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TRANSVERSAL MAPPINGS BETWEEN
MANIFOLDS AND NON-TRIVIAL
MEASURES ON VISIBLE PARTS

Abstract

This paper has two aims. On the one hand, we generalize the notion
of sliced measures by means of transversal mappings and study dimen-
sional properties of these measures. On the other hand, as an application
of these results, we explain in what sense typical visible parts of a set
with large Hausdorff dimension are smaller than the set itself. This is
achieved by establishing a connection between dimensional properties of
generalized slices and those of visible parts.

1 Background and Preliminary Discussion.

Given integers k and d such that 0 ≤ k ≤ d − 1, and an affine k-plane K in
Rd (0-plane is simply a point), we use the notation ProjK for the projection
onto K. The following definition of visibility goes back to Urysohn [U] in the
1920’s. Let E ⊂ Rd be compact. A point a ∈ E is visible from K, if a is the
only point of E in the closed line segment joining a to ProjK(a). The visible
part of E from K, denoted by VK(E), is the set of all points that are visible
from K (see Section 2).

Visibility was investigated in connection with set theoretic problems by
Nikodym in [N]. The study of dimensional properties of visible parts was
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initiated in [JJMO]. Denoting by dimH the Hausdorff dimension, we have for
almost all affine k-planes K not intersecting E that

dimH(VK(E)) = dimHE (1.1)

provided that dimHE ≤ d − 1 [JJMO, Theorem 3.2]. On the other hand,
under the assumption dimHE > d− 1, we have

dimH(VK(E)) ≥ d− 1 (1.2)

for almost all k-planes K not intersecting E [JJMO, Proposition 3.3]. It is not
known whether the opposite inequality holds in (1.2). Some special examples
of planar sets with Hausdorff dimension bigger than 1 are investigated in
[JJMO]. In particular, it is shown that Hausdorff dimensions of all visible
parts of a quasi-circle are equal to 1. In [O] an upper bound bigger than 1
is verified for Hausdorff dimensions of typical visible parts of connected and
compact subsets of the plane. For further information on related topics, see
[M3].

In this paper we approach the open question concerning the validity of the
equality in (1.2) by proving the following weaker result.

Theorem 1.1. Let k and d be integers such that 0 ≤ k ≤ d−1 and let E ⊂ Rd
be a compact set with dimHE > d − 1. Assume that µ is a Radon measure
on E such that µ(E) > 0 and dimH µ > d − 1. Then µ(VK(E)) = 0 for
Γd,k-almost all K ∈ Ad,k with K ∩ E = ∅.

Here we use the notation dimH µ for the Hausdorff dimension of any finite
measure µ on Rd (and later in Sections 2 and 3 on a metric space X); that is,

dimH µ = µ-ess inf
x

dimloc µ(x)

where

dimloc µ(x) = lim inf
r→0

logµ(B(x, r))
log r

. (1.3)

(In (1.3) B(x, r) is the closed ball with center at x and with radius r > 0.)
For more information about dimensions of a measure, see [Fa, Chapter 10].
Moreover, the natural Radon measure on the space of affine k-planes of Rd is
denoted by Γd,k (see Section 2 for definitions). Observe that, if (1.2) holds as
an equality, Theorem 1.1 follows from it.

Theorem 1.1 is proved in Section 2 as an application of the results con-
cerning dimensional properties of generalized sliced measures. These measures
are defined as a natural extension of the following notion of sliced measures
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introduced by Mattila in [M2]. Given a k-dimensional linear subspace V of
Rd, let V ⊥ be the orthogonal complement of V . The slices of a finite Radon
measure µ by affine planes Va = V + a, where a ∈ V ⊥, are defined as weak
limits of the normalized restriction measures

