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A CHARACTERIZATION OF ESSENTIALLY
EJECTIVE SETS

Abstract

We give three equivalent properties characterizing the essentially
ejective sets of a compact commutative topological group.

1 Introduction

Let G be a compact commutative topological group with the normalized Haar
measure µ. Our aim is to characterize those subsets H of G for which

“no measurable subset of G can be periodic by every element of H,”

that is, if for a measurable set A ⊂ G we have that µ ((A+ h) \A) is “small”
for every h ∈ H, then µ (A) or µ (G \A) is also “small”. In other words, every
measurable set A ⊂ G can be “ejected out” of itself by some element of H.
This property is described in the following definition.

Definition 1.1. Let H be an arbitrary subset of G. The function

ζH : [0, 1] → [0, 1],

ζH (x) = inf
µ(A)=x

sup
h∈H

µ ((A+ h) \A)

is the measure of ejectivity of the set H.
If ζH (x) > 0 for some x ∈ [0, 1], then we say that H is ejective, while

if ζH (x) > 0 for every x ∈ (0, 1), then H is called essentially ejective. If
ζH (x) = 0 holds for every x ∈ [0, 1], then we say that H is nonejective.
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Since the function h 7→ µ ((A+ h) \A) is continuous, a set H is (essen-
tially) ejective if and only if its closure, cl H has the same property; so we can
and will restrict our attention to closed sets.

According to our best knowledge, the notion of ejectivity was introduced in
[2]. Among other things, the authors discussed there some basic arithmetical
properties of the function ζH , studied the measure of ejectivity of the whole
group and gave a criterion for the ejectivity/essential ejectivity of general
sets. In this paper we focus on essential ejectivity. Later on, we will give
more concrete references to [2] indicating the similarity of certain ideas and
techniques.

It turns out that the notion of nonejectivity is closely related to the weak
Dirichlet property. In the definition of this class of sets, for a probability

measure ν on G, ν̂ stands for its Fourier-transform; that is, ν̂ (γ) =
∫

G

γdν

for every character γ. The principle character is denoted by γ0.

Definition 1.2. A Borel set H ⊂ G is a weak Dirichlet set if for every prob-
ability measure ν supported by cl H, sup

γ 6=γ0

|ν̂ (γ) | = 1.

We also define a function to measure how far is H from being a weak
Dirichlet set.

Definition 1.3. Let H ⊂ G be a Borel set and let M (H) denote the set of
probability measures supported on cl H. Then let

ψ (H) = sup
ν∈M(H)

inf
γ 6=γ0

∫
G

|γ − 1|2dν.

It is easy to show that H is weak Dirichlet if and only if ψ (H) = 0. For
more information about weak Dirichlet sets and their relation to other thin
classes of harmonic analysis see e.g. [5] or [6].

It is not surprising that no function can be “periodic” by every element
of an essentially ejective set. We introduce a function to describe this phe-
nomenon. We will use

F =
{
f : G→ C

∣∣∣∣f ∈ L2(G), ||f ||L2(G) = 1,
∫

G

fdµ = 0
}
,

where
(
L2(G), ||.||L2(G)

)
denotes the Hilbert-space of square integrable func-

tions with the usual norm. For a function f and h ∈ G,

∆hf (x) = f (x+ h)− f (x)

denotes the difference function of f .
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Definition 1.4. For an arbitrary subset H of G, let

ξ (H) = inf
f∈F

sup
h∈H

||∆hf ||2L2(G).

Our main result is the following equivalence.

Theorem 1.5. Let H ⊂ G be a compact set. Then the following properties
are equivalent:

1. H essentially ejective,

2. H is not weak Dirichlet,

3. ξ (H) > 0.

This result will be proved through the following theorems. The first gives
a quantitative form to the implication 2.⇒ 1.

Theorem 1.6. Let H ⊂ G be a Borel set. Then

ζH (x) ≥ ψ (H)
2

(
x− x2

)
, (1)

specially every not weak Dirichlet Borel set is essentially ejective.

The second theorem states 2.⇔ 3. in a quantitative way.

Theorem 1.7. Let H ⊂ G be a compact set. Then ξ (H) = ψ (H) ; that is,

inf
f∈F

sup
h∈H

||∆hf ||2L2(G) = sup
ν∈M(H)

inf
γ 6=γ0

∫
G

|γ − 1|2dν.

