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A RIEMANN-TYPE INTEGRAL ON A
MEASURE SPACE

Abstract

In a compact Hausdorff measure space we define an integral by par-
titions of the unity and prove that it is nonabsolutely convergent.

1 Introduction.

In a measure space, usually, a Lebesgue-type integral is defined. In [1], Ahmed
and Pfeffer defined a Riemann-type integral on a locally compact Hausdorff
space, using partitions of sets and proved that it is equivalent to the Lebesgue
integral if the space has suitable properties and the measure is complete.

In [7], a Riemann-type integral has been defined in a compact Haus-
dorff space, using partitions of the unity (PU-integral) and has been proved
that a PU-integrable function is p—integrable and conversely, and that the
p—integral is equivalent to the PU-integral. Now, in this note, we modify
the partitions of the unity and we obtain a nonabsolutely convergent integral
(PU*-integral). We give also an example of function which is PU*— integrable
but it is not p—integrable.

2 Preliminaries.

In this paper X denotes a compact Hausdorff space, M a o-algebra of subsets
of X such that each open set is in M, u a non-atomic, finite, complete Radon
measure on M.
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Definition 1. A partition of the unity (PU-partition) of X is, by definition,
a finite collection P = {(6;,x;)},_; where x; € X and 6, are non negative,
p-measurable and yp-integrable real functions on X such that >0, 6;(z) =1
a.e. in X.

The PU-partition is a PU*-partition if z; € Sp, = {x € X : 6;(x) # 0}.
We observe that for any PU-partition P = {(6;,z;)}!_, we can have a

PU*-partition P = {(f;,z;)}!_; where for every z € X we set 0;(x) = 0;(x) if
x; € Sp,, and if x; & Sp, we set 0;(x) = 0;(x) for x # x; and 0;(x;) = 1.
Definition 2. gage J§ on X is a map which to each x € X assigns an open

neighborhood of z; set d(z) = U(x) and denote by U(X) the family of all
gages on X.

Definition 3. If § is a gage on X, a PU-partition P = {(6;,z;)}}_; is said to
be d-fine if Sy, C 6(x;) (i =1,2,..,p).

Definition 4. A real function f on X is said to be (PU)-integrable on X if
there exists a real number I with the property that, for every given ¢ > 0,
there is a gage & such that | Y7, f(x;) - [y 0idu — I |< € for each d-fine
(PU)-partition P = {(6;,x;)}¥_; of X.

The number [ is called the (PU)-integral of f on X and we write I =

(PU) [+ [
For (PU)*-partitions, we have the (PU)*-integral and set I = (PU)* [ f.

3 Main Results.

3.1 Properties of the PU*-Integral.

Proposition 3.1.1. If § is a gage on X then there is a 0-fine PU (PU*)-
partition of X.

PROOF. Given 6 € U(X), let {U(x;)}; be a finite subcover of neighbor-
hoods. Set

i-1

Vi=U(xy), Vi=U(z;) — U U(zg) i=2,...,n

k=1

and
0i(x) = xv.(z),

then the family {(0;,z;)}", verifies the properties of a d—fine PU-partition

of X.
If we consider 6;(z) = xv,us, (), we have a PU*—partition. O
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Denoting by PU*(A) the family of all the PU*-integrable real functions on
X, the following Proposition is an immediate consequence of the Definition 4.

Proposition 3.1.2. 1) PU*(X) is a linear space and the map f — (PU)* [ f
is a non negative linear functional on PU™(X);

2) if k € R and f(zx) = k for each x € X then f € PU™(X) and (PU)* [y f =
ku(X).

8)if f,g € PU(X) and f < g then (PU)* [ f < (PU)* [y g.

Proposition 3.1.3. If A is a compact subset of X and if f € PU*(X), then

f e PU(A).

PROOF. See Proposition 1.3 in [5]. O
If P ={(0;,2;)};—, is a partition of X, set o(f, P) =" f(x;) [y Oidp.

Proposition 3.1.4. If f is a real function on X, then f € PU*(X) if and
only if for each € > 0 there is a gage 6 on X such that |o(f,P) —o(f,Q)| <€
for every P = {(0;,2;)}, and Q = {(0},z})}_, —fine PU*-partitions of X.

Ve

PROOF. See proposition 1.4 in [7]. O

3.2 Measurability and Properties of PU*—Integrable Functions.

Proposition 3.2.1. If f is u—measurable and p—integrable on X, then f €
PU(X) and (PU)* [ f = [y fdp.

PROOF. It follows by the equivalence between the PU-integral and the y—inte-
gral (see [7]) and because a PU*-partition is also a PU-partition. O

Proposition 3.2.2. A PU*-integrable function is u—measurable.

PROOF. It is analogue to that used in [7] Propositions 3.1, 3.2 and 3.3. [

Proposition 3.2.3. If f,g are two real functions on X and f = g a.e. in
X then g is (PU)*-integrable if and only if f is (PU)*-integrable and the two
integral coincide.