Hd−k(B(a, δ))−1µ|Proj−1
V⊥

(B(a,δ)) (1.4)

as δ goes to 0. (Here Hd−k is the (d − k)-dimensional Hausdorff measure,
B(a, δ) = {v ∈ V ⊥ | |v − a| ≤ δ}, and µ|A is the restriction of µ to a set
A, in other words, µ|A(B) = µ(A ∩ B) for all B ⊂ Rd.) The dimensional
properties of these measures, which turn out to exist for Hd−k-almost all
a ∈ V ⊥, are investigated in [JM]. In this paper we generalize the notion of
(1.4) by replacing the preimage of the projection by a preimage of a transversal
mapping between manifolds. Our results in Sections 2 and 3, culminating in
Theorem 2.1, have a similar flavor to some of the results in [PS]. [PS, Theorem
7.7] may be regarded as a generalization of the projection results in [M1] for a
parametrized family of transversal mappings, whilst Sections 2 and 3 extend
the results of [JM] to a similar setting.

Our basic setting is as follows. Let (L, ρL), (M,ρM ), and (N, ρN ) be l-, m-,
and n-dimensional smooth Riemann manifolds, respectively. Note that when
considering visible parts of a set E ⊂ Rd in Section 2, L will be a submanifold
of the set of affine planes in Rd, M = Rd, and N will be a submanifold of Rd.
Assume that l ≥ n, m > n, and Π : L×M → N is a continuous function such
that for i = 0, 1, 2 there is a constant ci > 1 for which∣∣∣∣∣∣Di

λΠ(λ, x)
∣∣∣∣∣∣≤ ci (1.5)

for all λ ∈ L and x ∈M . Here the ith derivative with respect to λ is denoted
by Di

λ, the 0th derivative meaning the function itself. Furthermore, suppose
that there are finite collections {φ, V } and {ϕ,U} of C2-charts on L and N ,
respectively, with the following property. There exists R > 0 such that for all
λ ∈ L and y ∈ N

B(λ,R) ⊂ V and B(y,R) ⊂ U (1.6)

for some V and U . Assume also that the second derivatives, and thus the Lip-
schitz constants, of the mappings ϕ, ϕ−1, φ, and φ−1 are uniformly bounded
from above by a positive constant K.

We will restrict our consideration to the class of transversal mappings
whose rôle becomes evident in the proof of Lemma 3.1.
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1.1 Transversality.

For λ ∈ L, let Πλ = Π(λ, · ). Suppose that the following form of transversality
is satisfied. There is a constant Ct > 0 such that for all λ ∈ L and x1 6= x2 ∈M
for which ρN (Πλ(x1),Πλ(x2)) ≤ R, the following condition holds. Defining

Φx1,x2(λ) =
ϕ ◦Πλ(x1)− ϕ ◦Πλ(x2)

ρM (x1, x2)
,

the property
|Φx1,x2(λ)| < Ct (1.7)

implies that
det

(
DΦx1,x2(λ)DΦx1,x2(λ)T

)
> C2

t . (1.8)

Here ϕ is as in (1.6), the derivative with respect to λ is denoted by D, and
AT is the transpose of a matrix A. Moreover, we assume that there exists a
constant L̃ > 0 such that

‖D2Φx1,x2(λ)‖ ≤ L̃ (1.9)

for all x1, x2, and λ.
We continue by generalizing (1.4) in a way that is useful for our purposes.

1.2 Sliced Measures Determined by Means of Transversal Map-
pings.

Let µ be a Radon measure on M and let λ ∈ L. Denote by C+
0 (M) the

family of continuous non-negative functions on M with compact support. As
indicated below, it follows from the axiomatic theory of derivation in [F, 2.9]
that for all ψ ∈ C+

0 (M) the limit

lim
δ→0

((Πλ)∗νψ)(B(y, δ))
Hn(B(y, δ))

= lim
δ→0

1
Hn(B(y, δ))

∫
Π−1

λ (B(y,δ))

ψ dµ (1.10)

exists and is finite for Hn-almost all y ∈ N . Here νψ(A) =
∫
A
ψ dµ for all

Borel sets A ⊂ M and f∗m is the image of a measure m under a function
f : X → Y ; that is, f∗m(A) = m(f−1(A)) for all A ⊂ Y . It is well-known
that in a separable metric space (X, ρ), satisfying a certain geometric condition
described in [F, 2.8.9], the family