Moreover, for every δ > 0 there is a real valued f ∈ F with

sup
h∈H

||∆hf ||2L2(G) ≤ ψ(H) + δ

such that the Fourier-transform of f , Ff has finite support and real coefficients.

Finally, we would like to remark that a suitable analogue of Theorem 1.5
holds in arbitrary compact groups, without assuming commutativity (This was
pointed out to the authors by the referee.) and together with other possible
generalizations will be discussed elsewhere.

We will use G? to denote the character group of G and µ? for the Haar
measure on G? normed so that the constant in Plancherel’s formula is 1. The
Fourier-transform on G mapping L2(G) to L2(G?) will be denoted by F.

For a function f : G→ R and a, b ∈ R, let

[a ≤ f ≤ b] = {x ∈ G : a ≤ f (x) ≤ b}.

The sets [f ≤ u], etc. are defined analogously.
For a set K ⊂ G, χK denotes the characteristic function of K.



590 Tamás Mátrai and Imre Z. Ruzsa

2 Proof of Theorem 1.6

The proof uses a refined version of an idea of de Bruijn [1] proving the weak
difference property for the L2 class on the circle group R/Z. A similar proof
can be found in [2], Theorem 4.1, [4], Theorem 3.1 and in [3], Theorem 3.2.

Let H ⊂ G be a Borel set. To prove inequality (1) we have to show that
for every Borel set A ⊂ G,

sup
h∈H

µ ((A+ h) \A) ≥ ψ (H)
2

(
µ (A)− µ (A)2

)
.

We have

χ
A (t− h)− χ

A (t) =


1 if t ∈ (A+ h) \A,
−1 if t ∈ A \ (A+ h) ,
0 otherwise .

Consequently,∫
G

|χA (t− h)− χ
A (t) |2 dµ (t) = 2µ ((A+ h) \A) . (2)

Since for the Fourier transform of the functions χA and χA (Id− h) we have

(FχA) (γ) =
∫

G

χ
A (t) γ (t) dµ (t)

and

(FχA (Id− h)) (γ) =
∫

G

χ
A (t− h) γ (t) dµ (t)

=
∫

G

χ
A (t) γ (t+ h) dµ (t)

= γ (h)
∫

G

χ
A (t) γ (t) dµ (t) = γ (h) (FχA) (γ) ,

by applying Plancherel’s identity to (2) we get

2µ ((A+ h) \A) =
∫

G?

| (FχA) (γ) |2|γ (h)− 1|2 dµ?(γ). (3)

By the definition of ψ(H), for every η > 0 there is a νη ∈M (H) such that

inf
γ 6=γ0

∫
G

|γ(h)− 1|2 dνη(h) ≥ ψ (H)− η.
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For an η > 0, by integrating (3) with respect to this νη we get∫
G

2µ ((A+ h) \A) dνη (h)

=
∫

G

∫
G?

| (FχA) (γ) |2|γ (h)− 1|2dµ? (γ) dνη (h)

=
∫

G?

| (FχA) (γ) |2
∫

G

|γ (h)− 1|2dνη (h) dµ? (γ)

≥ (ψ (H)− η)
∫

G?\γ0

|(FχA)(γ)|2 dµ?(γ).

By Plancherel’s formula we also know that∫
G?

|(FχA)(γ)|2 dµ?(γ) = µ(A),

while (FχA)(γ0) = µ(A). Since νη is a probability measure, the νη mean of
2µ((A+ h) \A) smaller than its supremum. Thus

sup
h∈H

µ((A+ h) \A) ≥ ψ(H)− η

2
(µ(A)− µ?(γ0)µ(A)2);

so according to our normalization

sup
h∈H

µ((A+ h) \A) ≥ ψ(H)− η

2
(µ(A)− µ(A)2).

Letting η → 0 we get the desired result.

3 Proof of Theorem 1.7

First we show that ψ(H) ≤ ξ(H). Let f ∈ F . By Plancherel’s identity we
have ∫

G?

|Ff(γ)|2 dµ?(γ) = ||f ||2L2(G) = 1 (4)

and ∫
G?

|Ff(γ)|2 |γ(h)− 1|2 dµ?(γ) = ||F∆hf ||2L2(G?)

= ||∆hf ||2L2(G) ≤ sup
h∈H

||∆hf ||2L2(G).



