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ON WHITNEY SETS AND THEIR
GENERALIZATION

Abstract

Using results and methods of G. Choquet (1944) and M. Laczkovich
and G. Petruska (1984), we slightly generalize their results on “Whitney
sets”.

1 Introduction.

Let H be a connected subset of R™. Following Laczkovich and Petruska [3],
we say that H is a Whitney set (a W-set) if there is a non-constant function
f: H — R such that

im @ = f@)l (1)
rx—xo,xEH ||$ — .130”
holds for every xzg € H.

The existence of a W-set (with even stronger properties) follows from the
well-known example by H. Whitney [1]. G. Choquet [2] constructed a similar
example. Moreover, he gave two simple sufficient conditions for a C-set (a
connected set that is not a W-set). Namely, he proved that every connected
H C R™ with o-finite 1-dimensional Hausdorff measure is a C-set and the
following deeper result.

Theorem 1. Let f be a continuous real function defined on an interval I C R.
Then its graph {[z,y]; vy = f(z), x € I} is a C-set.
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Laczkovich and Petruska [3] proved a sufficient condition (based on an
easier technique than the Choquet’s one) for a curve in R™ to be a C-set, from
which Theorem 1 follows.

Theorem 2. Let ¢ : [a,b] — R™ be continuous and let

_ : o ley) —e@)l] _
E= {Lp(x), x € [a,b), y1—1>IaIcl+ P oo}.

If E has o-finite 1-dimensional Hausdorff measure, then ¢([a,b]) is a C-set.

We will show (Theorem 3) that an easy consequence can be immediately
inferred from Theorem 1: if a curve in R®™! has n components of bounded
variations, then the image of the curve is a C-set.

We investigate also more general notions of W (") -sets and C'")-sets in R"™
(see Definition 1), which were already examined (without using our terminol-
ogy) by Choquet ([2], see Theorem 4 below).

Definition 1. Let & : [0,00) — [0, 00) be an increasing function with h(0) = 0.
A connected set H C R™ is said to be a W _get, if there is a function
[+ H — R with the following properties

(i) f is not constant,
(ii)
f(@) — (o)
— L - =0 2
r—xg,c€H h(||x — 1[,’0”) ( )
holds for every g € H.

A connected subset of R™ is called a C™-set if it is not a W)-set.

If £ € N, we write W¥-set and C¥-set instead of W"-set and C"-set,
respectively, for h(t) = t*. Thus, W-set and C-set are Wl-set and C'-set,
respectively.

Using methods from [3] we will prove a generalization of our Theorem 3
(see Corollary 3). We will also prove a more general sufficient condition for
curves in R” to be C*-sets (k € N). This condition follows from Proposition 1
which is a natural generalization of Theorem 2 and can be proved analogously.

2 Results.

At first we present the following easy consequence of Theorem 1.

Theorem 3. Let p: [a, 8] = R (n21, —c0 <a < <) be a curve
with n components having bounded variations. Then o([a, (]) is a C-set.
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PROOF. For simplicity we can assume that the first n components have bounded
variations and denote ¢ = (¢1,...,®5). It is well-known that by changing the
variable of ¢ we may assume that 1 is Lipschitz.

Define the function g : [«, 5] — R by g(t) = @pnt1(t). Now if f is a function
with the property (1) for H = ¢([a, 8]) we define the function f : graph(g) —

R as
F(t, () = f(e(t).

(
Since the following inequality (z = (¢, g(t)), v = (s, 9(s)), we use the [;-norm)
'f f) ’ f(t.9(8) = F(s.9(5))
l =yl |t — s+ g(t) — g(s)|
‘ f(@(t)) — f(#(s)) ‘ _ ‘f(@(t)) - f(@(S))‘
[9(8) = ()] + |ent1(t) — Pna(s)| le(t) — (sl

holds, it is not difficult to verify that fsatisﬁes property (1) for H = graph(g).
Using Theorem 1 we can conclude that f is constant and thus f is constant. [

The following theorem is contained in [2] with the proof for the case h(t) =
t. It was also noted that the proof for the general case is quite similar so we
will just recapitulate the basic steps of the proof for a general function h. (For
the notion of the Hausdorff h measure see [7].)

Theorem 4. Let h be an increasing function with h(0) = 0. If E C R™ has
o-finite Hausdorff h measure, then f(F) is a Lebesgue null set if

b @)= fGo)

0 g
r—xo,x€EE h(Hw — $0||)

holds for every xg € E.

PRrROOF. Denote by H" the Hausdorff h measure. We may clearly assume that
there is @ > 0 such that H"(E) < a < 0o. Let € > 0 and define

: /() = f(2)]
H, {er, (yeE&0<||y z|| < ) e <a}.
We have that H,, C H, 41 for all n € N.

