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ON THE UNIQUENESS PROBLEM FOR
FOURIER SERIES

Abstract

In this paper the relation between N. Wiener’s theorem about char-
acterization of irregular points for the Dirichlet problem and the unique-
ness problem for Fourier series is established.

1 Introduction

Let us denote by S, (z, f), n = 1,2,... the partial sums of the Fourier series
of a function f(x) € Ly(—m, ), i.e.

Sz, f) = Z ape*®.

k=—n

Definition 1. The subset E C [—7, 7] is said to be a set of uniqueness for a
class of functions X, X C Li(—m,n), if for each f € X, whenever we have
the condition

lim S,(z,f)=0, x¢E, (1)

n—oo

it follows that f(x) =0 a.e. on [—m,7].

Complete surveys of the classical results about the uniqueness problem
can be found in [1] or [2]. For the convenience of the reader, we present some
classical results, which qualitatively are close to the problem discussed here.

A. Zygmund [5] proved, that if ¢, >0, n =0,1,2,... is a sequence for
which

lim €, =0,
n—oo

Key Words: uniqueness, Fourier series, thin sets
Mathematical Reviews subject classification: 42A63
Received by the editors October 20, 2003
Communicated by: Alexander Olevskii

939



940 ASHOT VAGHARSHAKYAN

then there is a subset E, with measure arbitrary close to 27 such that F is a
set of uniqueness for the class of trigonometric series (not necessary Fourier
series) satisfying the conditions

lan| <€), n=0,£1,42,....

In 1973, this result was improved by J.-p. Kahane and Y. Katznelson [6]
who showed that there is a set of uniqueness, F with m(E) = 2.

The analog of A. Zygmund’s original result, when the coefficient condition
is replaced by

oo

Z lan|? < oo,
n=—oo
(1 < p < 2) was proved by Y. Katznelson in 1964, see [7]. And in 1975, L.
Michele and p. Soardi [3] improved this last result by showing the existence
of a set of uniqueness, F with m(E) = 2.

For certain classes of functions there is a simple characterization of sets of
uniqueness. For example, if X = C[—m, 7], the class of continuous functions
on [—m, 7], then a set E is a set of uniqueness if and only if [—7, 7]\ F is dense
in the interval [—m,7]. Sets of uniqueness for the class X = Lo(—m,7) can
also be characterized in a simple way; in this case, the sets of uniqueness are
exactly the sets of measure zero.

For classes X, containing discontinuous functions, sets of uniqueness F
have the property that their complements must be ”"spread” in some sense
over the entire interval. In this paper we attempt to answer the following
question:

In what sense must the subset [—m, 7| \ E be "spread” over the
interval [—m, 7] in order that E is a set of uniqueness for a given
class of functions, X ¢.

To accomplish this, we relate our question with well known results of N.
Wiener about the characterization of irregular points, see [4]. In Wiener’s
work, some classes of functions appear naturally, and although those classes
are natural for potential theory, they are different from those which one usu-
ally investigates when investigating the uniqueness problem for trigonometric
series.

2 Auxiliary Results

For completeness, we first give some well known definitions and results from
Potential Theory, see [4, p. 169].
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Definition 2. Let 0 < o < 1. For an arbitrary Borel set F let the o—capacity
of the set E be denoted by

= (s | [ 4249)

where p < E means that du is a probability measure with support in E.

Definition 3. Let 0 < ¢ < 1. If di is an arbitrary nonnegative measure,
define the a—potential of du as

dp(y)
|z —y[t=e’

Uy () =

The following definition is classical in potential theory, see [4, p. 376].

Definition 4. The subset F is called a—thin at the point x( if there is a
nonnegative measure dp for which

Ul(zg) < liminf UK (x).
a( O) E\{zo}3z—x0 a( )

The following is a well known generalization of N. Wiener’s Theorem, see
[4, p. 353].
Theorem (N. Wiener) 1. Let 0 < o < 1. Then the subset E is a—thin at
the point xo if and only if

o0

Z 2n(1—o¢)017a(En($0)) < 00,

n=1

where E,(zg) ={x € E; 271" < |z —x0| <27"}.

3 The Uniqueness for Fourier Series

We first prove the following lemma.

Lemma 1. Let du be a measure on [—m,w| (not necessary positive). Suppose
that for almost every point xg € [—m, 7] the subset [—m, 7|\ E is a—thin at the
point xo. If UE(x) =0 for every x & E, then Ut (x) =0 for every x € [—m, 7).

Proor. By Jordan’s Theorem we put du = dpy — dp—, where duy are
nonnegative measures and we set d|u| = dus + dp—.
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Then it follows directly from the definition that F' = {x : U(LM(CC) = +oo}

has zero 1 — a-capacity, i.e. C1_o(F) = 0. Thus, we have

Ukt (z) = UL~ (x), whenever © € [—7m, 7|\ EUF.
Now we want to prove that this equality is true at each point xg ¢ F where the
set [—m, 7]\ E is a-thin. Assume that US" (2¢) < U4~ (z0) and fix 0 < A < 00
such that U4 (z9) < A < U§™ (0). Since the function Uy~ () is continuous
from below, it follows that U4~ (z) > A in some neighborhood of zg.

