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ORBITS OF DARBOUX-LIKE REAL
FUNCTIONS

Abstract

We show that, with respect to the dynamics of iteration, Darboux-
like functions from R to R can exhibit some strange properties which
are impossible for continuous functions. To be precise, we show that (i)
there is an extendable function from R to R which is ‘universal for orbits’
in the sense that it possesses every orbit of every function from R to R
up to an arbitrary small translation, and which has orbits asymptotic to
any real sequence, (ii) there is a function f : R → R such that for every
n ∈ N, fn is almost continuous and the graph of fn is dense in R2, in
spite of the fact that all f -orbits are finite. To prove (i) we assume the
Continuum Hypothesis.

1 Introduction.

In the study of the iterative dynamics of functions f : X → X of a metric
space X, two of the basic questions are the following:

(i) Which “types” of orbits can coexist in a system (X, f)?
(ii) If all orbits in a system (X, f) are “simple”, is the global dynamics

“simple”?
First we make a peripheral investigation regarding these questions in the

case of continuous functions f : R→ R. Of course, (i) is a huge problem and
we do not answer it in any non-trivial sense. Using a result from [6] we merely
observe that there are uncountably many “different types” of possible orbits
such that a continuous function can possess at most one of those “types”. We
also deduce that the answer to the second question is affirmative in a certain
sense for continuous functions f : R→ R.
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After these preliminary observations, we examine the case of Darboux-like
functions, functions satisfying generalized notions of continuity, f : R → R.
We remark that the dynamics of Darboux-like functions was considered before.
For instance, it is known that there exists an almost continuous function f :
R → R to which Sarkovski’s Theorem cannot be extended [5]. For some
positive results, see [2], [8], [9].

With respect to the two basic questions mentioned above, the results we
obtain about Darboux-like functions are drastically different from those we
get for continuous functions. We show that there is an extendable function
from R to R which is ‘universal for orbits’ in the sense that it possesses every
orbit of every function from R to R up to an arbitrary small translation, and
which has orbits asymptotic to any real sequence. We also show that there is
a function f : R→ R such that for every n ∈ N, fn is almost continuous and
the graph of fn is dense in R2, in spite of the fact that all f -orbits are finite.

2 Preliminaries.

If f : X → X is a function of a metric space we call the pair (X, f) a dy-
namical system. For n ∈ N, by fn we mean the n-fold self-composition of f .
For x ∈ X, the f-orbit of the point x is {x, f(x), f2(x), f3(x), . . .}, which we
denote by Of (x). Let Gf := {(x, f(x)) : x ∈ X} denote the graph of f . We
say f is topologically transitive if

⋃∞
n=1Gfn is dense in X2. One may refer

to [3] to appreciate the role of topological transitivity in the study of chaos.
The following fact is well-known, and can easily be deduced using the Baire
Category Theorem.

Proposition 1. Let X be a complete, second countable metric space without
isolated points (e.g. X = R). Then for a continuous function f : X → X the
following are equivalent:

(i) f is topologically transitive.
(ii) There exists a point x ∈ X whose f -orbit is dense in X.

(iii) {x ∈ X : Of (x) is dense in X} is a dense Gδ subset of X.

For a metric space X, let OX be the collection of all sequences in X which
can be realized as orbits of functions f : X → X (need not be continuous).
That is,

OX = {(xn)∞n=1 ∈ XN : there is f : X → X with f(xn) = xn+1 for all n ∈ N}.

We put an equivalence relation on OX by defining (xn)∞n=1 ∼ (yn)∞n=1 if there
is a homeomorphism h : X → X such that h(xn) = yn for every n ∈ N. Orbits
in the same equivalence class are referred to as orbits of the same type.
The proof of the following is straightforward.
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Lemma 1. Let f, g : X → X be continuous, let x, y ∈ X and let h : X → X
be a homeomorphism such that h(fn(x)) = gn(y) for n = 0, 1, 2, . . .. If Of (x)
is dense in X, then h ◦ f = g ◦ h.

For (xn)∞n=1, (yn)∞n=1 ∈ OR we say (xn)∞n=1 is a translate of (yn)∞n=1 if
there is b ∈ R such that xn = yn + b for every n ∈ N. Note that this is
stronger than saying (xn)∞n=1 and (yn)∞n=1 are of the same type.

