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ARE THE KANTOROVITCH
POLYNOMIALS AREA DIMINISHING?

Abstract

The Bernstein-Bezier polynomials are known to possess total varia-
tion and length diminishing properties in one variable. We investigate
the two dimensional generalizations to the square and the triangle. Sim-
ple counterexamples show that they do not diminish surface area. We
consider Kantorovitch polynomials which seem to be a better choice to
be area diminishing. A counterexample is given for the square. We then
define the Kantorovitch polynomials on the triangle and give an area
estimate for them.

1 Bernstein Type Polynomials in One Variable.

The one variable Bernstein polynomials (Bnf)(x) of a function defined on
[0, 1] are given by

(Bnf)(x) ≡
n∑

r=0

f
( r

n

)
pn,r(x) (1)

where

pn,r(x) ≡
(

n

r

)
xr(1− x)n−r.

For continuous f , the Bnf converge uniformly to f providing the standard
proof of the Weierstrass theorem.We are interested, however, in the smoothing
aspects of these polynomials.We will need three properties of the Bnf :

n∑
i=0

pn,r(x) = (x + (1− x))n = 1 (2)
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∫ 1

0

pn.r(x) dx =
1

n + 1
, ∀n, r (3)

(B′nf)(x) =
n−1∑
r=0

(
f
(r + 1

n

)
−f

( r

n

))
pn−1,r(x) (4)

Using (3) and (4), we get the variation diminishing property:

V Bnf =
∫ 1

0

|(B′nf)(x)| dx =
∫ 1

0

∣∣∣n n−1∑
r=0

(
f
(r + 1

n

)
− f

( r

n

))
pn−1,r(x)

∣∣∣ dx ≤

n
n−1∑
r=0

∣∣∣f(r + 1
n

)
− f

( r

n

)∣∣∣ ∫ 1

0

pn−1,r(x) dx =
n−1∑
r=0

∣∣∣ f
(r + 1

n

)
− f

( r

n

)∣∣∣ ≤ V f.

Schoenberg [9] showed that Bnf have the following beautiful property: Let
Zf be the number of zeros of f , possibly infinite, on [0, 1]. Then

Z((Bnf)(x)− (ax + b)) ≤ Z(f(x)− (ax + b))

for all lines y = ax + b; i.e., Bnf crosses every line no more often than f
does. The proof is based on Descartes’ rule of signs. This property allows
one to prove that the arc length LBnF ≤ LF for parametric space curves
F ≡ (f1, f2, f3) where BnF ≡ (Bnf1, Bnf2, Bnf3). The proof uses classical
integral geometry, e.g., the plane case is an application of Crofton’s formula
for the length of a curve C,

2L(C) =
∫ π

0

∫ ∞

0

NC(θ, ρ) dρ dθ,

where NC counts the number of times a line l(θ, ρ) crosses C. Similar tech-
niques show that KBnF ≤ KF , where K indicates total integral curvature
[7].
For functions in L1, Kantorovitch introduced polynomials

(Knf)(x) ≡
n∑

r=0

Mn,rpn,r(x) (5)

where

Mn,r ≡ (n + 1)
∫ r+1

n+1

r
n+1

f(u) du.

The Kantorovitch polynomials converge in L1 for f ∈ L1 and converge uni-
formly for continuous functions [6]. They also possess the length and variation
diminishing properties. We now consider the two dimensional generalizations
of both Bnf and Knf .
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2 Bernstein Type Polynomials on the Unit Square.

We define the two parameter generalizations on the unit square Q ≡ [0, 1] ×
[0, 1]:

(Bn,mf)(x, y) ≡
n∑

r=0

m∑
s=0

f
( r

n
,

s

m

)
pn,r(x)pm,s(y) (6)

and

(Kn,mf)(x, y) ≡
n∑

r=0

m∑
s=0

Mn,r,m,spn,r(x)pm,s(y) (7)

where

Mn,r,m.s ≡ (n + 1)(m + 1)
∫ r+1

n+1

r
n+1

∫ s+1
m+1

s
m+1

f(u, v) dv du.