V = {(x,B(x, r)) | x ∈ X, r > 0}

is a µ-Vitali relation for any locally finite Borel regular measure µ on X [F,
Theorem 2.8.18] and [F, 2.8.16]. As indicated in [F, 2.8.9] this covers as a
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special case Riemann Ck-manifolds (k ≥ 2) with the usual metrics. The
existence of (1.10) follows now from [F, Theorem 2.9.5]. Using the separability
of C+

0 (M) it may be shown that the exceptional set of points y ∈ N in (1.10)
is independent of the choice of ψ, and therefore we conclude from the Riesz
representation theorem [M1, Theorem 1.16] that, given λ ∈ L, for Hn-almost
all y ∈ N there is a Radon measure µλ,y such that∫

ψ dµλ,y = lim
δ→0

1
Hn(B(y, δ))

∫
Π−1

λ (B(y,δ))

ψ dµ (1.11)

for all ψ ∈ C+
0 (M). Clearly

sptµλ,y ⊂ sptµ ∩Π−1
λ ({y}), (1.12)

where sptµ is the support of µ.

Remark 1.2. (1) In (1.11) transversality plays no rôle; only the continuity
of Π is needed.

(2) By [F, Lemma 2.9.6] the function y 7→
∫
ψ dµλ,y is Hn-measurable for

all ψ ∈ C+
0 (M).

The following disintegration formula holds for the measures µλ,y: Given
a non-negative Borel function f on M with

∫
f dµ < ∞, it follows from [F,

Theorem 2.9.7] that for all Borel sets B ⊂ N∫
B

∫
f dµλ,y dHny ≤

∫
Π−1

λ (B)

f dµ. (1.13)

Moreover, the equality holds in (1.13) provided that (Πλ)∗µ is absolutely
continuous with respect to Hn [F, Theorem 2.9.2]. In this case we write
(Πλ)∗µ� Hn.

2 Sliced Measures and Non-Trivial Measures on Visible
Parts.

In this section, we will state our main result concerning dimensional properties
of sliced measures defined in (1.11) and apply it to visible parts.

According to [JM, Theorem 3.8], if µ is a Radon measure on Rd with
compact support and with dimH µ > k, then for almost all (d−k)-dimensional
linear subspaces V of Rd we have

ess inf{dimH µV,a | a ∈ V ⊥ with µV,a(Rd) > 0} = dimH µ− k. (2.1)

The following analogue of (2.1) will be proved in Section 3.
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Theorem 2.1. Let µ be a Radon measure on M with compact support. As-
suming that dimH µ > n, we have

Hn-ess inf{dimH µλ,y | y ∈ N with µλ,y(M) > 0} = dimH µ− n

for Hl-almost all λ ∈ L.

Theorem 2.1 is being used as a tool when verifying Theorem 1.1. We
proceed by introducing the notation needed for this purpose.

Let k and d be integers such that 0 ≤ k ≤ d− 1. The Grassmann manifold
of linear k-dimensional subspaces of Rd and the space of affine k-dimensional
subspaces of Rd are denoted by Gd,k and Ad,k, respectively. (A 0-plane is
simply a point.) Letting γd,k be the unique orthogonally invariant Radon
probability measure on Gd,k, and defining for all Borel sets A ⊂ Ad,k

Γd,k(A) =
∫
Hd−k({a ∈ V ⊥ | V + a ∈ A}) dγd,k(V ),

gives a Radon measure Γd,k on Ad,k. Observe that both Gd,k and Ad,k are
smooth Riemann manifolds [F, 3.2.28], and Γd,k is equivalent to Hs with
s = dimAd,k.

2.1 Visible Parts.

The visible part of a compact set E ⊂ Rd from an affine subspace K ∈ Ad,k
with E ∩K = ∅ is

VK(E) = {x ∈ E | [ProjK(x), x] ∩ E = {x}}.

Here ProjK(x) = ProjV (x) + a is the closest point to x on the affine plane
K = V + a, where V ∈ Gd,k and a ∈ V ⊥, and [x, y] is the closed line segment
between x and y.