A function f : R → R is called Darboux if f(A) is connected for every
connected subset A ⊂ R. A classic Theorem of Darboux (c.f. [7]) says that
if g : R → R is differentiable, then its derivative is Darboux. In search of a
nice characterization of derivatives (which is still unavailable), many properties
which are close to the Darboux property have been studied by various authors,
see [1], [4] and the references therein. Functions satisfying these generalized
continuity properties are collectively known as Darboux-like functions.

In this article, we will consider two classes of Darboux-like functions. A
function f : R → R is called almost continuous if any open subset U of
R2 containing the graph of f contains the graph of some continuous function
g : R → R. A function f : R → R is said to be an extendable function if
there exists a function F : R × [0, 1] → R such that f(x) = F (x, 0) for every
x ∈ R and such that the graph of F |Z is a connected subset of R× [0, 1]× R
for every connected subset Z ⊂ R × [0, 1]. For f : R → R, it is known that
(c.f. [4])

continuous =⇒ extendable =⇒ almost continuous =⇒ Darboux,
where all the implications are strict. See [1], [4] for more information concern-
ing Darboux-like functions.

As usual, c will denote the cardinality of R. A subset A ⊂ R is said to be
c-dense if the cardinality of A∩J is c for every nondegenerate interval J ⊂ R.

Acknowledgment. This work was done during the stay at Institute of Math-
ematical Sciences, Chennai, India. I thank the referees for many helpful com-
ments.

3 Continuous f : R→ R.

In the case of a continuous function f : R→ R, we have the following partial
answers regarding the two basic questions mentioned in the beginning of the
article.

Proposition 2. There is an uncountable set S ⊂ OR such that
(i) each member of S is an orbit of some continuous function from R to R,

(ii) no two distinct members of S are of the same type,
(iii) if f : R→ R is continuous, then at most one member of S is of the same

type as that of some orbit of f .
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Proof. By [6], there exists an uncountable family {fα : α ∈ Λ} of continuous,
topologically transitive functions from R to R such that for any homeomor-
phism h : R → R one has h ◦ fα 6= fβ ◦ h for every α, β ∈ Λ with α 6= β.
Now, by Proposition 1, choose xα ∈ R so that Ofα(xα) is dense in R. Put
S = {Ofα(xα) : α ∈ Λ}. Then (i) is clearly true, and (ii), (iii) are satisfied
because of Lemma 1.

Proposition 3. Let X be an infinite complete metric space without isolated
points (e.g. X = R). If f : X → X is a continuous function such that Of (x)
is finite for each x ∈ X, then

⋃∞
n=1Gfn is nowhere dense in X2.

Proof. Let U, V ⊂ X be nonempty open sets. Our aim is to find nonempty
open sets U ′ ⊂ U and V ′ ⊂ V such that fn(U ′) ∩ V ′ = ∅ for every n ∈ N.
For m, k ∈ N, let A(m, k) = {x ∈ X : fm+k(x) = fm(x)}. Since f is
continuous, each A(m, k) is closed. Also, by hypothesis X is the union of
A(m, k)’s. Therefore by Baire Category Theorem, there exist m, k ∈ N such
that A(m, k) ∩ U has nonempty interior, say W . Fix x ∈ W and choose
ε > 0 small enough so that V \

⋃m+k
j=0 B(f j(x), ε) contains an open ball, say

V ′. Now using continuity, choose δ > 0 so that f j(B(x, δ)) ⊂ B(f j(x), ε) for
0 ≤ j ≤ m+ k. Put U ′ = W ∩B(x, δ).

In the next two sections we show that the behavior of Darboux-like func-
tions is very different in comparison with the last two Propositions.

4 An Extendable Function f : R→ R.

The following sufficient condition (c.f. [1]) for a function f : R → R to be an
extendable function, will be useful.

Proposition 4. Let A ⊂ R be a c-dense set which is Fσ and of first category.
Then there exists an extendable function φ : R→ R with the following property
that if f : R→ R is any function such that f(a) = φ(a) for every a ∈ A, then
f is also an extendable function.

We show that all types of orbits can coexist in a strong sense for an ex-
tendable function. Moreover, the function can be chosen so that it has orbits
asymptotic to any real sequence. This fact may be of interest since in the
theory of iterative dynamics, one is concerned with the asymptotic behavior
of orbits.