592 Tamás Mátrai and Imre Z. Ruzsa

Thus for every ν ∈M(H) we have∫
G?

|Ff(γ)|2
∫

G

|γ(h)− 1|2 dν(h) dµ?(γ)

=
∫

G

∫
G?

|Ff(γ)|2 |γ(h)− 1|2 dµ?(γ) dν(h) ≤ sup
h∈H

||∆hf ||2L2(G).

(5)

Since Ff(γ0) = 0 for our f ∈ F , from (4) and (5) we get

inf
γ 6=γ0

∫
G

|γ(h)− 1|2 dν(h) ≤ sup
h∈H

||∆hf ||2L2(G),

which proves

sup
ν∈M(H)

inf
γ 6=γ0

∫
G

|γ(h)− 1|2 dν(h) ≤ inf
f∈F

sup
h∈H

||∆hf ||2L2(G).

For the other direction, let δ > 0 be fixed. From the definition of ψ(H) we
have

inf
γ 6=γ0

∫
G

|γ(h)− 1|2 dν(h) < ψ(H) + δ (6)

for every ν ∈M(H). For every γ ∈ G?, let

Mγ =
{
ν ∈M(H) :

∫
G

|γ(h)− 1|2 dν(h) < ψ(H) + δ

}
.

Then (6) implies that
⋃

γ∈G?\{γ0}Mγ = M(H).
Now regard M(H) as a subset of the dual space of continuous functions on

H with the weak? topology. Since the functions h 7→ |γ(h)−1|2 are continuous,
{Mγ : γ ∈ G? \ {γ0}} is an open cover of the compact set M(H). Thus there
is a finite set

Γ = {γ1, γ2, . . . , γn} ⊂ G? \ {γ0}
such that M(H) =

⋃
γ∈ΓMγ ; that is,

inf
γ∈Γ

∫
G

|γ(h)− 1|2 dν(h) < ψ(H) + δ, ∀ν ∈M(H). (7)

We assume that if Γ contains a character γ, then γ ∈ Γ as well.
Consider the Banach-space (Rn, ||.||∞) and its convex subset

K =
{(

α

∫
G

|γ1(h)− 1|2 dν(h), α
∫

G

|γ2(h)− 1|2 dν(h), . . .

. . . , α

∫
G

|γn(h)− 1|2 dν(h)
)

: ν ∈M(H), 0 ≤ α ≤ 1
}
.
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By (7), K is disjoint from the orthant L = (ψ(H)+δ,∞)n; so by the separation
theorem of Hahn and Banach there is a linear functional

φ ∈ (Rn, ||.||∞)? = (Rn, ||.||1)

with ||φ||1 = 1 such that
φ(x) ≤ φ(y) (8)

for every x ∈ K, y ∈ L. Let

y
0

= (ψ(H) + δ, ψ(H) + δ, . . . , ψ(H) + δ),

y
i
= (0, . . . , 0, 1

ĭ
, 0, . . . , 0), i = 1, . . . , n.

We can identify φ with a sequence (c1, c2, . . . , cn) ∈ Rn. By applying (8) for
x = 0 = (0, . . . , 0) and y = y

0
+ ry

i
, i = 1, . . . , n, 0 < r <∞ we get

0 = φ(0) ≤ φ(y
0

+ ry
i
) = φ(y

0
) + rci, i = 1, 2, . . . , n, 0 < r <∞;

that is, 0 ≤ ci, i = 1, . . . n. Since ‖φ‖1 = 1,

n∑
i=1

ci =
n∑

i=1

|ci| = ‖φ‖1 = 1, (9)

while by applying (8) for x ∈ K, y = y
0
, from (8) and (9) we get∫

G

n∑
i=1

ci|γi(h)− 1|2 dν(h) < ψ(H) + δ (10)

for every ν ∈M(H).
If for a γ ∈ Γ we have γ = γi, let c(γ) = ci. With this convention let

f : G→ R be defined as

f(h) =
∑
γ∈Γ

√
c(γ) + c(γ)

2
γ + γ

2
.

This function f is obviously real valued, while from γi 6= γ0 and (9) we get
that ∫

G

f(h) dµ(h) = (Ff)(γ0) = 0,
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||f ||2L2(G) = ||Ff ||2L2(G?) =
∑
γ∈Γ

c(γ) + c(γ)
2

=
n∑

i=1

ci = 1,

while by applying (10) for the Dirac-measure ν = δh, h ∈ H we have

||∆hf ||2L2(G) = ||F∆hf ||2L2(G?)