Remark 2.2. (a) The visible part VK(E) is a Borel set being the graph of a
lower semi-continuous function [JJMO, Remark 2.2 (a)].

(b) Let Π : L × M → N be as in Section 1, and let λ ∈ L such that
(Πλ)∗µ� Hn. Then for all Borel sets B ⊂M

µλ,y|B = (µ|B)λ,y

for Hn-almost all y ∈ N . This can be verified using similar arguments as in
[JM, Lemma 3.2].
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Proof of Theorem 1.1. Consider a compact set E ⊂ Rd with dimHE >
d−1. Let µ be a Radon measure on E such that µ(E) > 0 and dimH µ > d−1.
Given ε > 0, let Ad,k(E, ε) consist of those K ∈ Ad,k for which dist(K,E) > ε.
Defining for all K ∈ Ad,k(E, ε)

NK = {x ∈ Rd | dist(x,K) = ε},

the assumptions of Section 1 are satisfied for the natural projection ΠK : Rd →
NK ; the transversality of ΠK follows from [JJMO, (3.4)]. Since dimH µ >
d − 1, Proposition 3.8 (2) gives that (ΠK)∗µ � Hd−1 for Γd,k-almost all
K ∈ Ad,k(E, ε). Defining D as the set of such affine k-planes and using
Remark 2.2 (b), we get for all K ∈ D and for all Borel sets B ⊂ E

µK,y|B = (µ|B)K,y

for Hd−1-almost all y ∈ NK . Note that D depends only on µ. Combining this
with Theorem 2.1 implies the existence of D̃ ⊂ D (depending again only on
µ) such that Γd,k(Ad,k(E, ε) \ D̃) = 0 and for all Borel sets B ⊂ E we have

Hd−1-ess inf{dimH(µ|B)K,y | y ∈ NK with (µ|B)K,y(Rd) > 0}
≥ Hd−1-ess inf{dimH µK,y | y ∈ NK with µK,y(Rd) > 0}
= dimH µ− (d− 1) > 0

(2.2)

for all K ∈ D̃.
The final step is to conclude that if K ∈ Ad,k(E, ε) with µ(VK(E)) > 0,

then
K /∈ D̃. (2.3)

The claim follows then by letting ε tend to 0 along a sequence. To verify (2.3),
assume to the contrary that K ∈ D̃. Recalling Remark 2.2 (a) and applying
(2.2) with B = VK(E), gives

dimH(VK(E) ∩Π−1
K ({y})) > 0

for Hd−1-almost all y ∈ NK with (µ|VK(E))K,y(Rd) > 0. Noting that the set
VK(E) ∩ Π−1

K ({y}) contains at most one point for all y ∈ NK , this gives a
contradiction, since

Hd−1({y ∈ NK | (µ|VK(E))K,y(Rd) > 0}) > 0

by (1.13).
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3 Proof of Theorem 2.1.

This section is dedicated to the verification of Theorem 2.1. Our methods com-
bine those of [JM] and [PS]. We begin by proving the following generalization
of [M1, Lemma 3.11].

Proposition 3.1. Assume that B ⊂ L is bounded. Then there are constants
c > 0 and δ0 > 0 such that for all x1 6= x2 ∈M and 0 < δ < δ0 we have

Hl({λ ∈ B | ρN (Πλ(x1),Πλ(x2)) ≤ δ}) ≤ cδnρM (x1, x2)−n.

Proposition 3.1 is obtained as an outcome of a sequence of lemmas (Lemmas
3.2–3.7) in which the rôle of the transversality condition (1.8) is crucial. The
basic idea of the proof is similar to that of [PS, Lemma 7.7]. Note that in
the setting of [PS] both L and N are Euclidean spaces whereas M is a metric
space.