Again, Bn,mf and Kn,mf converge uniformly for continuous f , and Kn,mf
converges to f in L1. See [6]. Note that in both cases the two variable
operator is the successive iteration of the one variable operators. We consider
the surface area properties of these operators, recalling the difficulty caused by
the fact that in the limit, the sum of the elementary areas of inscribed triangles
may exceed the Lebesgue area of the approximated surface as in the classical
Schwarz-Peano example [1]. To see that Bn,mf are not area diminishing, define
f(x, y) = xtyt on Q and note that f is zero at three of the corners and one at
(1, 1) so that (B1,1f)(x, y) = xy for all t > 0. The surface area AB1,1f ≈ 1.28
and even for t = 2, Af ≈ 1.19. In fact, Af → 1 as t → ∞. This happens
because Bn,mf depends only on the discrete values f( r

n , s
m ). A key distinction

is that Kn,mf depends on the integral means of f and consequently involves
the isoperimetric relationship between the area of f and the volume bounded
by f . For example, for f as above and t = 2,

(K1,1f)(x, y) =
1

144
(36xy + 6x + 6y + 1)

which gives AK1,1f ≈ 1.03 < Af . A second indicator that the Kantorovitch
polynomials may be area diminishing is that they are derived from integral
means which are area diminishing [10]. In fact, in the one variable case, we
have

Knf = B′n+1

(∫ x

0

f
)

so

Kn,mf =
∂2Bn+1 , m+1

∂x∂y

(∫ x

0

∫ y

0

f
)
.
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The Tonelli variations of f are given by

Vxf ≡
∫ 1

0

V f(·, y) dy,

where Vxf(·, y) is the linear variation of f on [0, 1] for a fixed y. Similarly, Vyf .
This furnishes a third suggestive difference between the Bernstein polynomi-
als and the Kantorovitch polynomials: Kantorovitch polynomials are Tonelli
variation diminishing [8] (See also [4]). However, even for f(x, y) = x2y2,
VxB1,1f = VyB1,1f = 1

2 with Vxf = Vyf = 1
3 . In Section 3, we construct

a counterexample showing that Kn,m is not area diminishing without some
restriction on n and m.

3 A Counterexample for Kn,m.

We construct a function g(x, y) such that for some large m, AK1,mg > Ag.
First, we will approximate g by the linear Kantorovitch polynomial in x,
(Kx

1 g)(x, y) and show that its area exceeds that of g. The construction of
g is based on the apparently unrelated observation that, although the arc
length of a parametric Bernstein curve is less than or equal to that of the
approximated curve, this is not true if one only approximates one component.
For example, let d1(t) = d2(t) = t2 on [0, 1] so that (B1d)(t) = (B2d)(t) = t.
Thus, the arc lengths are L(B1d1, B1d2) = L(d1, d2) =

√
2 since the paths are

linear and monotone from (0, 0) to (1, 1), but

L(B1d1, d2) = L(t, t2) =
∫ 1

0

√
1 + 4t2 dt ≈ 1.479 >

√
2.

Now we modify this example to construct a function f(t) such that

L((K1f)(t), (B2f)(t)) > L(f(t), f(t)).

Define f(t) to be 0 on [0, .5], 10000(−200t3 + 303t2 − 153t + 25.75) on [.5, .51]
and 1 on [.51, 1]. The cubic is chosen to make f(.5) = f ′(.5) = 0, f(.51) = 1,
f ′(.51) = 0 so that f is C1 and monotone nondecreasing, and that f ′′ exists
and is continuous except at .5 and .51. We have

(K1f)(t) = 2
(∫ .5

0

f(u)du
)
(1− t) + 2

(∫ 1

.5

f(u) du
)
t ≈ .990t,

and (B2f)(t) = 0(1 − t)2 + 2(0)t(1 − t) + 1t2 = t2. Thus, L(f(t), f(t)) =
√

2,
but

L((K1f)(t), (B2f)(t)) ≈
∫ 1

0

√
(.990)2 + 4t2 dt ≈ 1.472 >

√
2 = L(f(t), f(t)).
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Note that since (Knf ′)(t) = (B′n+1f)(t), we can replace (B′2f)(t) by (K1f
′)(t).