=
∑
γ∈Γ

|(Ff)(γ)|2|γ(h)− 1|2 =
∑
γ∈Γ

c(γ) + c(γ)
2

|γ(h)− 1|2

=
n∑

i=1

ci|γi(h)− 1|2 =
∫

G

n∑
i=1

ci|γi(t)− 1|2 dδh(t) < ψ(H) + δ

for every h ∈ H. Thus f ∈ F , it is real valued, Ff has finite support and real
coefficients, and suph∈H ||∆hf ||2L2(G) < ψ(H) + δ. Letting δ → 0 we obtain

inf
f∈F

sup
h∈H

||∆hf ||2L2(G) ≤ sup
ν∈M(H)

inf
γ 6=γ0

∫
G

|γ(h)− 1|2 dν(h),

which completes the proof.

4 Proof of Theorem 1.5

In order to prove the remaining implication 1. ⇒ 3. we have to show that no
set H with ξ(H) = 0 can be essentially ejective. We do this by proving that if
ξ(H) = 0, then there is a constant C0 > 0 such that for every η > 0 one can
find a Borel set Aη ⊂ G with

C0 ≤ µ(Aη), µ(G \Aη) (11)

and
sup
h∈H

µ((Aη + h) \Aη) ≤ η. (12)

This implies that H is not essentially ejective, since then for an appropriate
sequence ηj → 0 and sequence (Aηj ) of Borel sets we have that (11), (12) hold
and µ(Aηj

) converges to some x ∈ [C0, 1− C0]. For every j sufficiently large,
by removing or adding a set to Aηj

with measure |x− µ(Aηj
)|, we can obtain

a sequence (Bj) of Borel sets such that µ(Bj) = x and

lim
j→∞

sup
h∈H

µ((Bj + h) \Bj) = 0,

which shows that H cannot be essentially ejective.
The sets Aη will be sublevel sets of appropriate functions. Before con-

structing them, we prove two technical lemmas.
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Lemma 4.1. Let H ⊂ G be so that ξ(H) = 0, and for a δ > 0 let f satisfy
the conclusions of Theorem 1.7. That is, f is real valued,

f(t) =
n∑

j=1

cjγj(t), cj ∈ R, j = 1, . . . , n, (13)

satisfying ∫
G

f(t) dµ(t) = 0, (14)

||f ||2L2(G) =
n∑

j=1

c2j = 1, (15)

and
||∆hf ||2L2(G) ≤ δ (16)

for every h ∈ H. Then there is a ρ ∈ [−1/4, 1/4] for which

sup
h∈H

µ([f ≤ ρ] + h) \ [f ≤ ρ]) ≤ 5δ
1
3 . (17)

Proof. For every u ∈ R let Au = [f ≤ u]. Since v ≤ f(x+h)−f(x) whenever
x ∈ Au \ (Au+v − h), from (16) we get that

µ(Au + h \Au+v) =
∫

Au\(Au+v−h)

1 dµ(x)

≤
∫

Au\(Au+v−h)

|f(x+ h)− f(x)|2

v2
dµ(x) ≤

‖∆hf‖2L2(G)

v2
≤ δ

v2

(18)

for every u, v ∈ R and h ∈ H.
Let l ∈ N, its value will be chosen later. Since µ(A 1

4
\ A− 1

4
) ≤ µ(G) = 1,

we have that
µ(A− 1

4+ k+1
2l
\A− 1

4+ k
2l

) ≤ 1
l

(19)

for some k ∈ {0, 1, . . . l − 1}. Let ρ = − 1
4 + k

2l with this k. Then for every
h ∈ H, using

(Aρ + h) \Aρ ⊂
(
(Aρ + h) \Aρ+ 1

2l

)
∪

(
Aρ+ 1

2l
\Aρ

)
,

from (18) with u = ρ, v = 1
2l and from (19) we have

µ((Aρ + h) \Aρ) ≤ δ4l2 +
1
l
. (20)

For l = δ−
1
3 , this shows (17) and proves the lemma.
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Lemma 4.2. Let f ∈ L2(G) be real valued of the form (13) satisfying (14)

and (15). For every ε = (εj) ∈ {−1,+1}n, we put fε(t) =
n∑

j=1

εjcjγj(t). Let

E denote the set of those signings where fε is real valued; that is, where a
character and its conjugate have the same sign.

