Dušan Pokorný, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic. email: dpokorny@karlin.mff.cuni.cz

ON LUZIN'S (N)-PROPERTY OF THE SUM OF TWO FUNCTIONS

Abstract

We prove that, for any nonconstant continuous function f, there exists a continuous N-function g such that f+g is not an N-function. This answers a query by F. S. Cater.

A function $f:[0,1]\to\mathbb{R}$ is said to have Luzin's (N)-property (or to be an N-function), if for every set $M\subset[0,1]$ of Lebesgue measure zero, the set f(M) has Lebesgue measure zero as well. In [2] S. Mazurkiewicz found an N-function $g:[0,1]\to\mathbb{R}$ such that f+g is not an N-function for any nonconstant linear function f. In reference [1], F. S. Cater posed this question. For any nonconstant continuous N-function f, must there exist a continuous N-function g, depending on f, such that f+g is not an N-function? Using Mazurkiewicz's method, we will prove that the answer is positive.

We will use the following notation.

For a continuous function $f:[0,1] \to \mathbb{R}$, we define the mapping $\Phi_f:[0,1] \times \mathbb{R} \to [0,1] \times \mathbb{R}$ by $\Phi_f(x,y) = (x,y+f(x))$.

For a closed interval $A = [a, b] \times [c, d] \subset \mathbb{R}^2$, let $l_A = a$, $r_A = b$, $b_A = c$, $t_A = d$, and define the set $\Psi(A) \subset \mathbb{R}^2$ by

$$\Psi(A) = \{l_A\} \times [b_A, t_A] \cup \{r_A\} \times [b_A, t_A].$$

The one dimensional Lebesgue measure of a set M will be denoted by |M|, P_x and P_y we will use for the orthogonal projections on the axes.

Theorem. Let $f:[0,1] \to \mathbb{R}$ be a nonconstant continuous function. Then there is a continuous N-function $g:[0,1] \to \mathbb{R}$ and a set M of Lebesgue measure zero, such that (f+g)(M) contains an interval.

Key Words: Lusin's (N)-Property

Mathematical Reviews subject classification: 26A99

Received by the editors April 12, 2006 Communicated by: B. S. Thomson 24 Dušan Pokorný

PROOF. Let $G \subset (0,1)$ be the maximal open set on which f is locally constant. Write $G = \bigcup_{i \in I} (\alpha_i, \beta_i)$, where I is countable and intervals (α_i, β_i) are pairwise disjoint. Put $G^* := \bigcup_{i \in I} [\alpha_i, \beta_i]$, $J := (0,1) \setminus G$ and $J^* := (0,1) \setminus G^*$. Then clearly J is nonempty and has no isolated points. It is not difficult to check that:

- (I) J^* is dense in J.
- (II) For each $\gamma > 0$ and $x \in J^*$ there are $x_l, x_r \in (x \gamma, x + \gamma) \cap J^*$ such that $x_l < x < x_r$, $f(x_l) \neq f(x)$ and $f(x_r) \neq f(x)$.

We will construct inductively a sequence $\{Q_n\}_{n=1}^{\infty}$ of nonempty finite systems of closed intervals in $[0,1] \times \mathbb{R}$ such that following conditions hold:

- (i) If n > 1, then $\bigcup Q_n \subset \bigcup Q_{n-1}$.
- (ii) For any $A, B \in Q_n$, $A \neq B$ we have $P_y(A) = P_y(B)$ or $P_y(A) \cap P_y(B) = \emptyset$. $|P_y(A)| = |P_y(B)|$ (Denote this constant value by V_n .) and

$$P_x(A) \cap P_x(B) = \emptyset.$$

(iii) If n > 1, then

$$\left| P_y \left(\bigcup Q_n \right) \right| \le \frac{2}{3} \left| P_y \left(\bigcup Q_{n-1} \right) \right| \text{ and } \left| P_x \left(\bigcup Q_n \right) \right| \le \frac{1}{2} \left| P_x \left(\bigcup Q_{n-1} \right) \right|.$$

(iv) If n > 1, then

$$P_y\Big(\Phi_f\Big(\bigcup_{A\in Q_{n-1}}\Psi(A)\Big)\Big)\subset P_y\Big(\Phi_f\Big(\bigcup_{A\in Q_n}\Psi(A)\Big)\Big).$$

(v) For $A \in Q_n$ we have $l_A, r_A \in J^*$ and $f(l_A) \neq f(r_A)$. By (II) we can choose $a, b \in J^*$, a < b, such that $f(a) \neq f(b)$. Then put

$$Q_1 = \{ [a, b] \times [0, 1] \}.$$

If we have defined the system Q_n , then Q_{n+1} will be obtained by the following construction.