There is a cover {U, ;}2, of H, such that diam(U,;) < 1/n holds for
all i € N and > ;2 h(diam(U,;)) < «a. Since for all z,y € U,; N H,
17(2) — £)] < ehllla — yl]) holds we get diam(f(Un s Ha)) < eh(diam(Un i
H,)). Hence we obtain

eh(diam(U,,; N Hy)) < ea.

vr

H )) é Z A*(f((]n,i N Hn)) §

=1
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Using the regularity of \* and f(H,)  f(E) we arrive at
A(f(B)) = ea
for all € > 0 which implies A*(f(E)) = 0. O

To prove Theorem 5 we need the following lemma that was inspired by
Lemma 1 in [4].

Lemma 1. Let ¢ : [, ] = R" ( —co < a <8< 00) be a curve, L CC RY,
L # {0}, Z = Lt and 11, Tz orthogonal projections onto L, Z. Denote by
M the set

{to € [0 8); Tsc-10) Veettoors) M2 =p(t0))| Z ML (2() (o))l }-

Then (M) has o-finite dim Z-dimensional Hausdorff measure.

PROOF. Denote

My = {to € M; Vie 1,60+ 1)) Iz (@(t) — @(to)ll 2 [TL(e(t) — ¢(to)) I}
and split every M, into {M,, ,,,}>°_; such that diam(M,, ) < 1/n. Then
M=U,_, M, = Uf:’mzl M, »,, and for every s,t € M, ,,, the inequality

Tz (p(s) — @)l 2 ML (e(s) — (1))

holds.

Now we can define the function f, ,, on the set Iz (o(M,.,)). If p €
II;(p(My,m)) then there is precisely one point z, € @(M,. ) such that
Iz (z,) = p. We define fi, 1 (p) = zp. If ¢ € Iz (0(My, ) and 4 € p(M,,.1m)
such that IIz(z,) = ¢ and ¢(s) = x, and ¢(t) = x4 (s,t € M, ,,) then

|2y — 2q|l = [z (zp — zq) + L(zp — 24|
= Iz (e(s) — @)+ T (e(s) — @) = 2[ Tz (¢(s)) — Lz (p(1))]]-

Hence f, m is Lipschitz. The countable union of {fmm(HZ(gp(Mn,m)))}fl‘jm:1
(which has o-finite dim Z-dimensional Hausdorff measure) covers o(M). O

As we already noted, Proposition 1 was stated in [3, Theorem 4] for
h(t) = t. To prove the proposition, we need to use the following prepara-
tory statements from [3].

Lemma 2. Let f be continuous on [a,b] and put
L ={z € [a,b); f\(x) >0}
Then X*(f(L)) 2 f(b) — f(a).
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Corollary 1. If \(f(L)) =0, then f is decreasing on [a,b).

Corollary 2. Let g be continuous and

N = {x € [a,b); 1iminfM >0 or limsupM < 0}.
y—a+ Yy —xT y—zt y—x

If M(f(N)) =0, then f is constant on [a,b].

In the following proof we will recall some basic steps of the proof of Theo-
rem 2 adapted to the more general setting of the Hausdorff A measure.

Proposition 1. Let h : [0,00) — [0,00) be an increasing function with
h(0) =0, let ¢ : [a,b] — R™ be a curve and

E={w(w); x € [a,b), lim hlle(y) = e(@)]) OO}.

BTyl
If E has o-finite Hausdorff h measure, then o([a,b]) is a C ™ -set.

ProOOF. Denote H = ¢([c, §]). Let g : H — R satisfy property (2).

Define f(z) = g(p(z)) for z € [o, 5] and set N as in Corollary 2. If
z € o, ) and p(x) & E, then lim, W = oo does not hold
Thus there is K > 0 and a sequence {z,}%,, , > x, &, — « such that

Mﬁwm < K. If p(z,,) # ¢(z), then

|$n
|f(zn) = f@)| _ 19(p(zn)) = g(e(@))] hlllp(zn) — p(@)]])
|zn — 2| h(llp(zn) — @ (2)]) |20 — 2

Hence W tends to zero as n — oo which easily implies * £ N.
We obtained ¢(N) C E, hence N*(f(N)) = M (g(e(N))) < M (g(E)) = 0,
where the last equality follows from Theorem 4. Corollary 2 gives us the
conclusion. O

Now we are ready to prove our main theorem.

Theorem 5. Let ¢ : [a, 3] = R (—0o < a < 3 < o0, n,k 2 1) be a curve.

penete lle(s) = p(®)]*
_ i M908 = @I _
E= {t < [a’ﬂ)’ slirgr |S—t| B OO}

and suppose that for all tg € E there are 6 > 0 (tg +0 < 38), M > 0 and n
natural numbers 1 < iy < -+ < ip, < n+k such that the inequality |p;, (t) —
©i, (to)| £ M|t—to|* (1 =1,...,n) holds for allt € (to,to+5). Then ¢([a, B])
is a CF-set.
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PROOF. As the limit in the set described in the theorem does not depend on
the norm in R"** (as well as in Theorem 2), we will (without loss of generality)
use the [{-norm.

