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ON CAUCHY TYPE
CHARACTERIZATIONS OF CONTINUITY

AND BAIRE ONE FUNCTIONS

Abstract

In the paper of Lee et al. an equivalent condition for a function f
to be of the first Baire class has been established. This condition is
of an ε − δ type, similarly as in Cauchy’s definition of continuity of a
function. In the first part of this paper we examine a problem whether
it is possible to obtain other classes of functions by further modifications
of the above condition. It turns out that, in some sense, the answer is
negative. In the second part we consider a topological version of the
condition of Lee et al.

1 Introduction.

Assume that (X, dX) and (Y, dY ) are metric spaces and f : X → Y . It has
been observed in [2] that the following condition is equivalent to the continuity
of f :

given ε > 0, there exists a function δ : X → (0,∞) such that for all x1, x2

in X,

dX(x1, x2) < max{δ(x1), δ(x2)} implies that dY (f(x1), f(x2)) < ε. (1)

Subsequently it is shown in [2] that, under the assumption that X and
Y are complete and separable metric spaces, if we replace the operator max
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by min in the prior condition, then we will get an equivalent definition of a
function of the first Baire class.

The following question arises: If we substitute another operator for max in
condition (1) – for example, the arithmetic mean or the geometric mean – will
we get a new class of functions? We answer this question in the next section.

Let M : (0,∞)2 → (0,∞). By AM (X, Y ) (or simply AM ) we will denote
the family of all functions f ∈ Y X satisfying the following condition:

given ε > 0, there exists a function δ : X → (0,∞) such that for all x1, x2

in X,

dX(x1, x2) < M(δ(x1), δ(x2)) implies that dY (f(x1), f(x2)) < ε. (2)

Let C(X, Y ) (or in short C) denote the family of all continuous functions
from X into Y , and B1(X, Y ) (or B1) denote the family of all Baire class one
functions. In the sequel we will compare the families AM , B1 and C.

We say that a function M : (0,∞)2 → (0,∞) is nondecreasing if it is
nondecreasing with respect to each variable separately.

2 A Comparison of Classes AM , B1 and C.

Proposition 1. Let M1, M2 : (0,∞)2 → (0,∞). If for every function δ :
X → (0,∞) the functional inequality

M1(σ(x1), σ(x2)) ≤ M2(δ(x1), δ(x2)) (3)

has a solution σ0 : X → (0,∞), then AM1 ⊇ AM2 .

Proof. Indeed, let f ∈ AM2 . Fix an ε > 0 and consider a function δ
satisfying condition (2) with respect to M2. Then the function σ0 fulfills the
same condition with respect to M1. Hence f ∈ AM1 .

Proposition 2. For every function M : (0,∞)2 → (0,∞) there exists a
symmetric function M̂ such that AM = AM̂ .

Proof. For all s, t ∈ (0,∞) set

M̂(s, t) := max{M(s, t),M(t, s)}.

Then M̂ is symmetric and M ≤ M̂ . Hence and by Proposition 1, AM ⊇ AM̂ .
Now assume that f ∈ AM . Let ε > 0 and let δ : X → (0,∞) be a function

satisfying condition (2). Let points x1, x2 ∈ X be such that dX(x1, x2) <
M̂(δ(x1), δ(x2)). Then at least one of the following inequalities holds:

dX(x1, x2) < M(δ(x1), δ(x2)) or dX(x1, x2) < M(δ(x2), δ(x1))
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so, by the symmetry of dX and dY , we may infer that dY (f(x1), f(x2)) < ε.
Hence f ∈ AM̂ .

In the sequel, in virtue of Proposition 2, we may assume without loss of
generality that a function M is always symmetric.

Given r > 0, we say that a space (X, dX) is r-chainable if for each u, v ∈ X
there exists a finite sequence (xi)n

i=1 such that

x1 = u, xn = v and dX(xi, xi+1) < r for all i = 1, · · · , n− 1.

Proposition 3. Assume that r := inf{M(s, t) : s, t > 0} > 0. If a space
(X, dX) is r-chainable and f ∈ AM , then f is constant.

Proof. Let ε > 0 and let δ : X → (0,∞) satisfy condition (2). Let points
u, v ∈ X be such that dX(u, v) < r. Then dX(u, v) < M(δ(u), δ(v)), so
dY (f(u), f(v)) < ε. Since ε was arbitrary, we obtain that f(u) = f(v).
Now, given x, z ∈ X, there exists a chain (xi)n

i=1 joining x and z such that
dX(xi, xi+1) < r and then f(xi) = f(xi+1) for all i = 1, · · · , n− 1. Thus f is
constant.

Remark 1. Every connected metric space is r-chainable for all r > 0 (see,
e. g., [1, Exercise 6.1.C]).

