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THE IDEAL OF SIERPINSKI-ZYGMUND
SETS ON THE PLANE

Abstract

We say that a set X ⊆ R2 is Sierpiński-Zygmund (or SZ-set for
short) if it does not contain a partial continuous function of cardinality
continuum c. We observe that the family of all such sets is cf(c)-additive
ideal. Some examples of such sets are given. We also consider SZ-
shiftable sets; that is, sets X ⊆ R2 for which there exists a function
f : R → R such that f + X is a SZ-set. Some results are proved about
SZ-shiftable sets. In particular, we show that the union of two SZ-
shiftable sets does not have to be SZ-shiftable.

The terminology is standard and follows [2]. The symbol R stands for the
set of all real numbers. The cardinality of a set X we denote by |X|. In
particular, |R| is denoted by c. Given a cardinal κ, we let cf(κ) denote the
cofinality of κ. We say that a cardinal κ is regular provided that cf(κ) = κ.

A set M ⊆ Rn is called Marczewski measurable if every perfect set P has
a perfect subset Q such that Q ⊆ M or Q∩M = ∅. If every perfect set P has
a perfect subset Q such that Q ∩M = ∅, then M is called Marczewski null.

We consider only real-valued functions unless stated otherwise. No distinc-
tion is made between a function and its graph. For any planar set Y , we denote
its x-projection by dom(Y ). For any two partial real functions f, g we write
f + g, f − g for the sum and difference functions defined on dom(f)∩ dom(g).
The class of all functions from a set X into a set Y is denoted by Y X . We
write f |A for the restriction of f ∈ Y X to the set A ⊆ X. For any function
g ∈ RX , any family of functions F ⊆ RX , and any set A ⊆ X × R we define
g + F = {g + f : f ∈ F} and g + A = {〈x, g(x) + y〉 : 〈x, y〉 ∈ A}. The image
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and preimage of a set B under the function h are denoted by h[B] and h−1[B],
respectively.

Let us recall that a function f : R → R is Sierpiński-Zygmund (f ∈ SZ) if
for every set X ⊆ R of cardinality continuum c, f |X is discontinuous. This
definition is generalized onto subsets of R2. (See [8].)

Definition 1. A set X ⊆ R2 is called a Sierpiński-Zygmund set (or simply
SZ-set), if for every partial real continuous function f we have |f ∩X| < c.

We denote the family of all SZ-sets by JSZ . Since every Sierpiński-Zygmund
function is also a SZ-set we have that the family JSZ is not empty.

The next fact follows directly from this definition.

Fact 2. JSZ is a cf(c)-additive ideal.

Proof. It is obvious that JSZ is closed under the operation of taking subsets.
We will show that JSZ is cf(c)-additive. Take a κ < cf(c). Let {Xξ : ξ < κ} ⊆
JSZ and f ⊆

⋃
ξ<κ Xξ be a partial continuous function. Since Xξ is a SZ-set,

we have that |f ∩ Xξ| < c for each ξ < κ. Consequently, |f ∩
⋃

ξ<κ Xξ| =
|
⋃

ξ<κ(f ∩Xξ)| < c.
The question that one could ask here is how “big” a SZ-set can be. An

example of the SZ-set that can be considered “big” in some sense is given
in [8].

Lemma 3. [8, Lemma 19] There exists a SZ-set X ⊆ R2 such that for every
x ∈ R, |R \Xx| < c where Xx = {y ∈ R : 〈x, y〉 ∈ X}.

Observe that the complement of every vertical section of the set X has size
less than c. In particular, if MA holds then every vertical section is residual
in R. Moreover, under CH, the complement of every vertical section of X
is countable. It turns out that the existence of such SZ-set (i.e., with co-
countable vertical sections) is equivalent to CH. As is stated in the following
proposition.

Proposition 4. CH is equivalent to the existence of a SZ-set X ⊆ R2 such
that |R \Xx| ≤ ω for every x ∈ R.

