrary C[0, 1] Function

Functions in this section are defined on the unit interval [0, 1]. We sometimes
exclude the independent variable, writing for instance f instead of f(x).

Theorem 1. Any real-valued continuous function f on [0, 1] may be decom-
posed into a sum of two continuous functions s and t, f(x) = s(x)+t(x) where
the graphs of s and t have lower box dimension 1.

The corresponding result by Mauldin and Williams for the Hausdorff di-
mension follows from Theorem 1:
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Corollary 1. Any real-valued continuous function f on [0, 1] may be decom-
posed into a sum of two continuous functions s and t, f(x) = s(x)+t(x) where
the graphs of s and t have Hausdorff dimension 1.

Proof. In the exposition below we use the dyadic intervals
In,k = [k · 2−n, (k + 1)2−n], n ∈ Z+ and 0 ≤ k ≤ 2−n − 1, when constructing

the two functions s(x) and t(x). We start by first letting fn, n = 1, 2, ..., be
the linear splines which interpolate f(x) at x = k · 2−n, k = 0, 1, ..., 2n. Since
f is continuous on [0,1] we have

lim
n→∞

sup
x∈[0,1]

|fn(x)− f(x)| = 0 .

Then we let

g1 = f1

g2 = f2 − f1
...

gn = fn − fn−1.

The function f(x) =
∞∑
1
gi(x) has uniform convergence. To get s and t we

decompose f(x) =
∞∑
1
gi(x) into a sum f = s+ t where

s =
∑

odd k

Nk+1∑
Nk+1

gi and t =
∑

even k

Nk+1∑
Nk+1

gi

In these sums, N1, N2, . . . is an increasing sequence of natural numbers formed
by a special inductive rule. We specify this rule and prove that

dimB(graph(s)) = dimB(graph(t)) = 1.

Step 1. Let h1 =
N1∑

N0+1

gi , N0 = 0 and N1 = 1. Cover graph(h1) by dyadic

2-cubes, all with side length 2−n. Choose n = n1 large enough so that the
number of dyadic 2-cubes which cover graph(h1) multiplied by the side-length
2−n1 raised to the power of (1 + 1

p ), p = 1, is less than 1. Thus

#{2− cubes which cover graph (h1)} · (2−n1)1+
1
1 < 1.
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This choice is possible since h1 is a linear spline and hence rectifiable.
Step 2. Let

h2 =
N2∑

N1+1

gi (3)

where N2 is so large that
∣∣∣∑∞n gi

∣∣∣ < 2−n1 for n > N2. The choice of N2 is
possible since

∑
gi(x) is uniformly convergent on [0,1].

Let us now assume that we have already made the choices in steps
1, 2, 3, . . . , p− 1 and that p is odd; if p is even the wording in the proof is the
same except for some minor details. We then have

h1 =
N1∑

N0+1

gi

h2 =
N2∑

N1+1

gi

...

hp−1 =
Np−1∑

Np−2+1

gi

(4)

with integers N1 < N2 < . . . < Np−1 and n1 < n2 < . . . < np−1.

Step p. Let hp =
Np∑

Np−1+1

gi where Np > Np−1 is sufficiently large that

∣∣∣ ∞∑
n

gi

∣∣∣ < 2−np−1 , n > Np. (5)

Now cover graph (h1 + h3 + . . .+ hp) with 2-cubes of side-length 2−np where
we choose np large enough so that np > np−1 and so that

#{2-cubes which cover graph (h1 + h3 . . .+ hp)} × (2−np)1+
1
p < 1. (6)

This choice is justified in the same way as the choice of n1 in step 1; just
replace h1 by h1 + h3 + . . .+ hp. By induction it follows that we can continue
with the construction so that (6) and (5) hold for every positive integer p. Our
next goal is to prove that for a given ε > 0 there is a p0 > 0 such that it is
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possible to cover the graph of s =
∞∑

i=0

h2i+1 by dyadic 2-cubes of side lengths

2−np , so that

#{covering 2-cubes} × (2−np)1+ε < 1 + ε. (7)

for every p ≥ p0 > 0. From this it follows by (1) and (2) that

dimB(graph(s)) ≤ 1

and since s is continuous we have 1 ≤ dimB(graph(s)). Thus dimB(graph(s)) =
1. To prove (7) we observe that from (4), (5) and the inductive construction,
it follows that for k = 1, 2, . . .

|hk| =
∣∣∣ Nk∑
Nk−1+1

gi

∣∣∣ =
∣∣∣ ∞∑
Nk−1+1

gi −
∞∑

Nk+1

gi

∣∣∣
≤
∣∣∣ ∞∑
Nk−1+1

gi

∣∣∣+
∣∣∣ ∞∑
Nk+1

gi

∣∣∣ ≤ 2−nk−1 + 2−nk ≤ 2 · 2−nk−1 ,

and hence ∣∣∣ ∑
even i≥m

hi

∣∣∣ ≤ ∑
even i ≥m

|hi| ≤ 4 · 2−nm−1 . (8)

From (6) it follows that there is an np for the above given ε > 0 for which
graph(

∑
even i≤p hi) is covered by 2-cubes of side length 2−np so effectively

that

#{covering 2-cubes of sidelength 2−np} ×
(

2−np

)1+ε

< 1 for p ≥ p0.