Theorem 1. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. The following statements are equivalent:

(i) for all metric spaces X and Y , C(X, Y ) ⊆ AM (X, Y );

(ii) C(R, R) ⊆ AM (R, R);

(iii) lims,t→0+ M(s, t) = 0.

Proof. Implication (i) ⇒(ii) is obvious.
(ii) ⇒(iii): Suppose, on the contrary, that condition (iii) does not hold.

Then
inf{M(s, t) : s, t > 0} = lim

s,t→0+
M(s, t) > 0.

Since R is connected, we obtain, by virtue of Proposition 3, that AM consists
only of constant functions. This contradicts condition (ii).

(iii) ⇒(i): Let f ∈ C(X, Y ). Fix an ε > 0 and consider the function δ
satisfying condition (1). Since lims,t→0+ M(s, t) = 0, given x ∈ X there exists
σ(x) > 0 such that M(σ(x), σ(x)) < δ(x). Then the function σ satisfies the
following inequality:

M(σ(x1), σ(x2)) < max{δ(x1), δ(x2)},

so by Proposition 1, AM (X, Y ) ⊇ Amax(X, Y ) = C(X, Y ).



342 Jacek Jachymski, Monika Lindner and Sebastian Lindner

Proposition 4. Let a function M : (0,∞)2 → (0,∞) be symmetric. If for
every s > 0, inf{M(s, t) : t > 0} > 0, then AM (X, Y ) ⊆ C(X, Y ).

Proof. By virtue of Proposition 1 we only need to show that for every
function δ : X → (0,∞) there exists a function σ : X → (0,∞) such that for
all x1, x2 ∈ X,

max{σ(x1), σ(x2)} ≤ M(δ(x1), δ(x2)).

For all x ∈ X set
σ(x) := inf{M(δ(x), t) : t > 0}.

Then it is easy to verify that the function σ fulfills the above inequality.

Proposition 5. Let a function M : (0,∞)2 → (0,∞) be symmetric and
nondecreasing. Let X and Y be complete and separable metric spaces. If there
exists an s0 > 0 such that

lim
t→0+

M(s0, t) = 0,

then B1(X, Y ) ⊆ AM (X, Y ).

Proof. Fix a function δ : X → (0,∞). For all x ∈ X set

σ(x) := min{s0, s},

where s is a positive number such that M(s0, s) < δ(x). Then, for all x1, x2 ∈
X,

M(σ(x1), σ(x2)) ≤ M(σ(x1), s0) < δ(x1),

and analogously M(σ(x1), σ(x2)) < δ(x2). Thus σ is a solution of the func-
tional inequality

M(σ(x1), σ(x2)) < min{σ(x1), σ(x2)}.

Hence and by Proposition 1 we get that B1(X, Y ) ⊆ AM (X, Y ).

Theorem 2. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. The following statements are equivalent:

(i) for all metric spaces X and Y , AM (X, Y ) ⊆ C(X, Y );

(ii) AM (R, R) ⊆ C(R, R);

(iii) for every s > 0, limt→0+ M(s, t) > 0.
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Proof. Implication (i) ⇒(ii) is obvious.
(ii) ⇒(iii): Suppose, on the contrary, that condition (iii) is not satisfied.

Then there exists an s0 > 0 such that limt→0+ M(s0, t) = 0. By Proposition 5
we obtain that

B1(R, R) ⊆ AM (R, R) ⊆ C(R, R)

which yields a contradiction.
(iii) ⇒(i): Since M is nondecreasing, given s > 0 we have that

inf{M(s, t) : t > 0} = lim
t→0+

M(s, t) > 0.

Now Proposition 4 yields that AM (X, Y ) ⊆ C(X, Y ).

As an immediate consequence of Theorems 1 and 2 we get the following

Corollary 1. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. The following statements are equivalent:

(i) for all metric spaces X and Y , AM (X, Y ) = C(X, Y );

(ii) AM (R, R) = C(R, R);

(iii) lims,t→0+ M(s, t) = 0 and limt→0+ M(s, t) > 0 for all s > 0.

In particular, if M is the arithmetic mean, then AM (X, Y ) = C(X, Y ) for
all metric spaces X and Y .

Theorem 3. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. The following statements are equivalent:

(i) for all complete and separable metric spaces X and Y ,
B1(X, Y ) ⊆ AM (X, Y );

(ii) B1(R, R) ⊆ AM (R, R);

(iii) there exists an s0 > 0 such that limt→0+ M(s0, t) = 0.

Proof. Implication (i) ⇒(ii) is obvious.
(ii) ⇒(iii): Suppose, on the contrary, that condition (iii) is not satisfied.

Then, by Theorem 2, we have that AM (R, R) ⊆ C(R, R). Since B1(R, R) ⊆
AM (R, R) by (ii), we get that B1(R, R) ⊆ C(R, R) which yields a contradiction.

Finally implication (iii) ⇒(i) follows directly from Proposition 5.