Let R and Ct be as in (1.6) and (1.7), respectively, and let R1 = R/(3c1)
where c1 is as in (1.5). Consider λ0 ∈ L and x1 6= x2 ∈ M such that
ρN (Πλ0(x1),Πλ0(x2)) ≤ R/3 and |Φx1,x2(λ0)| < Ct. Picking coordinates
(η1, . . . , ηl) in B(λ0, R1) and applying transversality property (1.8) and the
Cauchy–Binet theorem, we find an (n× n)-minor A(λ0) of DΦx1,x2(λ0) with

|detA(λ0)| ≥ c̃ Ct. (3.1)

Here A(λ0) is determined with respect to the coordinates (η̃1, . . . , η̃n) induced
by (η1, . . . , ηn, . . . , ηl) and c̃ is a positive constant depending on l and n. Given
λ = (λ1, . . . , λn, λn+1, . . . , λl) ∈ B(λ0, R1), set

Hλ = {λ′ ∈ B(λ0, R1) | λ′ = (λ′1, . . . , λ
′
n, λn+1, . . . , λl)}.

Defining a function ψλ : Hλ → Rn by

ψλ(λ′) = Φx1,x2(λ
′)

for all λ′ ∈ Hλ, the following lemma holds. (Observe that by (1.5) and the
choice of R1 the function ψλ is well defined.)

Lemma 3.2. There exists 0 < R0 ≤ R1 which is independent of λ0 such that
the following properties hold:

1. For all λ ∈ B(λ0, R0) the absolute values of the singular values of Dλψλ
are bounded below and above by positive constants that do not depend on
λ0 and λ.
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2. For all λ ∈ B(λ0, R0) the function ψλ : B(λ, R̃/3)∩Hλ → ψλ(B(λ, R̃/3)∩
Hλ) is a diffeomorphism, and

ψλ(B(λ, ρ) ∩Hλ) ⊃ B(ψλ(λ), dρ)

for all 0 < ρ ≤ R̃. Here R̃ and d are independent of λ0 and λ.

Proof. (1) From (1.9) we see that the absolute values of the singular val-
ues of (Dψλ0)(λ0) are bounded above by a constant C(L̃). Furthermore,
since (Dψλ0)(λ0) = A(λ0), inequality (3.1) implies that the absolute val-
ues of the singular values of (Dψλ0)(λ0) are bounded below by the constant
c̃ Ct/C(L̃)n−1. The claim follows since the function λ 7→ (DΦx1,x2)(λ) is uni-
formly continuous by (1.9).

(2) Defining a function ψ̃λ : Hλ → Rn by

ψ̃λ(λ′) = (Dψλ)(λ)−1ψλ(λ′)

and using the uniform continuity of the function λ 7→ (DΦx1,x2)(λ), we see
that the derivative Dψ̃λ(λ′) = Dψλ(λ)−1Dψλ(λ′) is close to the identity in
some ball B(λ, R̃) ∩ Hλ. (Here R̃ does not depend on λ0 and λ.) Applying
[PS, Lemma 7.6] gives that ψ̃λ : B(λ, R̃/3) ∩ Hλ → ψ̃λ

(
B(λ, R̃/3) ∩ Hλ

)
is

a diffeomorphism, and ψ̃λ
(
B(λ, ρ) ∩Hλ

)
⊃ B(ψ̃λ(λ), ρ/2) for all 0 < ρ ≤ R̃.

This in turn completes the proof of (2). Note that the constant d depends
on the lower bound of the absolute values of the eigenvalues of Dψλ(λ), and
therefore, by (1), it is independent of λ0 and λ.

According to the next lemma, there is a zero of the function Φx1,x2 close
to each parameter λ for which |Φx1,x2(λ)| is small enough.

Lemma 3.3. Suppose that x1 6= x2 ∈M and λ ∈ L such that
ρN (Πλ(x1),Πλ(x2)) ≤ R/3. Then, given any 0 < δ < min{Ct, R̃d/4}, the
condition |Φx1,x2(λ)| < δ implies the existence of λ̃ ∈ L such that Φx1,x2(λ̃) = 0
and ρL(λ, λ̃) ≤ δ/d ≤ R̃/4.

Proof. Lemma 3.2 gives the inclusion

ψλ
(
B(λ, δ/d) ∩Hλ

)
⊃ B(Φx1,x2(λ), δ)

which implies the claim.