Set $R = \min_{A \in Q_n} |f(l_A) - f(r_A)|$. Thus R > 0 and there exists an odd l, l > 2, such that $\frac{2}{l}V_n < R$. Now fix $A \in Q_n$ and assume that $f(l_A) < f(r_A)$. Choose $N \in \mathbb{N}$ such that

$$\frac{f(r_A) - f(l_A)}{N} < \frac{1}{4l}V_n.$$

For $j = 0, \dots, N-1$ set

$$d_j = \min\{x \in [l_A, r_A] : f(x) = f(l_A) + \frac{j}{N}(f(r_A) - f(l_A))\}$$

and put $d_N = r_A$. Then we have

$$l_A = d_0 < d_1 < \dots < d_{N-1} < d_N = r_A,$$

 $d_i \in [l_A, r_A] \cap J$ for all $j = 0, \dots, N$,

and

$$f(d_{j+1}) - f(d_j) = \frac{f(r_A) - f(l_A)}{N} < \frac{1}{4l}V_n.$$

Put $K = \frac{l+1}{2}$ and $\delta_1 = \frac{1}{3} \min_{j=1,\dots,N-1} (d_{j+1} - d_j)$. Since f is continuous, we can find $\delta_2, \delta_3 > 0$ such that:

if
$$x \in (d_j - \delta_2, d_j + \delta_2) \cap [l_A, r_A]$$
, then $|f(d_j) - f(x)| < \frac{1}{4l}V_n$,
if $x \in (l_A, l_A + \delta_3) \cap [l_A, r_A]$, then $|f(l_A) - f(x)| < \frac{1}{2}(R - \frac{2}{l}V_n)$,
if $x \in (r_A - \delta_3, r_A) \cap [l_A, r_A]$, then $|f(l_A) - f(x)| < \frac{1}{2}(R - \frac{2}{l}V_n)$.

Set $\delta = \min(\delta_1, \delta_2, \delta_3)$ and by (I) find points

$$u_i^j \in (d_i - \delta, d_i + \delta) \cap [l_A, r_A] \cap J^*, i = 1, \dots, K, j = 0, \dots, N - 1,$$

and points

$$v_i^N \in (r_A - \delta, r_A] \cap J^*, i = 1, \dots, K,$$

such that $l_A = u_1^0$ and for each j = 0, ..., N-1, we have

$$u_1^j < u_2^j < \dots < u_K^j$$
 and $v_1^N < v_2^N < \dots < v_K^N = r_A$.

Further choose

$$v_i^j \in [l_A, r_A] \cap J^*, \ i = 1, \dots, K, \ j = 0, \dots, N - 1,$$

 $u_i^N \in [l_A, r_A] \cap J^*, \ i = 1, \dots, K,$

such that:

$$u_i^j < v_i^j$$
 for each $i, j,$

intervals
$$[u_i^j, v_i^j]$$
 are pairwise disjoint, (1)

$$\sum_{i,j} (v_i^j - u_i^j) \le \frac{1}{2} (r_A - l_A) \tag{2}$$

and

$$0 < |f(u_i^j) - f(v_i^j)| < \frac{1}{2l}V_n.$$
(3)

26 Dušan Pokorný

To finish the construction put

$$A_i^j = [u_i^j, v_i^j] \times \left[b_A + \frac{2i-2}{l}V_n, b_A + \frac{2i-1}{l}V_n\right]$$

and

$$Q^A = \{A_i^j : i = 1, \dots, K, j = 0, \dots, N\}.$$

The second inequality in (3) implies that each set $P_y(\Phi_f(\Psi(A_i^j)))$ is connected. For any i = 1, ..., K and any j = 0, ..., N - 1 we have

$$\begin{split} |f(u_i^j) - f(u_i^{j+1})| \leq & |f(u_i^j) - f(d_j)| \\ & + |f(d_j) - f(d_{j+1})| + |f(d_{j+1}) - f(u_i^{j+1})| \leq \frac{3}{4l} V_n, \end{split}$$

so $P_y(\Phi_f(\bigcup_{i=0}^N \Psi(A_i^j)))$ is connected as well. Since

$$\left(f(v_i^N) + b_A + \frac{2i-1}{l}V_n\right) - \left(f(v_{i+1}^1) + b_A + \frac{2(i+1)-2}{l}V_n\right)
= f(v_i^j) - f(v_{i+1}^1) - \frac{1}{l}V_n
\ge f(r_A) - \left(R - \frac{2}{l}V_n\right) - f(l_A) - \left(R - \frac{2}{l}V_n\right) \ge \frac{1}{l}V_n > 0,$$

the set $P_y(\Phi_f(\bigcup_{B\in Q^A}\Psi(B)))$ is connected. Due to the fact that

$$f(l_A) + b_A \in P_y(\Phi_f(\Psi(A_1^0)))$$
 and $f(r_A) + t_A \in P_y(\Phi_f(\Psi(A_K^N))),$

we have

$$P_y(\Phi_f(\bigcup_{B\in O^A} \Psi(B))) \supset P_y(\Phi_f(\Psi(A))). \tag{4}$$

In the case $f(l_A) > f(r_A)$ we use the above construction for

$$A' = [l_A, r_A] \times [-t_A, -b_A]$$

and the function -f. Denote the system constructed in this way by Q^{A^\prime} and put

$$Q^{A} = \{[l_{B}, r_{B}] \times [-t_{B}, -b_{B}] : B \in Q^{A'}\}.$$

Finally set $Q_{n+1} = \bigcup_{A \in Q_n} Q^A$.