Proof. The existence of the desired set under the assumption of CH follows
from the previous discussion. So we need to prove the opposite implication.
Assume, by the way of contradiction, that the desired set X exists and CH
does not hold, e.g. c > ω1. Since X is an SZ-set we get

(∗) Xy = {x ∈ R : 〈x, y〉 ∈ X} has cardinality less than c for every y ∈ R.
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We claim that there exists an A ∈ [R]ω1 such that |
⋃

y∈A Xy| < c. The
following two cases are possible.
Case 1. There exists a κ < c such that Zκ = {y : |Xy| = κ} is uncountable.

Then we choose A ∈ [Zκ]ω1 . Obviously, |
⋃

y∈A Xy| = κω1 < c.
Case 2. |Zκ| ≤ ω for every cardinal κ < c.

Put Z = {|Xy| : y ∈ R} and observe that R =
⋃

κ∈Z Zκ. It follows from
(∗) that if κ ∈ Z, then κ < c. Consequently, since the union of less than
continuum many countable sets has size less than continuum, we conclude
that |Z| = c. Let λ be the ω1-st element of Z. We define A = {y : |Xy| < λ}.
Clearly, |

⋃
y∈A Xy| = |

⋃
κ<λ Zκ| ≤ λω < c.

Now choose an x ∈ R \
⋃

y∈A Xy and notice that ({x} × A) ∩ X = ∅. So
A ⊆ R \Xx. This is in contradiction with the fact that every vertical section
of X is co-countable.

It is worth remarking here that SZ-sets with the Baire property or mea-
surable are “small.” It means that every measurable SZ-set has measure zero
and every SZ-set with the Baire property is meager. This follows from Fubini
Theorem and Kuratowski-Ulam Theorem, respectively. But do such “small”
SZ-sets exist? The answer is yes. It is easy to construct a Sierpiński-Zygmund
function (so also a SZ-set) contained in R×C, whose domain is the whole real
line. C is the standard linear Cantor set. Observe also that there are “big”
SZ-sets in terms of outer measure. The set X from Lemma 3 is of full outer
measure. To see this, choose a closed set F ⊆ R2 \X. Based on the properties
of X we conclude that every vertical section of F is countable. Hence F is of
measure zero. This proves that X is of full outer measure.

The above discussion states that “good” SZ-sets (in terms of measure or
Baire property) are “small”. However, we have the following assertion.

Remark 5. There exists a SZ-set which is Marczewski measurable but not
Marczewski null.

Proof. We claim that the set X from Lemma 3 is the desired set. Let us
see why X is Marczewski measurable but not Marczewski null. Fix a perfect
set P ⊆ R2. There are two possible cases. Either some vertical section Pa of
P is perfect, or all vertical sections are countable. In the first case, there is a
Q ⊆ {a} × Pa completely contained in X, because the complement of every
vertical section of X has cardinality less than c. In the second case, we can
find a partial continuous function f ⊆ P defined on a perfect set. To see this
consider a function g : dom(P ) → R defined by g(x) = sup(Px ∩ (−∞, 0]).
The function g is upper semi-continuous so also of Baire class one. Thus, g
contains a continuous function defined on a perfect set. (See [6].)

Since |f ∩X| < c, the restriction of f to some perfect subset R of dom(f)
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is disjoint with X. Note that f |R is a perfect set. Thus P contains a perfect
subset disjoint with X.

It is obvious that X contains a perfect set (every vertical section contains
a perfect set). So X is not Marczewski null. This completes the proof of our
remark.

Another interesting observation is that the property of being a SZ-set is
not preserved under the homeomorphic images. It is easy to see that any
vertical line is a SZ-set, but after a rotation, for example about π

4 , it is not
a SZ-set any more. However, if h : R2 → R2 is a homeomorphism preserving
vertical lines then h[X] is a SZ-set for every X ∈ JSZ .

Fact 6. Let h : R2 → R2 be an homeomorphism such that h[L] is a vertical
line for every vertical line L. Then h{JSZ} = {h[X] : X ∈ JSZ} = JSZ .