Thus, the length inequality may be written∫ 1

0

√
((K ′

1f)(t))2 + ((K1f ′)(t))2 dt >

∫ 1

0

√
(f ′(t))2 + (f ′(t))2 dt.

We may perturb the inequality slightly so that it becomes∫ 1

0

√
ε2 + ((K ′

1f)(t))2 + ((K1f ′)(t))2 dt >∫ 1

0

√
ε2 + (f ′(t))2 + (f ′(t))2 dt.

In particular, ε = .01 will work. Using the linearity of the Kantorovitch
operator and its derivative, this may be rewritten as∫ 1

0

√
1 + (100(K ′

1f)(t))2 + (100(K1f ′)(t))2 dt

>

∫ 1

0

√
1 + (100f ′(t))2 + (100f ′(t))2 dt.

Now, we define g(x, y) = 100(f(x) + f ′(x)y) on [0, 1]× [0, δ] with δ to be
determined. Thus,

∂g

∂x
= 100[f ′(x) + f ′′(x)y] and

∂g

∂y
= 100f ′(x).

Also
(Kx

1 g)(x, y) = 100[(K1f)(x) + (K1f
′)(x)y]

so that

∂Kx
1 g

∂x
= 100[(K1f

′)(x) + (K ′
1f)(x)y] and

∂Kx
1 g

∂y
= 100(K1f

′)(x).

With this notation, the last inequality becomes∫ 1

0

√
1 +

(∂Kx
1 g

∂x

)2

+
(∂Kx

1 g

∂y

)2

dx

>

∫ 1

0

√
1 +

(∂g

∂x

)2

+
(∂g

∂y

)2

dx

evaluated at y = 0. This inequality remains true on some interval 0 ≤ y ≤ δ
because the integrals are continuous in y. For convenience, choose an integer
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i such that 1
2i < δ, and now define g(x, y) on [0, 1]× [ 1

2i ,
1
i ] by reflection; i.e.,

g(x, 1
2i + a) = g(x, 1

2i − a). Now extend g continuously to Q by repetition
on the remaining strips [0, 1] × [ j

i ,
j+1

i ] for j = 2, · · · , (i − 1). Note that g
is continuous everywhere and is C1 except along the lines x = .5, x = .51,
and y = j

2i , and that the inequality holds for all y 6= j
2i . If we integrate the

last inequality with respect to y between 0 and 1, it yields the surface area
inequality AKx

1 g > Ag.
Now we approximate Kx

1 g by Ky
m(Kx

1 g) = K1,mg. Since for each (x, y),
K1,mg converges to the continuous function Kx

1 g, the convergence is uniform
on Q. Lebesgue area is lower semicontinuous so that lim inf

m→∞
AK1,mg ≥ AKx

1 g.
Now let γ < AKx

1 g −Ag. Then there is an M > 0 such that for m > M ,

AK1,mg > lim inf AK1,mg − γ ≥ AKx
1 g − γ > Ag.

This counterexample leads however to the question of whether Kn,m may
be area diminishing if some restrictions are put on n and m. The Peano-
Schwarz example shows that if one restricts the ratio of the base 1

n and height
1
m to be bounded, then the elementary areas of the inscribed triangles approach
the Lebesgue area. On the other hand, the Fefferman example on multiple
Fourier series [3] shows that even if n and m satisfy 1

2 < m
n < 2, there is a

function in L2 whose Fourier series does not converge anywhere, but if |m|
and |n| < W as W → ∞, the Fourier series converges a.e. This suggests two
possibilities to consider for Kantorovitch polynomials: α < m

n < β and n = m.