Since F' has zero 1 — a-capacity, the set [—m, 7] \ E U F is a-thin at the
point zg, and consequently, by N. Wiener’s Theorem we have

Ut (xg) > lim inf Ut (z).

EUF\{zo}3z—xo
Thus,
A< lim inf Ub-(z) = lim inf Ukt (z) < U+ (x0) < A.
EUF\{zo}>z—xo EUF\{zo}>z—xo

This is contradiction. The case where Uy™ (z9) > U4~ (w0) is handled in
a similar manner. But then, since both potentials U™ (z) and Uy~ (z) are
continuous from below it follows that

ULt (z) = UL~ (x).
This completes the proof. O
The following Theorem is the main result of this paper.

Theorem 1. Let 0 < a < 1 and suppose

/ |dz+[ﬂ/ |f“tf+a T 4 at < oo, (1)

Let E be a subset for which

> 2r =y (B, (x0)) = oo,
n=1

where E,(x0) = {x ¢ E; 2717 < |x — 29| < 27"} for almost all points
xo € [—m, . Suppose further that for each point x ¢ E, lim,,_,o Syp(z, f) =0.
Then, f(z) =0 almost everywhere on [—m, 7).
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PRrROOF. It is easy to see that there is a function fo(z), —co < z < oo, with
bounded support, which coincides with f(z) for —7 < # < 7 and for which

/ / |fo(x +t) — fo(x)] de di < oo,

t1+0‘

If 0 < § < 1, define

x)zcls/_i (1—@>fo(x+t)dt

If 0 < 4, then f5(x) is continuously differentiable and

S [ Ifa( ) = fo(2)| dz = 0.

For 0 < § < 1, define the auxiliary functions
gs(x) = —tan 7ra / fs(z s(O)]x —t|" dt, —oo <z < 0.

It is known, see [9, p. 173], that

fs(x) = /OO gs(t)|x — t|* 7 dt.

Thus, we have

[ @ < fhaan () [T [T LS B g g

It follows from [2, p. 43—44] that there is a sequence {d,,} tending to zero such
that the measures gs, (z) dx converge to a finite measure du(z) in the weak™*
topology.

Now consider U¥(z). For an arbitrary integer n = 0,+1,... we have

an =

1 —inx o 1 7 —inx
| f( Je dx = o | folz)e dx

1 s ) 1 ee} u —inx
= lim o [ fs (2)e”"" do = lim o [ _ 8.1 ( [ ) ‘xe_ﬁ daf) dt
1 s

=9 /| Ug‘(:ﬂ)e*im dz.
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So, the functions f(z), -7 < x <, and U¥(x), —m < z < m, have the same
Fourier coefficients and consequently U¥(z) = f(x) almost everywhere on
[—m, 7).

Finally, there is a number 0 < M < oo such that for 0 < a < 1 the
following inequality holds, see [1, p. 306],

m

Z cosé;m)

n=1

M

S e m=1,2

g Ly oo

It now follows from the Lebesgue Dominated Convergence Theorem, that at
each point © ¢ E, where the integral is defined, the function U¥(x) is abso-
lutely continuous Hence, for x ¢ E, we have

lim S, (z,f) = lim S,(v,U%) = Uk(z).

n— oo n—oo

It follows from Lemma 1 that f(z) = 0 a.e. on [—m,7w]. This completes the
proof of Theorem 1. .

Remark 1. For each o0 > 1 —« there is a set E which satisfies the conditions
of Lemma 1 and for which C,(E) = 0.

PROOF.  Actually, for arbitrary numbers 0 < ¢ and a € [—7, 7] we have
Ci—a(E(a)) = t17%C1_o(E), where Ey(a) = {a + tz : € E}. It was shown
in [8, p. 38], that there is a set F for which C1_,(F) > 0, and C,(F) = 0.

Then the set
00 2™
E={]J ( Fg_n(m"))
k=1

satisfies the hypothesis Theorem 1, so that C,(E) = 0. O

Remark 2. There is an extensive family of subsets E, with 0 < m(E) < 2w
that are not sets of uniqueness for our classes. To see this, let 0 < a < 1 and
set E = [—m, 7]\ Up—y ln, where l,, n=1,2,... are disjoint open intervals
satisfying Y oo |ln|'7% < oo. Assuming that m(E) > 0, the characteristic

function of [—m, 7|\ E,
)0 x¢E
fa) = {1 zeFE

satisfies condition (1) of Theeorem 1, and for each point x ¢ E we have
limy o0 Sp(z, f) = 0.
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Actually, if 0 < a < 1, then for the characteristic function f,(z) of the
interval [,, we have

[f(z+1) - f(2)| -
/_ﬂ/ - de dt ~ |I,|* 7.
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