Given any x1 6= x2 ∈ M and λ̃ ∈ L with Φx1,x2(λ̃) = 0, define an (l − n)-
dimensional submanifold Lx1,x2(λ̃) of L by

Lx1,x2(λ̃) = Φ−1
x1,x2

(0) ∩B(λ̃, R̃).
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Lemma 3.4. Let x1 6= x2 ∈M and λ̃ ∈ L such that Φx1,x2(λ̃) = 0. Then for
all 0 < δ < R̃d/4 we have

{λ ∈ B(λ̃, R̃/2) | |Φx1,x2(λ)| ≤ δ} ⊂
⋃

λ′∈Lx1,x2 (λ̃)

B(λ′, δ/d).

Proof. We may assume that R̃ ≤ 2R0. Then Φx1,x2(λ) is defined for all
λ ∈ B(λ̃, R̃/2). Letting λ ∈ B(λ̃, R̃/2) such that |Φx1,x2(λ)| < δ and using
Lemma 3.3, we find λ′ ∈ B(λ, δ/d) ∩ Hλ such that Φx1,x2(λ

′) = 0. Since
λ′ ∈ B(λ̃, R̃), the claim follows.

Let δ0 = min{Ct, R̃d/4, R/3}. Consider x1 6= x2 ∈ M . For the proof
of Lemma 3.1 we may assume that B ⊂ V for some V defined in (1.6) and
Kδ ≤ δ0ρM (x1, x2). Recalling that the Lipschitz constants of ϕ, ϕ−1, φ,
and φ−1 are uniformly bounded above by K, and applying Lemma 3.3, one
finds a constant N (depending only on K, R̃, l, and the diameter of B) and
λ̃1, . . . , λ̃N ∈ L with Φx1,x2(λ̃i) = 0 such that

{λ ∈ B | ρN (Πλ(x1),Πλ(x2)) ≤ δ}

⊂
N⋃
i=1

{λ ∈ B(λ̃i, R̃/2) | |Φx1,x2(λ)| ≤ Kδ/ρM (x1, x2)}.

Defining for all λ̃ ∈ L with Φx1,x2(λ̃) = 0 and δ > 0

N
(
Lx1,x2(λ̃), δ/d

)
=

⋃
λ′∈Lx1,x2 (λ̃)

B(λ′, δ/d),

we see from Lemma 3.4 that Lemma 3.1 is an immediate consequence of the
following result.

Lemma 3.5. Given x1 6= x2 ∈M and λ̃ ∈ L with Φx1,x2(λ̃) = 0 and 0 < δ <
δ0, we have

Hl
(
N(Lx1,x2(λ̃), δ/d)

)
≤ cδn.

Here the constant c is independent of λ̃ and δ.

Lemmas 3.6 and 3.7, in turn, lead to Lemma 3.5.

Lemma 3.6. Let x1 6= x2 ∈ M and λ̃ ∈ L such that Φx1,x2(λ̃) = 0. Then
there exists α > 0 which is independent of λ̃ such that for all λ ∈ B(λ̃, R̃),
h ∈ TλHλ (TλHλ is the tangent space of Hλ at λ), and y ∈ TλLx1,x2(λ̃) with
‖h‖ = ‖y‖ = 1, we have ^(h, y) ≥ α. (Here ^(h, y) is the angle between h and
y.)
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Proof. Let p = h−y ∈ TλL. Denoting by c the lower bound given in Lemma
3.2 (a) and using (1.9), we get

c ≤ |Dλψλ(λ)h| = |(DλΦx1,x2)(λ)h| = |(DλΦx1,x2)(λ)p| ≤ c(L̃)‖p‖

since (DλΦx1,x2)(λ)y = 0. This completes the proof.

For x1 6= x2 ∈M and λ̃ = (λ̃1, . . . , λ̃l) ∈ L with Φx1,x2(λ̃) = 0, define

Vλ̃ = {λ′ ∈ L | λ′ = (λ̃1, . . . , λ̃n, λ
′
n+1, . . . , λ

′
l)}.

From Lemma 3.6 we immediately get the following result which, in turn, com-
pletes the proof of Lemma 3.1 by verifying Lemma 3.5.