Proof. First we show the inclusion h{JSZ} ⊆ JSZ . It is easy to see that
if f : A → R is a partial continuous function then h−1[f ] : A → R is also
continuous. This implies that for every X ∈ JSZ , h[X] is also in JSZ since
h[X] ∩ f = h[X ∩ h−1[f ]].

Now to show the other inclusion, let us fix a Y ∈ JSZ . Note that h−1

also preserves all vertical lines. Thus, from the first part of the proof, X =
h−1[Y ] ∈ JSZ . Hence Y = h[X] ∈ h{JSZ}.

As we mentioned at the beginning of this paper, the concept of Sierpiński-
Zygmund sets is a generalization of the concept of Sierpiński-Zygmund func-
tions. One of the questions related to the family SZ of Sierpiński-Zygmund
functions is for how “big” families F ⊆ RR we can find a function g ∈ RR such
that g + F ⊆ SZ. (See e.g. [3].) Similar question can be asked in the case of
Sierpiński-Zygmund sets. This leads to the following definition.

Definition 7. A set X ⊆ R2 is called SZ-shiftable, if there exists a function
f : R → R such that f + X is SZ-set.

We denote the family of all SZ-shiftable sets by SZshift. Obviously JSZ ⊆
SZshift, so SZshift is not empty.

Lemma 8. Let X ⊆ R2. If for all x ∈ R and A ∈ [R]<c there exists an a ∈ R
such that (a + A) ∩Xx = ∅, then A is SZ-shiftable.

Proof. Let 〈xα : α < c〉 and 〈fα : α < c〉 be the sequences of all real numbers
and all continuous functions defined on a Gδ subset of R, respectively. We
will define a function f : R → R which shifts X into JSZ , using transfinite
induction. For every α < c we choose f(xα) ∈ R with the property that
(f(xα) + Xxα

)∩{fξ(xα) : ξ < α} = ∅. Such a choice is possible because of the
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assumptions on X. It is easy to see that dom ((f + X) ∩ fβ) ⊆ {xξ : ξ < β}
for each β < c. Thus f + X ∈ JSZ .

Recall that under Martin’s Axiom (MA) the union of less than c meager
sets is meager. Suppose that A ∈ [R]<c and B ⊆ R is meager. Then the set
B−A =

⋃
x∈A(B−x) is meager as a union of less than c meager sets. Now, if

we choose an a /∈ B−A then (a+A)∩B = ∅. Notice that the same argument
can be repeated for the sets of measure zero.

The above discussion and Lemma 8 immediately imply the following.

Corollary 9. (MA) If each vertical section of a set X ⊆ R2 is meager or of
measure zero, then X ∈ SZshift.

It may also be of interest to determine whether SZshift is closed under the
union operation. Fact 2 states, in particular, that the union of two SZ-sets
is also a SZ-set. Thus, the natural question that appears here is whether the
same is true for SZ-shiftable sets. It turns out not to be the case.

Example 10. There exist A1, A2 ∈ SZshift such that A1 ∪ A2 = R2 6∈
SZshift.

Proof. Put A1 to be the set X from Lemma 3 and A2 to be its complement.
Based on Lemma 8 A2 is SZ-shiftable. Next, notice that A1 ∈ JSZ ⊆ SZshift.
Finally, A1 ∪A2 = R2 and obviously R2 is not in SZshift.

Before we finish let us make a comment about [8, Theorem 2 (1)] which
says: MA implies that for every finite family F of real functions there exists an
almost continuous function g (each open subset of R2 containing the graph of g
contains also the graph of a continuous function) such that g +f is Sierpiński-
Zygmund for every f ∈ F . Note that this result can be expressed using the
notion of SZ-sets. Under MA the following holds:

If, for some fixed n ∈ ω, every vertical section of the set X ⊆ R2 has at
most n elements then there exists an almost continuous function f : R →
R such that f + X ∈ JSZ .

We generalize the above result as follows.

Theorem 11. (MA) If every vertical section of the set X ⊆ R2 is finite then
there exists an almost continuous function f : R → R such that f + X ∈ JSZ .