Let tg € [a, §) such that

t) — o(to)]|®
L e — el
t—to+ |t—t0|

Due to the assumptions and continuity of ¢ there are d(¢9) > 0, M (¢o) > 0
and n natural numbers 1 < i1(tg) < -+ < in(to) < n + k such that

o ty+ (S(to) < (8 and

o for all ¢t € (to,to + d(tg)) the inequality

|50i1,(t0)(t) - (Piz(to)(to)l § M<t0>|t - t0|1/k7l =1,...,n
holds. (Denote the elements of {1,...,n + k} \ {i1(to),...,in(t0)} by
1 §]1(t0) < e <K jk(to) § n+k)

o for all t € (tg,to + 0(to)) the inequality K|t — to| < [|o(t) — o(to)||*
holds, with K = M (ty)*C*(n* + n) (C is a positive number such that
(Jz1|+ -+ |zns1)* £ C*¥(Jaq|* + - -+ [2,41]%) holds for all z € R*F1).

Then for t € (to,to + d(to)) we obtain

Kt —to] < (le1(t) = er(to)| + - + ents () — @nrr(to)])”
< Ck(|%‘1(to)(t) - %‘l(to)(toﬂk + o Pin ) () — Sﬁz‘n(to)(to)|k+
+ (05, (t0) () = P51 (t0) )| + -+ + 195 200) () = P t0) (F0))*)
< CFnM (t0)*|t—to|+C* (|95, (1) () =Pji (10) (F0) [+ - P51 (10) ()= @5 (10) (F0) ).

Thus

195, (t0) (£) = @i (t0) )| + -+ |@j1(20) (&) = @i (20) (B0)]
> [t—to|" ¥ M(to)n 2 04, (1) (t) — @i (1) (o) + - '+\%n(to)(t)—%‘"(to)(to)\-( |
3

Denote the linear subspace of R*** generated by vectors {eil(to), AU ein(to)}
by L and set Z = L. Then for t € (to,to + §(tg)) (with I, Iz orthogonal
projections onto L, Z) (3) can be rewritten as

Iz (o (t) = @(to)) [l Z ML (e (t) = @(to))]]-
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The union of the sets

Ap, o ={to € E; pr=11(to),...,pn = in(to)}

over all combinations of natural numbers 1 < p; < --- < p, < n + k covers
the set E.

By Lemma 1 the set ¢(A,, ... n, ) has o-finite k-dimensional Hausdorff mea-
sure and so has the set E. Now we can conclude by employing Proposition 1
with h(t) = t*. O

To rewrite a “nonlocal version” of the previous theorem, we need some
results on “a-variations” (cf. e.g. [5], [6]).

Definition 2. Let f be defined on A C R. For a 2 0 we denote by V,(f, A)
the least upper bound of the sums

n

where {[a;, b;]}"; is an arbitrary finite system of non-overlapping intervals
with a;,b; € A (i=1,...,n). We call V,(f, A) a-variation.

We will need a property that was proved by L. C. Young in Theorem
(4.2) of [5]. Without explicitly stating it, he showed that if f is a real function
(defined on a compact interval I) of bounded a-th power variation (for o > 1),
then there is a continuous increasing function h (from I onto itself) such that
fohis1/a-Holder.

Now we can state the corollary of Theorem 5.

Corollary 3. Let f : [a, 5] — R"* (n,k > 1) be a curve with n components
of bounded k-variations. Then ¢([a, 8]) is a C*-set.

PROOF. The case of k = 1 is handled by Theorem 3 so let k£ > 1. For simplicity
(without loss of generality) we can assume that the first n components have
bounded k-variations and denote ¥ = (1, ..., v,). We will prove that there is
a homeomorphism h of [a, 5] such that oh is 1/k-Holder. As remarked above,
due to [5] there are continuous increasing functions hy, ..., h, from [a, 8] onto
itself and positive constants K; such that |1;(h;(s)) —1;(h; ()| £ Kj|s—t|'/*
holdsforall a £ s,t <8 (j =1,...,n).

Define h:=(hy ' +---4+h, )L Leta<s<t<fBandje{l,...,n}
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Then

|95 (B(s)) = 5 (h())] < K|h; " (A(s)) — hy " (A(0)V* =
Kl 4 b ) o hg) T (s) = (™ 4 b ™) o hy) TH )V =
Ejl((h ™ by by T e By T ) o By i) T (s) -
(b oAby by ey T ohy +id) THE) VR S K |s— R

Using Theorem 5 for the curve poh we conclude that ¢([«, 5]) = ¢(h([e, 8]))
is a C*-set. O
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