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THE EQUALITY BETWEEN BOREL AND
BAIRE CLASSES

Abstract

In this paper, we study some properties of the Banach space βα(X),
which consists of all real Baire functions on a perfectly normal space X.
We obtain the equality between Baire and Borel classes as a consequence
of existence of an approximation property and a Tietze extension for
these classes. Moreover, when Y is a zero dimensional topological space,
we obtain a refinement of the known results for the equality between
β◦

α(X, Y ) and B◦
α(X, Y ).

1 Introduction.

A topological space X is perfectly normal if it is Hausdorff, and every closed
subset of X is a zero set of some real continuous function (cf. [1], [3], [6] and
[10]).

We denote the Borel sets of multiplicative (additive) class α by Pα (Sα)
[10], beginning with P0 = F (S0 = G), as the followings.

Pα : F ,Gδ,Fσδ, . . .

Sα : G,Fσ,Gδσ, . . . .

We designate β0(X) = C(X), the set of all real valued continuous functions
on X. For each finite ordinal α, we define Baire functions of class α as

βα(X) = {f : X → R : there exists (fn)∞n=1 ⊆ βα−1(X) such that
lim fn(x) = f(x), for each x ∈ X}
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We define Borel functions of class α as

Bα(X) = {f : X → R : for each closed set F in R, f−1(F ) ∈ Pα}

As X is perfectly normal, then by the same induction as in [10], βα(X) ⊆
Bα(X). It is obvious that Bα(X) ⊆ Bα+1(X).

In general, βα is not equal to Bα, see [5]. The Lebesgue-Hausdorff theorem
[10, page 391] says that if X is a metric space and Y is either the n-dimensional
cube [0, 1]n, or the Hilbert cube [0, 1]N, then the first Baire and Borel classes
of functions from X to Y are equal. Rolewicz [16] showed that if Y is a
separable convex subset of a normal linear space, the first Baire and Borel
classes of functions from X to Y are the same. In this paper we improve these
results for perfectly normal spaces in the scaler case. Furthermore, we also
extend our results to the case when the values of our functions are in a zero
dimensional metric space. Our proofs are based on small modifications of the
classical proofs of Lebesgue, Hausdorff and Banach for metric spaces [10 and
11].

Since X is perfectly normal, similar to the metric case [10], it is possible
to see that Pα’s (Sα’s) form a chain and F ⊆ Gδ, and for each A ∈ Pα there
exists a sequence (Gn)∞n=1 ⊆ Sα−1 such that A = ∩∞n=1Gn. For additive sets,
“S”, “P”, and “∩” are replaced respectively by “P”, “S”, and “∪”. See [10,
§-30] for details.

The ambiguous sets of class α is denoted by Hα ([10]) and defined as

Hα = Sα ∩ Pα.

In the following lemma, we mention some of the properties of perfectly normal
topological spaces. (Throughout this paper except the remark after Theorem
1.9, we suppose that α is finite.)

Lemma 1.1. In a perfectly normal space X, we have:

(a) Every set in Sα (α ≥ 1) is a union of some countable disjoint sets in Hα.

(b) For each sequence (Gn)∞n=1 ⊆ Sα (α ≥ 1), there exists a mutually disjoint
sequence (Hn)∞n=1 in Sα such that ∪∞i=1 Hi = ∪∞i=1Gi and Hi ⊆ Gi for
each i. In addition, if X = ∪∞i=1Hi, then each Hi belongs to Hα.

(c) For every sequence (Fn)∞n=1 in Pα (α ≥ 1) such that ∩∞n=1 Fn = ∅, there
exists a sequence (En)∞n=1 ⊆ Hα such that ∩∞n=1 En = ∅ and Fn ⊆ En

for each n. In particular, if A and B are two disjoint Pα sets, then there
exists a set E in Hα such that A ⊆ E and B ∩E = ∅. That is if A ∈ Pα,
C ∈ Sα and A ⊆ C, then there exists E ∈ Hα such that A ⊆ E ⊆ C.
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Proof. The proof is similar to that of metric spaces. See [10, §-30, V, VII,
VIII].