But according to (8)
∣∣∣∑even i≥p+2 hi

∣∣∣ < 4 · 2−np . Hence it is possible to cover

graph(
∑

even i hi) by adding to the covering of graph
(∑

even i≤p hi

)
4 levels

of 2-cubes of side length 2−np from the above and 4 levels from below; that
is 8× (1/2−np) cubes. This number of 2-cubes adds 8 · 2np · (2−np)1+ε to the
covering sum. Since this quantity approaches zero as p tends to infinity, there
is a p0 for the cover of graph(s) so that

#{covering 2-cubes of side length 2−np} ×
(

2−np

)1+ε

< 1 + ε

if p ≥ p0 and the proof is complete.
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3 Decomposition of a Special C[0, 1] Function

Given the decomposition functions s = sf and t = tf as in Theorem 1 we have
the following theorem.

Theorem 2. There are continuous functions f(x), x ∈ [0, 1], such that

dimP (F ) = 2 (9)

and
dimP (F )− dimH(F ) = 1 (10)

for F ε {graph(sf ), graph(tf )}.

Proof. It is obvious that (9) implies (10) for the decomposition functions we
have in Theorem 1. Furthermore, if there is one f which fulfils (9) then there
are several.

We prove (9) for

f(x) =
∞∑

p=0

2−pdist(22p

x,Z), xε [0, 1]. (11)

This function was given in [7] as an example of a continuous function whose
graph is of Hausdorff dimension 2. Our reasoning relies on Theorem 1 and
its proof and consists of three parts which we first sketch and later fill in the
details.
1. Prove dimB(t) = 2.

To attain this result, we start with a comparison between the local oscil-
lation of the linked functions f, s, and t.
2. Show that graph(t) has a high degree of homogeneity in the following sense:
if we subtract from t the linear spline function σr in (15) below, then we get
a periodic function. If r →∞ then the period approach zero.
3. Use the homogeneity property of t to exploit a well known result (see for
instance [3, p. 49]) concerning sufficient conditions for equality between the
upper box dimension and the packing dimension: Let F be a closed subset of
Rn. If for every open subset V of Rn, V ∩ F 6= ∅, we have that

dimB(F ∩ V ) = dimB(F ) (12)

then dimP (F ) = dimB(F ).
Part 1. Let f be the function in (11) and apply the decomposition in Theorem
1. Then

f = s+ t. (13)
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We now introduce the following notation. If I is an interval in R then

|I| := length(I)

and if I is a dyadic interval then cov(f(I), I) stands for the number of dyadic
intervals of length |I| which intersect f(I). Hence |f(I)| is the oscillation of
f on I and cov(f(I), I) is the number of dyadic 2-cubes of side length |I|
intersecting graph(f(x)), xεI. From (13) it follows that |f(I)| ≤ |s(I)|+ |t(I)|
and

cov(f(I), I) ≤ cov(s(I), I) + cov(t(I), I) + 1.

Summation over all dyadic intervals I of equal length gives∑
cov(f(I), I) ≤

∑
cov(s(I), I) +

∑
cov(t(I), I) + |I|−1.

To enable us to draw conclusions about the upper box dimension of t, we let
ε > 0 and multiply the above inequality by |I|2−ε. Then we get∑

cov(f(I), I)|I|2−ε ≤
∑

cov(s(I), I)|I|2−ε

+
∑

cov(t(I), I)|I|2−ε + |I|1−ε.

Since dimH(graph(f)) = 2, then replacing |I| by 2−n we know that the left
hand side of the above inequality approaches infinity as n → ∞. This is also
true for any subsequence of N and specifically the subsequence {np} which
was defined in Theorem 1. We know however from (7) that the first term on
the right hand side is less than 1 + ε for every np. Hence the second term on
the right hand side approach infinity as p→∞. This yields

dimB(f) ≥ 2− ε, for every ε.

Thus
dimB(graph(t)) = 2. (14)

Part 2. We begin by taking a closer look on t. From Theorem 1 and its proof
we have

t(x) =
∞∑

m=1

Nm+1∑
Nm+1

2−p dist(22p

x,Z)

Introducing the notation

σr(x) =
r∑

m=1

Nm+1∑
Nm+1

2−p dist(22p

x,Z) (15)
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we get

t(x)− σr(x) =
∞∑

m=r+1

Nm+1∑
Nm+1

2−p dist(22p

x,Z) (16)

Since
dist(22p

(x+ 2−2n

),Z) = dist(22p

x,Z) for all n ≤ p

it follows that the right hand side of (16) is of period 2−2p

. Then with the
exception of a finite number of points the corresponding graph is the union
of 22p

disjoint subsets all congruent to (i22p

, (i+ 1)22p

)× R ∩ graph(t). If we
use this together with the relation (14) and

dimB(graph(t+ σ) = dimB(graph(t)),

which is true for all splines σ defined on R, then we obtain

2 = dimB(graph(t)) = dimB(graph(t− σr))

= dimB(graph(t− σr) ∩ [i22p

, (i+ 1)22p

]× R)

= dimB(graph(t) ∩ [i22p

, (i+ 1)22p

]× R).

(17)

Part 3. In this last part we use the homogeneity property from Part 2 to
prove (9). Assume that V is an arbitrary open subset of R2 with V ∩graph(t) 6=
∅. Then since V is open and t is continuous there is an i such that

graph(t) ∩ V ⊃ graph(t) ∩
(
[i22p

, (i+ 1)22p

]× R
)

and since dimB is an increasing set function we achieve

2 ≥ dimB(graph(t)) ≥ dimB(graph(t) ∩ V )

≥ dimB(graph(t) ∩
(
[i22p

, (i+ 1)22p

])× R
)
.

We know however from (17) that the last expression in the above inequality
equals 2 and hence

dimB(graph(t) ∩ V ) = dimB(graph(t)).

Thus (12) is valid for F = graph(t) and hence by (14) we may conclude that
(9) holds and with this the proof is complete.
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