The condition (i) is clear. To verify condition (ii) choose $C, D \in Q_{n+1}$. There exist $A, B \in Q_n$ such that $C \subset A$ and $D \subset B$. By the induction hypothesis, we have $P_y(A) = P_y(B)$ or $P_y(A) \cap P_y(B) = \emptyset$. In the second case we have

$$P_y(C) \subset P_y(A)$$
 and $P_y(D) \subset P_y(B)$.

In the first case we have

$$P_y(C) = [b_C, t_C] = \left[b_A + \frac{2i-2}{l}V_n, b_A + \frac{2i-1}{l}V_n\right]$$

and

$$P_y(D) = [b_D, t_D] = \left[b_A + \frac{2i' - 2}{l}V_n, b_A + \frac{2i' - 1}{l}V_n\right]$$

for some $1 \le i, i' \le K$. Obviously, if i = i', then $P_y(C) = P_y(D)$. In the case $i \ne i'$ we have $P_y(C) \cap P_y(D) = \emptyset$, because of the fact that

$$|b_C - b_D| \ge 2\frac{V_n}{l}$$
 and $|t_C - b_C| = |t_D - b_D| = \frac{V_n}{l} = V_{n+1}$.

The last part of (ii) follows from the induction hypothesis and the fact that

$$P_x(C) \subset P_x(A)$$
 and $P_x(D) \subset P_x(B)$ if $A \neq B$.

If A = B, it follows from (1). The first part of (iii) holds, since

$$\left| P_y \left(\bigcup Q_{n+1} \right) \right| = \left| \bigcup_{A \in Q_{n+1}} P_y(A) \right| = \frac{l+1}{2l} \left| \bigcup_{A \in Q_n} P_y(A) \right| \le \frac{2}{3} \left| P_y \left(\bigcup_{A \in Q_n} A \right) \right|.$$

The second part of (iii) follows from (ii) and (2). Finally (iv) follows from (4) and (v) from (3).

Define $L_n = \bigcup Q_n$. Using (ii) we have that $L = \bigcap_{n=1}^{\infty} L_n$ is nonempty compact. Moreover, due to the fact that $V_n \to 0$, we see that L is a graph of a continuous function h defined on $P_x(L)$. Now extend h linearly on the components of $[0,1] \setminus P_x(L)$ to a continuous function g defined on [0,1]. From (iii) we have $|P_x(L)| = |P_y(L)| = 0$. By this and the fact, that linear functions have Luzin's property (N), we have for any set $M \subset [0,1]$ of Lebesgue measure zero

$$|f(M)| \le |f(M \cap P_x(L))| + |f(M \setminus P_x(L))|$$

$$\le |P_y(L)| + |f(M \setminus P_x(L))| = 0,$$

so g is an N-function as well. On the other hand, due to the compactness of the sets L_n and by (iv) we have

$$(f+g)(L) \supset P_y(\Phi_f(\bigcup_{A \in Q_1} \Psi(A))).$$

To complete the proof it is sufficient to observe that the set on the right side contains interval $[f(l_A), f(l_A) + 1]$, where A is the interval in Q_1 .

28 Dušan Pokorný

Remark. a) Note that if we start the construction with a system $Q_1 = \{[a,b] \times [0,\tau]\}$ for some $\tau > 0$, we can construct g such that $|g| \leq \tau$ on [a,b].

b) Let \mathcal{F} be a system of nonconstant continuous functions on [0,1]. We can ask, whether there exists a continuous N-function h such that f+h is not an N-function for any $f \in \mathcal{F}$.

Suppose that there are c, C > 0 such that for any $f, g \in \mathcal{F}$ and any $x, y \in [0, 1]$ satisfying $g(x) \neq g(y)$ we have

$$c \le \frac{f(x) - f(y)}{g(x) - g(y)} \le C.$$

By changing some details in the construction described above, we can obtain that in this case the answer is positive. (This condition implies that the set J^* is identical for all functions in \mathcal{F} , the numbers l and N from the construction can be chosen uniformly for all functions in \mathcal{F} , depending only on c and C respectively.) Moreover, using a), it is not difficult to show that the answer is also positive, if $\mathcal{F} = \bigcup_{i=1}^{\infty} \mathcal{F}_i$ and each \mathcal{F}_i has the above property on the interval $\left[\frac{1}{2i+1},\frac{1}{2i}\right]$, $i \in \mathbb{N}$. In particular, if \mathcal{F} is the system of all nonconstant linear functions, this gives the original Mazurkiewicz's result.

Acknowledgement. I would like to thank Prof. Luděk Zajmček for helpful discussions on the topic and many useful remarks.

References

- F. S. Cater, N-Functions: A query, Real Anal. Exchange, 30 (2004-2005), 411.
- [2] S. Mazurkiewicz, Sur les fonctions qui satisfont a la condition (N), Fund. Math., 16 (1930), 348–352.