In the following lemma, we give a representation of Sα (resp. Pα) subsets
of a subset A of X.

Lemma 1.2. Let B ⊆ A ⊆ X. If B is Sα (resp. Pα) in A, then there is an
Sα (resp. Pα) set G in X such that A∩G = B. Consequently, if A in X and
B in A are Pα (resp. Sα or Hα) sets, then B is Pα (resp. Sα or Hα) set in
X.

Proof. We define the statement ∆(α) for ordinal number α as the following
composition:

If B is Sα in A , then there exists an Sα set G in X such that A ∩G = B
and

If D is Pα in C , then there exists a Pα set K in X such that C ∩K = D.
Now, the proof will be completed by induction on α.

In Lemma 1.3, we obtain a representation for Hα subsets of a subset A of
X.

Lemma 1.3. If A is Pα in X and K is Hα in A, then there exists H ∈ Hα

in X such that K = A ∩H.

Proof. It’s obvious that K is Pα in X. By applying the previous lemma,
there exists S ∈ Sα, such that K = S∩A. Thus K ⊆ S, and the above lemma
completes the proof.

Here, the set of real functions, defined on X, is denoted by RX and, (RX)◦

represents the set of bounded real functions on X. For f ∈ (RX)◦, we define

‖f‖∞ = sup{|f(x)| : x ∈ X}.

For definitions of R-module, R-algebra, lattice and uniformly closed R-modules,
we refer to [11] and [12]. Let U be a subset of the power set of X and A be a
subset of RX . We say that A separates the points of U whenever for each two
disjoint sets, A and B in U , there exists f in A with 0 ≤ f ≤ 1 such that

f(A) = {0}, f(B) = {1}.

If A is a lattice R-module, then it suffices that there exists an f in A such
that f(A) = {0} and f(B) = {1}. Let ê : X → R be the constant function
that assigns e (in R) to each member of X.



376 H. R. Shatery and J. Zafarani

Suppose that A ⊆ RX , we define

U1(A) = {f−1((−∞, a]), f−1([a,∞)) : f ∈ A, a ∈ R},
U2(A) = U1(A) ∪ {f−1({−1, 1}) : f ∈ A}.

Assume that ψ0 : R → (−1, 1) is a function such that ψ0(r) = r(1 + |r|)−1 for
each r in R. We say that A is closed under composition from left with ψ0 when
ψ0 ◦ f and ψ−1

0 ◦ f are in A for every f in A(The latter case is well-defined
when range(f) ⊆ (−1, 1)). As usual the restriction of f : B → R to A is
denoted by f |A.

Here we give a Baire-α characterization of Hα elements in X.

Lemma 1.4. We have H ∈ Hα if and only if χH ∈ βα(X).

Proof. We prove by induction. Suppose the statement holds for (α−1). Let
H be in Hα. As X is perfectly normal, then it is normal and the statement is
true for α = 1. By Lemma 1.1.(b), there are a nondecreasing sequence (Fn)∞n=1

of elements Pα−1 in X and a nonincreasing sequence (Gn)∞n=1 of elements of
Sα−1 such that

∪∞n=1Fn = H = ∩∞n=1Gn.

For each positive integer n, Fn ⊆ Gn. By use of induction, there is an Hn ∈
Hα−1 such that fn = χ

Hn
∈ βα−1(X) , fn(Fn) = {1} and fn(Gc

n) = {0}.
Obviously, χH is the point-wise limit of fn. The proof of the other side is
obvious and is omitted.

The Tietze extension theorem has been generalized for many cases of con-
tinuous functions (cf. [2], [14] and [15]). In order to give a Tietze extension
theorem for real Baire-α functions, we need some more lemmas.