Before we prove the theorem we need to cite some lemmas and recall some
properties. First let us observe that a function f : R → R is almost continuous
if and only if it intersects every blocking set , i.e., a closed set K ⊆ R2 which
meets every continuous function from R to R and is disjoint with at least
one function from RR. Next we give some definitions needed to state the
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lemmas. (See [8].) For X ⊆ R by C<c(X) we denote the family of all functions
f : X → R which can be represented as a union of less than c-many partial
continuous functions. The symbol SZ(X) denotes the family of all partial
Sierpiński-Zygmund functions defined on X.

Let A ⊆ R be everywhere of second category, that is A ∩ I is of second
category for every nontrivial interval I. We define FA as a family of all F ⊆ RR

whose union
⋃

F (as a subset of R2) contains no function from C<c(A ∩ B)
for any Borel set B of second category.

Lemma 12. [8, Lemma 12] (MA) Let F ∈ FA be a family such that |F | ≤ c.
There exists a g ∈ SZ(A) such that every extension ḡ : R → R of g is almost
continuous and g + F ⊆ SZ(A).

A slight modification of the proof of the above lemma gives a little stronger
result. (See [7, Lemma 2.2.1].)

Lemma 13. (MA) Let F ∈ FA be a family such that |F | ≤ c. There exists a
g ∈ SZ(A) such that g + F ⊆ SZ(A) and for every blocking set B ⊆ R2 there
is a non-empty open interval IB ⊆ dom(B) with the property that dom(B∩g)
is dense in IB .

Lemma 14. [8, Lemma 13] (MA) Let {fi}n
1 ⊆ RR, n = 1, 2, . . . . There exists

{f ′i}n
1 ∈ FA such that fi|Ai ∈ C<c(Ai), where Ai = {x : fi(x) 6= f ′i(x)}.

Note that Lemmas 13 and 14 imply the following.

(?) (MA) Assume that F ⊆ RR is finite and A ⊆ R is everywhere of second
category. Then there exists a function g : A → R such that g+F ⊆ SZ(A)
and for every blocking set B, dom(g ∩ B) is dense in some non-empty
open interval IB .

Proof. Let us consider the partition {Hn : n ∈ ω} of R, where Hn is defined
by Hn = {x ∈ R : |Xx| = n}. Let Gn ⊆ R be a maximal open set such that Hn

is everywhere of second category in Gn. Such a set can be easily constructed.
Simply define Gn as the interior of the set R \

⋃
I∈In

I, where In is the set of
all open intervals in which Hn is meager.

We claim that for every n < ω, there exists a function gn : (Gn ∩Hn) → R
such that gn + X = {〈x, gn(x) + y〉 : x ∈ (Gn ∩ Hn), 〈x, y〉 ∈ X} ∈ JSZ and⋃

n<ω gn intersects every blocking set B.
First observe that this claim implies the conclusion of the theorem. Put

g : R → R to be an extension of
⋃

n<ω gn such that
(
g|(R \

⋃
n<ω Gn ∩Hn)

)
+

X is an SZ-set. This extension exists based on Corollary 9. Thus, g + X is
the union of countable many SZ-sets. Consequently, g + X ∈ JSZ . Clearly, g
intersects every blocking set, so g is almost continuous.
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To complete the proof we need to show the above claim. Fix an n < ω and
put An = (Gn ∩Hn)∪

⋃
I∈In

I. The set An is everywhere of second category.
Notice also that the part of X contained in (Gn ∩ Hn) × R can be covered
by n functions f1, . . . , fn from R to R. So, by (?), there exists a function
g′n : An → R such that g′n + {f1, . . . , fn} ⊆ SZ(An) and for every blocking set
B, dom(g′n ∩ B) is dense in some non-empty open interval IB . Thus, if we
define gn = g′n|(Gn ∩Hn) then gn + X ∈ JSZ .

What remains to prove is that
⋃

n<ω gn intersects every blocking set B.
Notice that IB ∩ Gn 6= ∅ for some n. Thus, gn ∩ B 6= ∅. Consequently,
∅ 6= B ∩

⋃
n<ω gn ⊆ B ∩ g. This finishes the proof.
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