4 Bernstein Type Polynomials on the Triangle.

We now consider the generalizations of Bn and Kn to the triangle. The domain
will be

T ≡ {(x, y)|x ≥ 0, y ≥ 0, x + y ≤ 1}
with domain area 1

2 . The triangular Bernstein polynomials are defined as a
one parameter sequence

(BT
n f)(x, y) ≡

i+j=n∑
i=0,j=0

f
( i

n
,
j

n

)
pnij(x, y) (8)

where

pnij(x, y) ≡
(

n

i, j

)
xiyj(1− x− y)n−i−j

with trinomial weights (
n

i, j

)
≡ n!

i!j!(n− i− j)!
.
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Again, we have uniform convergence for continuous functions [6]. Several
important papers discuss the convexity of BT

n f using barycentric coordinates
on a general triangle instead of on T , [2, 4].

As in the square case, it is easy to find an f such that ABT
n f > Af . Let

f(x, y) = (1− x− y)2. Then

Af =
∫ 1

0

∫ 1−x

0

√
1 + 8(1− x− y)2 dy dx ≈ .728.

But (BT
1 f)(x) = 1− x− y so that ABT

1 f =
√

3
2 ≈ .866.

Kantorovitch polynomials have not been defined for triangular domains.
We note that BT

n f contains (n+1)(n+2)
2 terms, and a difficulty arises if one

tries to partition T into that many equiarea pieces. It is natural, however,
to partition T into (n + 1)2 congruent triangles using the lines x = i

n+1 , y =
j

n+1 , x + y = i+j
n+1 for i ≥ 0, j ≥ 0, 1 ≤ i + j ≤ n. Of these, (n+1)(n+2)

2 ,
which we will denote by Ti,j , are oriented in the same manner as T, and the
remaining n(n+1)

2 , which will not be used, are rotated by π. One may visualize
a triangular checkerboard pattern. Note that each Bernstein node ( i

n , j
n ) lies

in
Ti,j =

{
(x, y)

∣∣∣ x ≥ i

n + 1
, y ≥ j

n + 1
, and x + y ≤ i + j + 1

n + 1

}
.

The Kantorovitch polynomials will be defined as

(KT
n f)(x, y) ≡

i+j=n∑
i=0,j=0

MT
n,i,jpnij(x, y) (9)

where

MT
n,i,j ≡ 2(n + 1)2

∫ ∫
Tij

f(u, v) dv du.

Then KT
n f converge uniformly for continuous f because |f( i

n , j
n )−MT

n,i,j | < ε

for large n. KT
n f will also converge in L1, for f ∈ L1, using an ε

3 argument.
We compute the surface area of (KT

1 f)(x, y) for f(x, y) = (1− x− y)2.

(KT
1 f)(x, y) =

1
24

(11− 10x− 10y),

so AKT
1 f =

√
194
24 ≈ .580 ≤ Af in contrast to BT

1 f . The Tonelli variations on
the triangle are

Vxf ≡
∫ 1

0

∫ 1−x

0

∣∣∣∣∂f

∂x

∣∣∣∣ dy dx,
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and similarly Vyf . As in the square case BT
n , do not diminish Tonelli variation.

For f(x, y) = (1− x− y)2, Vxf = Vyf = 1
3 while VxBT

1 f = VyBT
1 f = 1

2 .
In contrast to the square case, Kantorovitch polynomials also may not

diminish Tonelli variation. On T , let

f(x, y) =
{

(1− 2y)x for 0 ≤ y ≤ .5
0 for .5 ≤ y ≤ 1

which is continuous along the line y = 1
2 . Then (KT

1 f)(x, y) = 1
8 + 1

3x − 1
8y

and

Vxf =
∫ 1

2

0

∫ 1−x

0

(1− 2y) dy dx =
1
12

.