Lemma 1.5. Let A be a lattice R-module, uniformly closed and 1̂ ∈ A such
that A separates the points of U and U1(A) ⊆ U . Suppose that A ∈ U and
f ∈ (RA)◦ such that for every set D ⊆ R of the form (−∞, a] or [a,∞) (a ∈ R)
and every h ∈ A, we have (f−h|A)−1(D) ∈ U . Then, there exists g ∈ A◦ such
that g|A = f .

Proof. The proof is similar to that of [10, §-14, IV, Tietze theorem]. We
will mention it for the sake of completeness. It’s obvious that for every two
disjoint set A and B in U , and for each real number a and b, there exists a
function h in A such that h is bounded h(A) = {a} and h(B) = {b}. Now
suppose that ‖f‖∞ ≤ c and define

A1 = {x ∈ A : f(x) ≤ −c/3}, A2 = {x ∈ A : f(x) ≥ c/3},
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A3 = {y ∈ R : |y| ≤ c/3}.

Since A is an R-module, then 0̂ ∈ A. Consequently, for each closed set D in
R of the form (−∞, a], [a,∞) (a ∈ R), we have

(f − 0|A)−1(D) = f−1(D) ∈ U .

Now, since A1 and A2 are two disjoint members of U , therefore, there exists g
in A such that

g(A1) = {−c/3}, g(A2) = {c/3}, ‖g‖∞ ≤ c/3,

|f(x)− g(x)| ≤ 2c/3 for each x ∈ X. (1)

Let g0 = 0. We construct by induction the sequence (gn)∞n=1 in A such that

|f(x)−
n∑

i=0

gi(x)| ≤ (2/3)n for each x ∈ A. (2)

As A is an R-module and (f − h|A)−1(D) ∈ U , hence h(x) =
∑n

i=0 gi(x) is in
A. Now by setting f(x)−

∑n
i=0 gi(x) and (2/3)nc instead of f(x) and c in (1)

respectively, we choose gn+1 in A such that ‖gn+1‖∞ ≤ 1/3(2/3)nc and

|f(x)−
n+1∑
i=0

gi(x)| ≤ (2/3)n+1c, for each x ∈ A.

We define g(x) =
∑∞

i=0 gi(x). By our construction, this series converges uni-
formly, therefore g is in A. Also, for each x in A, we have f(x) = g(x) by (2),
and it is obvious that ‖g‖∞ ≤ c.

As a consequence of the Lemma 1.5, we obtain the following corollary.

Corollary 1.6. Let A be a lattice R-algebra, contain 1̂, closed under compo-
sition by ψ0 from left, which is uniformly closed, and separates the members
of U and U ⊇ U2(A). Suppose A ∈ U and f ∈ (RA)◦ such that for each closed
set D ⊆ R of the form (−∞, a], [a,∞), and {−1, 1} and every h in A, we have
(ψ0◦f − h|A)−1(D) ∈ U . Then there is an element g in A such that g|A = f .

For the Baire extension, we obtain the following result which improves the
extension theorem of [8] for Borel functions.

Theorem 1.7. Let A be in Pα. Every f in βα(A) has an extension to a
member of βα(X). Moreover, if f is bounded, then this extension can be
bounded too.
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Proof. It is easily deduced from Lemma 1.4, Corollary 1.6 and Lemma 1.1(c).

Now, we obtain an approximation theorem for β◦α(X). We define

Σα,R =
{ n∑

i=1

ei
χ

Hi
: n ∈ N, ei ∈ R and Hi ∈ Hα for each i ≤ n

}
.

Theorem 1.8. The uniform closure of Σα,R is β◦α(X).

Proof. One can prove by a similar proof as that of Theorem 7.29 of [9].
Suppose f0 is a nonconstant function in β◦α(X). We set

d = sup{f0(x) : x ∈ X} > inf{f0(x) : x ∈ X} = c.

Define
f = (2/(d− c))(f0 − d) + 1.