Proposition 5. Assuming the Continuum Hypothesis, there is an extendable
function f : R→ R with the following properties:
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(i) For any function g : R→ R, any x ∈ R and any ε > 0, there exist y ∈ R
and b ∈ (0, ε) such that fn(y) = gn(x) + b for n = 0, 1, 2, . . . .

(ii) For any real sequence (rn)∞n=0, and any decreasing sequence (εn)∞n=0 of
positive reals converging to 0, there exists s ∈ R such that |rn− fn(s)| <
εn for n = 0, 1, 2, . . . .

Proof. Let A ⊂ R be a c-dense, Fσ set of first category. Let φ : R → R be
as in Proposition 4. To get the required function f : R→ R, first we define f
on A as f(a) = φ(a) for a ∈ A. Then by Proposition 4, f : R→ R will be an
extendable function irrespective of how we define f on R \ A. We will define
f on R \A through a process of transfinite induction.

Recall that OR ⊂ RN is the collection of orbits of all functions from R→ R.
Let E ⊂ RN be the collection of all decreasing sequences (εn)∞n=1 of positive
reals converging to 0. Note that the sets RN, OR, E all have cardinality c.
Let A = RN × OR × E . Then, A also has cardinality c. Since we assume
the Continuum Hypothesis, we can index the elements of A using the first
uncountable ordinal Ω as A = {(Rα, Xα, Eα) : α < Ω}, where we write Rα =
(rα,n)∞n=1 ∈ RN , Xα = (xα,n)∞n=1 ∈ OR and Eα = (εα,n)∞n=1 ∈ E .

Let D0 = A, where f is already defined. Suppose that for some α < Ω and
all β < α we have chosen Dβ ⊂ R such that each Dβ is of first category and
that f is defined on Dβ . Note that

⋃
β<αDβ is also of first category. The αth

step is done as follows.
Consider (Rα, Xα, Eα) ∈ A. Using Baire Category Theorem, inductively

choose aα,n ∈ (0, εα,n) such that all terms sα,n := rα,n + aα,n, n ∈ N,
are distinct and such that sα,n’s do not belong to the first category set⋃
β<αDβ . Next, again by the help of Baire Category Theorem, choose a

constant bα ∈ (0, εα,1) such that the elements tα,n := xα,n + bα, for n ∈ N,
do not belong to the first category set {sα,n : n ∈ N} ∪ [

⋃
β<αDβ ]. Define

f(sα,n) = sα,n+1 (possible since sα,n’s are distinct), and f(tα,n) = tα,n+1

(possible since (tα,n)∞n=1 is a translate of an orbit of some function). Put
Dα = {sα,n : n ∈ N} ∪ {tα,n : n ∈ N} ∪ [

⋃
β<αDβ ]. To proceed with the

transfinite induction, note that Dα is of first category. Finally, put f(y) = 0
for any possible y ∈ R\

⋃
α<ΩDα. It is not difficult to verify that the function

f satisfies all the requirements.

Remark: One of the referees pointed out that in the αth step of the above
proof, sα,n can be chosen even if the complement of

⋃
β<αDβ is only c-dense.

Therefore, by some extra work involving the consideration of a Hamel basis
of R over Q, etc., part (ii) might be proved without assuming the Continuum
Hypothesis. However, the author does not know whether part (i) can be proved
in ZFC.
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5 An Almost Continuous Function f : R→ R.

The aim of this section is to establish that an almost continuous function f :
R→ R can exhibit complicated dynamical behavior stronger than topological
transitivity even if all orbits are finite. First we obtain an auxiliary result.

Lemma 2. Let X be an infinite, second countable metric space without isolated
points, and let a ∈ X. Then there exists a function f : X → X such that

(i) f(a) = a; and for every x ∈ X there exists n ∈ N such that fn(x) = a,
(ii) Gfm is dense in X2 for every m ∈ N.