Lemma 3.7. Given x1 6= x2 ∈M , λ̃ ∈ L with Φx1,x2(λ̃) = 0 and 0 < δ < δ0,
there is an integer I ≤ c(l, n)(R̃/δ)l−n and a covering of Vλ̃ ∩ B(λ̃, R̃) with
balls B1, . . . , BI of radius δ which induces a covering of N

(
Lx1,x2(λ̃), δ/d

)
with

balls B̃1, . . . , B̃I of radius c(α)δ.

One more tool is needed for the verification of Theorem 2.1. The rôle of
Lemma 3.1 is crucial in the following proof which combines the methods from
[FM, Lemma 4.1] and [M1, Theorem 9.7]. For reader’s convenience we will
give a brief outline of the proof in our setting.

Given locally finite measures ν1 and ν2 on a metric space (X, ρ), denote
by D(ν1, ν2, x) the lower derivative of ν1 with respect to ν2 at a point x ∈ X;
that is,

D(ν1, ν2, x) = lim inf
r→0

ν1(B(x, r))
ν2(B(x, r))

.

Moreover, for s ≥ 0, the s-energy Is(ν) of a measure ν is defined as

Is(ν) =
∫∫

ρ(x, y)−s dν(x) dν(y).

Proposition 3.8. Let µ be a Radon measure on M with compact support.
Then the following properties hold:

1. We have (Πλ)∗µ� Hn if and only if D((Πλ)∗µ,Hn, y) <∞ for (Πλ)∗µ-
almost all y ∈ N .

2. Both dimH µ > n and In(µ) < ∞ imply that (Πλ)∗µ � Hn for Hl-
almost all λ ∈ L.
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Proof. (1) Supposing that (Πλ)∗µ� Hn, the finiteness of the lower deriva-
tive follows directly from (1.11). On the other hand, assume that
D((Πλ)∗µ,Hn, y) < ∞ for (Πλ)∗µ-almost all y ∈ N . Given A ⊂ N with
Hn(A) = 0, it is sufficient to prove that

(Πλ)∗µ{y ∈ A | D((Πλ)∗µ,Hn, y) < c} = 0

for all 0 < c < ∞. This follows from [F, Lemma 2.9.3] by choosing α = φ =
(Πλ)∗µ and β = Hn therein. (Recall that the family {(y,B(y, r)) | y ∈ N, r >
0} is both a (Πλ)∗µ-Vitali relation and a Hn-Vitali relation, and therefore this
choice is possible.)

(2) Let dimH µ > s > n. Defining for all i = 1, 2, . . . a restriction measure
µi = µ|Mi where

Mi = {x ∈M | µ(B(x, r)) ≤ irs for all r > 0},

we have In(µi) < ∞. Moreover, it follows from Fatou’s lemma, Fubini’s
theorem, and Lemma 3.1 that∫

B

∫
D((Πλ)∗µi,Hn, y) d(Πλ)∗µi(y) dHl(λ) ≤ cIn(µi)

for all bounded sets B ⊂ L. From (1) we get (Πλ)∗µi � Hn for Hl-almost all
λ ∈ L. This settles the claim since x ∈ ∪iMi for µ-almost all x ∈M .

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The methods from the proof of [JM, Theorem 3.8]
can be extended in a straightforward manner to our setting. Indeed, similarly
as in the proof of [JM, Theorem 3.8], we see from the disintegration formula
(1.13) that

Hn-ess inf{dimH µλ,y | y ∈ N with µλ,y(M) > 0} ≤ dimH µ− n

for Hl-almost all λ ∈ L. The opposite inequality reduces to proving that for
Hl-almost all λ ∈ L the set

Eλ = {y ∈ N |there is a Borel set A ⊂ π−1
λ ({y})

with dimHA < s and µλ,y(A) > ε}

has Hn measure zero for fixed s < dimH µ − n and ε > 0. This follows from
(1.13), Proposition 3.8, and Remark 2.2 (b). (For details see the proof of [JM,
Theorem 3.8].)
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