It is enough to prove that f is in the uniform closure of Σα,R. But we have
f(X) ⊆ [−1, 1]. Let

E = {x ∈ X : f(x) ≤ −1/3}, F = {x ∈ X : f(x) ≥ 1/3}.

The sets E and F are two disjoint sets in Pα. Therefore, by lemma 1.1(c), there
exists K1 ∈ Hα such that E ⊆ K1 and F ∩K1 = ∅. Define g1 = 1/3(1−2χK1).
Consequently, g1(E) = {−1/3}, g1(F ) = {1/3} and g1(X) ⊆ [−1/3, 1/3].
Also, it is obvious that g1 ∈ Σα,R and ‖f − g1‖∞ = 2/3.

In this way, there exists g2 in Σα,R such that 3/2(f − g1) satisfies the
equation

‖3/2(f − g1)− g2‖∞ = 2/3.

Thus,
‖f − g1 − 2/3g2‖∞ = (2/3)2 , g1 + 2/3g2 ∈ Σα,R.

Now, there is g3 ∈ Σα,R such that

‖(3/2)2(f − g1 − 2/3g2)− g3‖∞ = 2/3.

Here
g1 + 2/3g2 + (2/3)2g3 ∈ Σα,R,

and
‖f − g1 − 2/3g2 − (2/3)2g3‖∞ = (2/3)3.

By induction, for each n, there exist g1,g2,. . . ,gn in Σα,R such that

‖f −
n∑

i=1

(2/3)i−1gi‖∞ = (2/3)n,
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and

hn =
n∑

i=1

(2/3)ngi ∈ Σα,R.

Therefore, hn’s converge uniformly to f . Hence we obtain β◦α(X) is a subset
of the uniform closure of Σα,R. The other direction of proof is obvious.

For general real Baire and Borel classes, we obtain the following result.

Theorem 1.9. For each finite ordinal number α, we have βα(X) = Bα(X).

Proof. By virtue of Theorem 1.8, bounded real valued Baire and Borel func-
tions coincide. The rest of the proof is straightforward by use of the ψ0 func-
tion.

Remark. By similar arguments, one can easily see that for an infinite ordinal
number α, we have βα(X) = Bα+1(X).

Despite the example given in [5], we give another example to show that in
general, the equality between β1(X) and B1(X) does not hold.

Example 1.10. (a) Let X be a countable set with co-finite topology. It is
well known that X is not perfectly normal (and even regular). Furthermore,
we have β1(X) 6= B1(X).
(b) Here we give an example to show that the equality between Baire and Borel
functions can happen even when X is not regular. Let X be an uncountable
set with co-countable topology, then we have β1(X) = B1(X).

J. Fabrykowski [4] showed the existence of a sequence of continuous func-
tions on [0, 1], whose pointwise limit is finite on the rational numbers and
infinite on the irrational numbers. In [13], G. Myerson proved that one can re-
place rational numbers with an arbitrary Fσ set in [0, 1]. In [7], R. W. Hansell
improved these results by obtaining the following theorem.

Theorem A. Let X be a perfectly normal space, and let Y be a complete
separable metric space that is also an absolute retract. If p is any non-isolated
point of Y , then a necessary and sufficient condition for the existence of a
Baire class one function f : X → Y such that S = {x : f(x) 6= p} for a given
set S ⊆ X, is that S belongs to the class of Fσ subsets of X.

In this direction, we give a similar result for Baire real functions of class
α, when α is a finite ordinal number

Theorem 1.11. Let X be a perfectly normal space. Suppose p ∈ R, then a
necessary and sufficient condition for the existence of a Baire class α function,
f : X → R such that {x ∈ X : f(x) 6= p } = S for a given set S ⊆ X, is that
S belongs to Sα.
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Proof. By linearity of R, it is enough to prove theorem for p = 0. Suppose
that S is an Sα set in X. Thus there is a non-decreasing sequence, {Pi}∞i=1 of
Pα−1(⊆ Pα) set in X such that

S = ∪∞i=1Pi.