Proof. Let {B(j) : j ∈ N} be a countable base of nonempty open sets
for X. Note that each B(j) is infinite as X has no isolated points. Let
{(ik, jk) : k ∈ N} be an enumeration of N2. We define f : X → X in an
inductive fashion. Define f(a) = a and put D0 = {a}. Next, choose two
distinct points x1,0, x1,1 in X \ D0 such that x1,0 ∈ B(i1) and x1,1 ∈ B(j1).
Define f(x1,0) = x1,1, f(x1,1) = a and put D1 = D0 ∪ {x1,0, x1,1}. At the
kth step, choose k+ 1 distinct points xk,0, xk,1, . . . , xk,k in X \Dk−1 such that
xk,0 ∈ B(ik) and xk,r ∈ B(jk) for 1 ≤ r ≤ k. Define f(xk,r) = xk,r+1 for
0 ≤ r < k, f(xk,k) = a and put Dk = Dk−1 ∪ {xk,r : 0 ≤ r ≤ k}. Having
defined f on

⋃∞
k=0Dk, put f(x) = a for x ∈ X \

⋃∞
k=0Dk. Clearly, statement

(i) of the Lemma holds. Also, by construction we have that for any k ∈ N,
fr(B(ik))∩B(jk) 6= ∅ for 1 ≤ r ≤ k. Now, if U, V are nonempty subsets of X
and m ∈ N, we can find k ≥ m such that B(ik) ⊂ U and B(jk) ⊂ V . Then,
fm(U) ∩ V 6= ∅.

A sufficient condition for a function f : R → R to be almost continuous,
observed by K. R. Kellum in [5], is the following.

Proposition 6. [5] Let F be the collection of all closed subsets F of R2 such
that π(F ) has cardinality c, where π : R2 → R is the projection to the first
coordinate. Let f : R → R be a function whose graph Gf intersects every
F ∈ F . Then f is almost continuous.

This helps us to prove the following.

Proposition 7. There exists a function f : R→ R satisfying the following:
(i) fk is almost continuous for every k ∈ N.

(ii) f(0) = 0; and for every x ∈ R there exists n ∈ N such that fn(x) = 0.
(iii) Gfm is dense in R2 for every m ∈ N.

Proof. Applying Lemma 2 with X = Q and a = 0, we get a function f : Q→
Q such that f(0) = 0, that for every x ∈ Q there is n ∈ N with fn(x) = 0,
and such that Gfm is dense in Q2 for every m ∈ N. Since Q2 is dense in R2,
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it is clear that any extension of f to a function (for which we use the same
notation) f : R→ R will satisfy the statement (iii) of the Proposition. Hence
it suffices to take care of statements (i) and (ii). We use transfinite induction
to extend f from Q to R.

Let F be the special collection of closed subsets of R2 mentioned in Propo-
sition 6. We write F × N = {(Fα, kα) : α < c}. To start the induction
procedure, let D0 = Q. Suppose that for some α < c and for all β < α we
have chosen Dβ ⊂ R such that Dβ has cardinality less than c and that f is
defined on Dβ . At the αth step we do the following.

Consider (Fα, kα). Since π(Fα) has cardinality c and since
⋃
β<αDβ has

cardinality less than c, we may choose kα+1 distinct points {xα,j : 0 ≤ j ≤ kα}
such that xα,j /∈

⋃
β<αDβ for 0 ≤ j < kα and such that (xα,0, xα,kα) ∈ Fα.

Define f(xα,j) = xα,j+1 for 0 ≤ j < kα. This ensures that Gfj ∩ Fα 6= ∅ for
1 ≤ j ≤ kα so that Proposition 6 may be invoked later. If xα,kα does not
belong to

⋃
β<αDβ , also define f(xα,kα) = 0. Put Dα = [

⋃
β<αDβ ] ∪ {xα,j :

0 ≤ j ≤ kα}, which is again a set of cardinality less than c, thereby allowing
the passage to the next step. Finally, we define f(x) = 0 for x ∈ R\

⋃
α<cDα.

That the resulting f works for us is easy verification.

With slight modifications of the above proof one can get variants of Propo-
sition 7. For instance, we can prove the following.

Proposition 8. There exists a function f : R→ R satisfying the following:
(i) fk is almost continuous for every k ∈ N.

(ii) the set Fix(f) of fixed points of f is dense in R.
(iii) for every x ∈ R there exists n ∈ N such that fn(x) ∈ Fix(f). (Thus

every f -orbit is finite.)
(iv) Gfm is dense in R2 for every m ∈ N.

Hint for Proof. Using Lemma 2, first obtain a function f : Q→ Q. Next,
define f(x) = x for x ∈ Q +

√
2. Put D0 = Q ∪ [Q +

√
2] and proceed by

transfinite induction as in the proof of the previous Proposition.

Question: Can the functions in the last two Propositions be extendable?
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