1. For a couple a, b ∈ R with 0 < b < a, let

Θ(x) = −(x− a+ b)(x− a− b)(x+ a)2

= −x4 + (b2 + 2a2)x2 + 2ab2x+ a2b2 − a4.

Then for every ε ∈ E,

b2 + 2a2 + a2b2 − a4 −
∫

G

f4
ε (t) dµ(t) ≤

[
max

x∈[a−b,a+b]
Θ(x)

]
×min

{
µ([a− b ≤ fε ≤ a+ b]), µ([−a− b ≤ fε ≤ −a+ b])

}
.

2. For an appropriate ε0 ∈ E,
∫

G
f4

ε0
(t) dµ(t) ≤ 12.

Proof. 1. We estimate the integral
∫

G
Θ(fε(t)) dµ(t) for every signing ε ∈ E .

Since Θ(x) > 0 if and only if x ∈ (a− b, a+ b),∫
G

Θ(fε(t)) dµ(t) ≤
[

max
x∈[a−b,a+b]

Θ(x)
]
µ([a− b ≤ fε ≤ a+ b]).

On the other hand,∫
G

Θ(fε(t)) dµ(t) = −
∫

G

f4
ε (t) dµ(t)

+ (b2 + 2a2)
∫

G

f2
ε (t) dµ(t) + 2ab2

∫
G

fε(t) dµ(t) + a2b2 − a4.

Since by (14) and (15)∫
G

fε(t) dµ(t) = 0,
∫

G

f2
ε (t) dµ(t) = 1,

this means

b2 + 2a2 + a2b2 − a4 −
∫

G

f4
ε (t) dµ(t)

≤
[

max
x∈[a−b,a+b]

Θ(x)
]
µ([a− b ≤ fε ≤ a+ b]).
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Repeating the same calculation for Θ̃(x) = Θ(−x), we get

b2 + 2a2 + a2b2 − a4 −
∫

G

f4
ε (t) dµ(t)

≤
[

max
x∈[−a−b,−a+b]

Θ̃(x)
]
µ([−a− b ≤ fε ≤ −a+ b])

=
[

max
x∈[a−b,a+b]

Θ(x)
]
µ

(
[−a− b ≤ fε ≤ −a+ b]

)
which proves the statement.

2. In the following, for two characters γ and γ′ we write γ � γ′ if and only
if γ = γ′ or γ = γ′. We prove this part of the lemma by averaging on the
signings in E . We have∫

G

f4
ε (t) dµ(t)

=
∑

εj1εj2εj3εj4cj1cj2cj3cj4

∫
G

γj1γj2γj3γj4 dµ(t)

=
∑

γj1γj2γj3γj4=γ0

εj1εj2εj3εj4cj1cj2cj3cj4 .

(21)

If in a term of the right-hand side of (21) there is an index jk such that
γjk

6� γjl
for k 6= l, then by symmetry the averaging on the signings in E cancels

this term. If this is not the case; that is, the indices can be matched in a way
that the characters corresponding to the indices in a pair are �-equivalent,
then by the constraint that conjugate characters must get the same sign the
term appears with multiplicity equal to |E|, the cardinality of E . Let J be the
set of the index quartets (j1, j2, j3, j4) of the non-canceling terms satisfying
γj1γj2γj3γj4 = γ0, so we have

1
|E|

∑
ε∈E

∫
G

f4
ε (t) dµ(t) =

∑
(j1,j2,j3,j4)∈J

cj1cj2cj3cj4 . (22)

We show that

∑
(j1,j2,j3,j4)∈J

cj1cj2cj3cj4 ≤ 12

 n∑
j=1

c2j

2

. (23)

This will complete the proof since combining (22) with (23), from (15) we get

1
|E|

∑
ε∈E

∫
G

f4
ε (t) dµ(t) ≤ 12

 n∑
j=1

c2j

2

= 12,
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so for at least one ε0 ∈ E we have
∫

G
f4

ε0
(t) dµ(t) ≤ 12.