The set X − S = P belongs to Pα and P ∩ Pi = ∅ for each i ∈ N. By Lemma
1.1. (c), for each i, there exists an Hi ∈ Hα such that P ∩Hi = ∅ and Pi ⊆ Hi.
Suppose e ∈ R is not equal to zero. Therefore, fi = e

3iχHi belongs to β◦α(X).
We define f as f = Σ∞n=1fi. It is obvious that |f(x)| > 0 for each x ∈ S, and

f(X − S) = f(P ) = {0}.

By the uniform convergence of Σ∞n=1fi, f belongs to β◦α(X) and the proof is
complete. The proof of the other side of the theorem is obvious.

Now, we extend the results of [4] and [13] for perfectly normal spaces.

Theorem 1.12. Let X be a perfectly normal topological space and S be a
subset of X. There is a sequence of functions in β◦α−1(X) whose pointwise
limit is finite on S and infinite on complement of S if and only if S belongs
to Sα.

2 Baire Functions with Ranges in a Zero-Dimensional
Space.

In arbitrary topological spaces, the relation Pβ ⊆ Pα may fail for β < α, but
we always have

Pα = X − Sα.

Suppose that Y is a topological space. For a finite ordinal number α, we define
Bα(X,Y ), the class of Borel-α functions from X to Y by

Bα(X,Y ) = {f : X → Y : f−1(G) ⊆ Sα }.

Let β0(X,Y ) = C(X,Y ) be the class of all of continuous functions from X to
Y . We define Baire class α (α is a finite ordinal number) functions from X to
Y by

βα(X,Y ) = {f : X → Y :∃(fn)∞n=1 ⊆ βα−1(X,Y ) such that
lim

n→∞
fn(x) = f(x) for ∀x ∈ X }.

A topological space is said to be zero-dimensional, if it has a base consisting
of only its clopen subsets. We suppose that Y is a zero dimensional metric
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space and X is an arbitrary topological space. The space Y can be written
as the union of disjoint clopen sets with arbitrary small diameters [3, 10].
We denote the set of members of Bα(X,Y ) with relatively compact ranges
by B◦α(X,Y ). We define β◦α(X,Y ) in a similar way. The main result of this
section shows the uniform density of simple functions with finite ranges in
β◦α(X,Y ).

In [5], Fosgerau has proved the following theorem.

Theorem B. Let Y be a complete metric space. Then the family of first Baire
class functions coincides with the first Borel class functions from [0, 1] to Y if
and only if Y is connected and locally connected.

In order to obtain some other variant results similar to Theorem B, we need
to introduce some notations. Let f be a function with finite values y1, y2,. . . ,
ym on mutually disjoint sets A1, A2,. . . , Am, respectively. For simplicity, we
denote f in the form f =

∑m
i=1 yiχAi

. Therefore here, “summation” is only
a formal notation. Now, we give the main theorem of this section. For a
topological space, not necessary perfectly normal, we can define Pα, Sα and
Hα similarly.

Theorem 2.1. Suppose that Y is a zero-dimensional metric space and X is
an arbitrary topological space. Let

SIMα(X,Y ) =
{ n∑

i=1

yiχHi
:n ∈ N, yi ∈ Y, {Hi}n

i=1 ⊆ Hα

is a partition of X
}
.

Then each element of B◦α(X,Y ) is the uniform limit of a sequence from the
set SIMα(X,Y ).

Proof. Suppose that f ∈ B◦α(X,Y ). Since the range of f is relatively com-
pact so there exists a sequence, (yn)∞n=1 in Y , which is dense in the range
of f . Since Y is zero-dimensional, for each ε > 0 there is a base for Y with
diameter at most ε and so there exist mutually disjoint clopen sets Bε(yiε)
with diameter at most ε containing yiε such that

Range(f) ⊆ ∪nε
i=1Bε(yiε

).