Theorem 4. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. If X and Y are complete and separable metric spaces, then
AM (X, Y ) ⊆ B1(X, Y ).
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Proof. Fix a function δ : X → (0,∞). For all x ∈ X set

σ(x) := M(δ(x), δ(x)).

Since M is nondecreasing, we have that the function σ satisfies then the in-
equality

min{σ(x1), σ(x2)} ≤ M(δ(x1), δ(x2)) for all x1, x2 ∈ X.

Hence, by virtue of Proposition 1, AM (X, Y ) ⊆ B1(X, Y ).

Now Theorems 3 and 4 yield the following

Corollary 2. Let a function M : (0,∞)2 → (0,∞) be symmetric and nonde-
creasing. The following statements are equivalent:

(i) for all complete and separable metric spaces X and Y ,
AM (X, Y ) = B1(X, Y );

(ii) AM (R, R) = B1(R, R);

(iii) AM (R, R) ⊇ B1(R, R);

(iv) there exists an s0 > 0 such that limt→0+ M(s0, t) = 0.

In particular, if M is the geometric mean, then AM (X, Y ) = B1(X, Y ) for
all complete and separable metric spaces X and Y .

We may summarize the results of this section in the following

Remark 2. Let a function M : (0,∞)2 → (0,∞) be symmetric and non-
decreasing. Let X and Y be metric spaces. The following alternative holds:
either

(A) lims,t→0+ M(s, t) > 0 and then AM (X, Y ) consists only of constant
functions if X is connected,

or

(B) lims,t→0+ M(s, t) = 0 and then AM (X, Y ) ⊇ C(X, Y ).

Thus only case (B) is interesting. In case (B) we have the next alternative:
either

(B1) limt→0+ M(s, t) > 0 for all s > 0, and then AM (X, Y ) = C(X, Y ),

or
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(B2) limt→0+ M(s, t) = 0 for some s > 0, and then AM (X, Y ) = B1(X, Y ) if
both spaces X and Y are complete and separable.

Therefore none of symmetric and nondecreasing function M can generate
a class AM which would coincide neither with C, nor with B1. It remains an
open question whether we could obtain a reasonable class between C and B1

by using some non-monotonic function M .

3 A Topological Version of the Condition by Lee et al.

In the sequel we assume that (X, τ) is a topological space, (Y, d) is a metric
space, and f ∈ Y X . C(f) denotes the set of all continuity points of a function
f .

First observe that if X is a metric space, then condition (2) with M := min
is equivalent to the following one:

given ε > 0, there exists a family {Ux : x ∈ X} of open subsets of X such
that x ∈ Ux for all x ∈ X, and given v, w ∈ X,

v ∈ Uw and w ∈ Uv imply that d(f(v), f(w)) < ε.

This condition can also be considered under the assumption that (X, τ) is
a topological space. Let B(X, Y ) denote the set of all functions from X into
Y satisfying that condition.

Similarly let B∗(X, Y ) denote the set of all functions being the pointwise
limits of sequences of continuous functions from X into Y .

We show that B∗ ⊆ B. In fact, we can prove even stronger result:

Theorem 5. Let (X, τ) be a topological space and (Y, d) be a metric space.
Let fn, f ∈ Y X and f be a pointwise limit of the sequence (fn)∞n=1. If

lim sup
n→∞

C(fn) = X,

then f ∈ B.

Proof. Since

X =
∞⋂

n=1

∞⋃
k=n

C(fk),

we obtain that given x ∈ X, there exists a strictly increasing sequence (kn(x))∞n=1

of positive integers such that all functions fkn(x) are continuous at the point
x for all n ∈ N.

Fix an ε > 0. Given x ∈ X, let nx be an integer such that:

d(f(x), fn(x)) < ε/3 for all n ≥ nx;
fnx is continuous at the point x.
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The latter condition implies that there exists an open neighbourhood Ux of x
such that

d(fnx
(x), fnx

(y) < ε/3 for all y ∈ Ux.

Let x, y ∈ X be such that x ∈ Uy and y ∈ Ux. Assume, for example, that
nx ≤ ny. Then

d(f(x), f(y)) ≤ d(f(x), fny (x)) + d(fny (x), fny (y)) + d(fny (y), f(y)) < ε.

Hence f ∈ B.

It is an easy excercise to show that if (X, dX) and (Y, dY ) are metric spaces
and a sequence (fn)∞n=1 of mappings from X into Y converges uniformly to
a mapping f , then f is continuous provided given x ∈ X infinitely many
functions fn are continuous at x. In the metric setting Theorem 5 and [2,
Theorem 1] yield the following counterpart of the above result for Baire one
functions.

Corollary 3. Let X and Y be complete and separable metric spaces. Let
f : X → Y be a pointwise limit of some sequence (fn)∞n=1 having the property
that given x ∈ X, infinitely many functions fn are continuous at x. Then f
is of the first Baire class.
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