But

VxKT
1 f =

∫ 1

0

∫ 1−x

0

1
3

dy dx =
1
6

> Vxf.

It should be noted that

VyKT
1 f =

1
16

<
7
24

= Vyf

and that
AKT

1 f ≈ .53 < .67 ≈ Af.

5 Linear Functions and an Estimate for AKT
n f .

In both the square and triangular cases, the Bernstein polynomials of linear
functions are identical to the function, so they have the same surface area. In
both cases, the Kantorovitch polynomials diminish the surface area of linear
functions. We consider the triangular case. In what follows, the following
properties of KT

n f are useful :

i+j=n∑
i=0,j=0

pnij(x, y) = [x + y + (1− x− y)]n = 1 (10)

i+j=n∑
i=0,j=0

ipnij(x, y) = nx and
i+j=n∑

i=0,j=0

jpnij(x, y) = ny (11)

∫ 1

0

∫ 1−x

0

pnij(x, y) dy dx =
1

(n + 1)(n + 2)
, ∀n, i, j (12)
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∂KT
n f

∂x
=

i+j=n−1∑
i=0,j=0

n(MT
n,i+1,j −MT

n,i,j)pn−1,ij(x, y)

∂KT
n f

∂y
=

i+j=n−1∑
i=0,j=0

n(MT
n,i,j+1 −MT

n,i,j)pn−1,ij(x, y)

(13)

(The partials of BT
n f are the same as those of KT

n f except f( i
n , j

n ) replaces
MT

n,i,j .) The proofs are natural extensions of the one variable case found in
[6]. Now suppose f(x, y) = ax + by + c, so that

Af =
∫ ∫

T

√
1 + a2 + b2 dy dx =

1
2

√
1 + a2 + b2.

Then

(KT
n f)(x, y) =

i+j=n∑
i=0,j=0

[
1

3(n + 1)
[a(3i + 1) + b(3j + 1)] + c

]
pnij(x, y).

Using (11) and (12), we obtain

(KT
n f)(x, y) =

n

n + 1
(ax + by) + c∗

so that

AKT
n f =

1
2

√
1 +

( na

n + 1

)2

+
( nb

n + 1

)2

< Af.

We conclude with an estimate for AKT
n f which depends on the convexity

of the function s(α, β) =
√

1 + α2 + β2. The integrand of AKT
n f is the square

root of

1 +
(i+j=n−1∑

i=0,j=0

n(MT
n,i+1,j −MT

n,i,j)pn−1,ij(x, y)
)2

+
(i+j=n−1∑

i=0,j=0

n(MT
n,i,j+1 −MT

n,i,j)pn−1,ij(x, y)
)2

.

Using Jensen’s inequality and (10), this is less than or equal to

i+j=n−1∑
i=0,j=0

√
1 +

(
n(MT

n,i+1,j −MT
n,i,j)

)2 +
(
n(MT

n,i,j+1 −MT
n,i,j)

)2
pn−1,ij(x, y).
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Integrating this expression over T and using (12), we get AKT
n f less than or

equal to

1
n(n + 1)

i+j=n−1∑
i=0,j=0

√
1 +

(
n(MT

n,i+1,j −MT
n,i,j)

)2 +
(
n(MT

n,i,j+1 −MT
n,i,j)

)2
.

This estimate is not possible in the square case since the weight functions
pn,r(x) and pm,s(y) are independent, so Jensen’s inequality does not apply. If
f is continuous, we may use the mean value theorem for integrals to replace
the differences by point values, e.g., in x we get n[f(xi + 1

n+1 , yj)− f(xi, yj)]
where (xi, yj) ∈ Tij . If f is differentiable, then we may further replace the
point differences by, for example, n

n+1
∂f
∂x (x∗i , yj) where x∗i ∈ (xi, xi + 1

n+1 ).
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