Let Tiε
= f−1(Bε(yiε

)). Each Tiε
is an Sα set in X and X = ∪nε

i=1Tiε
. There-

fore, each Tiε is an Hα set in X. Now define fε =
∑nε

i=1 yiεχHiε
. It is easy to

see that
d(f, fε) ≤ ε.

Now, for each ε = 1
m , we obtain a function fm such that the sequence (fm)∞m=1

converges uniformly to f .
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Let us recall that an ultra-normal topological space X is a Hausdorff space
in which disjoint closed subsets may be separated by clopen sets ([14]).

Corollary 2.2. Suppose that Y is a zero-dimensional metric space and X is
an ultra-normal topological space. Then

B◦1(X,Y ) = β◦1(X,Y ).

Proof. It is well known that

β◦1(X,Y ) ⊆ B◦1(X,Y ).

By the previous theorem, as the range of Baire and Borel functions are separa-
ble, it is enough to show that for mutually disjoint sets H1,H2, . . . ,Hm ∈ H1

and y1, y2, . . . , ym ∈ Y such that ∪m
i=1 Hi = X, we have f =

∑m
i=1 yiχHi

∈
β◦1(X,Y ). Notice that for each k = 1, 2, . . . ,m, there exists a suitable sequence
of non-decreasing closed sets Fk,n’s such that ∪∞n=1Fk,n = Hk. Since the space
X is an ultra-normal space, and F1,i, F2,i,. . . , Fm,i are disjoint closed sets for
each i ∈ N, there exist disjoint clopen sets, Ok,i’s such that for each k, we
have Fk,i ⊆ Ok,i. We define fi by

fi =
m∑

k=1

ykχOk,i
∈ C(X,Y ).

We must prove that
lim

i→∞
fi(x) = f(x) , x ∈ X.

If x ∈ X, then there exists an integer k such that x ∈ Hk. Therefore, there
exists an integer i such that x ∈ Fk,i. But Fk,i’s are non-decreasing, thus
for each j ≥ i, x ∈ Fk,j and so fj(x) = yk. It follows that every member of
SIM1(X,Y ) belongs to β◦1(X,Y ).

Lemma 2.3. Let α be a finite ordinal number. For an ultra-normal , perfectly
normal space X and a zero-dimensional metric space Y with distinct elements
y1 and y2, we have y1χH + y2(1 − χH) belongs to β◦α(X,Y ) if and only if
H ∈ Hα.

Proof. Notice first that for each finite ordinal number α and any two dis-
joint sets P1 and P2 in Pα, there exists H in Hα which separates these two
sets. Now, the proof is by induction. As H ∈ Hα, therefore, there exist two
monotone sequences of sets such that

P1 ⊆ P2 ⊆ · · · ⊆ Pn ⊆ . . . in Pα−1 , · · · ⊆ Sn ⊆ · · · ⊆ S2 ⊆ S1 in Sα−1

and
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∪∞n=1 Pn = H = ∩∞n=1Sn.

Since for each n, we have Pn ⊆ Sn, there exists Hn ∈ Hα−1 which separates
Pn and X − Sn. Now, we define fn = y1χHn + y2(1− χHn). It is clear that

lim
n→∞

fn(x) = y1χH(x) + y2(1− χH)(x) ∀x ∈ X.

Hence y1χH + y2(1− χH) ∈ β◦α(X,Y ). The proof of the other side is obvious.

Remark. As in Corollary 2.2, we can prove the statement for any finite set.

Theorem 2.4. Let α be a finite ordinal number. For an ultra-normal , per-
fectly normal space X and a zero-dimensional metric space Y , we have

β◦α(X,Y ) = B◦α(X,Y ).

Proof. It is a direct consequence of Theorem 2.2 and Lemma 2.4.

Remark. By theorem B, for an arbitrary separable zero-dimensional metric
space Y , the equality between 1-Baire and 1-Borel classes does not hold.

β1([0, 1], Y ) 6= B1([0, 1], Y ).
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