To see (23), note that since f is real valued, ci = cj if γi � γj . To simplify
our counting we change on both sides of (23) the indices corresponding to
conjugate characters to the smaller index, so we can write∑

(j1,j2,j3,j4)∈J

cj1cj2cj3cj4 =
∑

1≤i<j≤n

ai,jc
2
i c

2
j +

∑
1≤i≤n

aic
4
i

and  n∑
j=1

c2j

2

=
∑

1≤i<j≤n

bi,jc
2
i c

2
j +

∑
1≤i≤n

bic
4
i (24)

with appropriate coefficients ai, bi and ai,j , bi,j . That is, to prove (23) it is
enough to show that ai ≤ 12bi and ai,j ≤ 12bi,j for every 1 ≤ i, j ≤ n.

The computation of ai, bi, ai,j and bi,j is simple but lengthy, so we write
out the details only for the bi’s. For the other coefficients, the calculations
being similar, we present only the results.

By the choice of the indexing, bi = 0 if and only if γi has a conjugate
character of smaller index; that is, γi = γj for some j < i. If γi is selfadjoint,
c4i appears with multiplicity one in (24), while if γi = γj for some j > i, then
using ci = cj we get that c4i = c4j = c2i c

2
j = c2jc

2
i , so c4i appears with multiplicity

four in (24). To summarize the bi 6= 0 case,

bi =

{
1 if γi = γi,

4 if γi 6= γi.

Similarly, bi,j = 0 if and only if γi or γj has a conjugate character of smaller
index, else

bi,j =


2 if γi = γi, γj = γj ,

4 if γi 6= γi, γj = γj ,

4 if γi = γi, γj 6= γj

8 if γi 6= γi, γj 6= γj .

To estimate the ai’s and the ai,j ’s, consider the following partition of J .

J1 = {(j1, j2, j3, j4) ∈ J : γj1 � γj2 � γj3 � γj4}

and J2 = J \ J1. Take now ai for some 1 ≤ i ≤ n. These terms come from J1.
Again, ai = 0 if γi has a conjugate character of smaller index, else

ai ≤
{

1, if γi = γi;
16, if γi 6= γi.
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Note that we can give only an upper bound given the restriction (j1, j2, j3, j4) ∈
J .

Similarly, ai,j = 0 if γi or γj has conjugate character of smaller index, else

ai,j ≤


12 if γi = γi, γj = γj ,

24 if γi 6= γi, γj = γj ,

24 if γi = γi, γj 6= γj ,

96 if γi 6= γi, γj 6= γj .

So the inequalities ai ≤ 12bi and ai,j ≤ 12bi,j for every 1 ≤ i, j ≤ n hold. This
finishes the proof.

Now we turn to prove the existence of the set satisfying (11) and (12), so
let η > 0 be fixed. By Theorem 1.7 there is a function f ∈ L2(G) satisfying
(13), (14), (15) and (16) for δ = (η

5 )3. For every ε ∈ E , fε also satisfies these
conditions. By Lemma 4.2 2., there is an ε0 ∈ E such that

∫
G
f4

ε0
(t) dµ(t) ≤ 12.

This, by Lemma 4.2, 1. for a = 4 and b = 3.75 implies that

3 ≤b2 + 2a2 + a2b2 − a4 −
∫

G

f4
ε0

(t) dµ(t) ≤
[

max
x∈[a−b,a+b]

Θ(x)
]

×min
{
µ

([
1
4
≤ fε0

≤ 7 +
1
4

])
, µ

([
−7− 1

4
≤ fε0

≤ −1
4

])}
;

that is, with C0 = 3

max
x∈[a−b,a+b]

Θ(x) we have

C0 ≤ µ

([
fε0

≤ −1
4

])
, µ

(
G \

[
fε0

≤ 1
4

])
. (25)

We can apply Lemma 4.1 for fε0
to obtain a ρ ∈ [− 1

4 ,
1
4 ] for which

sup
h∈H

µ
(([

fε0
≤ ρ

]
+ h

)
\

[
fε0

≤ ρ
])
≤ 5δ

1
3 = η.

For Aη = [fε0
≤ ρ], this shows (12), while (11) follows from (25), since for

ρ ∈ [− 1
4 ,

1
4 ] we have[

fε0
≤ −1

4

]
⊂ Aη =

[
fε0

≤ ρ
]
⊂

[
fε0

≤ 1
4

]
.

So the proof is complete.
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[4] T. Mátrai, Difference functions of periodic Lp functions, Real Analysis
Exchange, 28, No. 2 (2002-03), 355–374.
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