Proor. If f is (PU)*-integrable then by Proposition 2.2 it is y—measurable

and by completeness of measure also g is p—measurable, then f — g = 0 a.e.

in X and it is p—measurable, p—integrable and (PU)*-integrable with
(PU)* [(f—g)=0.S0g=f—(f—g)is (PU)*integrable. O
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Lemma 1. If f is a real p—integrable function on X, A, B € M, with A C B,
and if ¢ € R and fA fdu<c< fB fdp then there exists a p—measurable set
C such that AC C C B and [, fdu = c.

PROOF. Consider the o—algebra D = {D € M : D C B — A} and the signed
measure o : D — [ fdu for D € D.
By Liapounoff theorem (see [9]), the set {«(D) : D € D} is a compact

interval. So
a(@):0<cf/fdu</ fdp
A B—A

and exists D; € D such that

di=c— d
leu C/Afu

c:/ fdu, ACAuUD;C B. O
AUD;

Proposition 3.2.4. If f is a PU"-integrable function on X, then for each
€ > 0 there is a u—measurable set E such that n(X —F) <€, f is p—integrable

on E and [, fdu= (PU)* [ f.
PROOF. Suppose that f be not u—integrable; set

E,={xreX:n—-1< f(z) <n},
F,={zeX:—n< flx)<—mn+1} n=1,2,3,...,

then - - -
X=JE.vF)=JJEuER) =] H.,
n=1 n=1 i=1 n=1

where H,, = |J;_,(E; U F;) is an increasing sequence of measurable sets.
By a property of the measure, it results lim, . p(H,) = pu(X) and for
each € > 0 there is 7 € N such that for ng > 7 it is

w(X) = p(Hpy) = (X — Hpy) <€ (x)
f is bounded on H,, so it is p—integrable on H,,,.
Suppose that [, fdu < (PU*) [ f; since f is not p—integrable, then
ng

the series Y., [, fdp and Y [, fdu are divergent to + co and to — oo

respectively. In fact, if > [, fdu=4ocoand Y [, fdu > —oo, consider
the functions

filx)=f(z) if xz€ UE” and fi(x) =0 elsewhere,
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fo(x) = f(z) if xGUF and fo(x) =0 elsewhere,

then f2(z) is p—integrable and hence (PU)*-integrable and fi(x) = f(z) —
fa(z) is (PU)*-integrable, but it is also p—integrable with integral -+ oo and
this is impossible. So for € > 0 there exists K > ng such that

/n fdu+/n +lfcm+---+/En +kfdu>(PU)*/Xf

and set H = H,, UE, 1 U---UZE, 1, it results

/ fdu < (PU)* /f</fdu

By Lemma 1 there exists a y—measurable set E with H,,, C E C H such
that [, fdu = (PU)* [, f and by relation (*) we have

w(X — F) <pu(X — Hy,) <e. O

Lemma 2. If f is u—measurable and there exists finite fX fdu, given e >0
there is a gage 0 on X such that

Fw) [ bt [ ol <

for each 6—fine (PU)*-partition P = {(0;,2z;)} in X.

PrROOF. It is a consequence of Vitali-Caratheodory theorem. See Proposition
3.1 in [5)]. O

Proposition 3.2.5. A p—measurable function f is (PU)*-integrable on X if
and only if given € > 0 there is a gage § on X and a u—measumble set E such
that W(E9) < e, f is p—integrable on E and | Y, fxge (xi) [y bidp| < € for
each 6—fine (PU) -partition P = {(0;,x;)}. Moreover [, fdu = (PU)* [ f.
We have set E€ = X — E.

Proor. If f is (PU)*-integrable, by previous Proposition, let ¢ > 0 there

is E € M such that u(EY) < ¢, f is p—integrable on E and [, fdu =
(PU)* fX f; so fxg is p—integrable and hence (PU)*-integrable and

vy [ pxe= [ sxedu= [ fan=pvy [ 1
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By the (PU)*-integrability of f and fxg, at corrispondence of € > 0 there
is a 6 on X such that for each d—fine (PU)*-partition {(6;,z;)}, it results

St [ f 1<

and
. ‘
DICRE /X 0,y — (PU) /X fl<t

So we have

I3 Fwxee /X rdpl =3 S (a) /X i = 3 Fl)xs /X budy] <

<IX s [ 0du=PU) [ 1 pxst@) [ odn= (P [ f<e

Conversely, for € > 0 let E be a u—measurable and p—integrable set with
1(EY) < € and let § be a gage on X such that |}, fx%(x;) [y 0idp| < & for
each d—fine (PU)*-partition P of X.

By the p—integrability of f on E , then also the function fxg is p—integrable
and, by lemma 2, there is a gage 6; on X such that

|ZfXE(1’i)/X@idu*/XfXEdu| < %

If 6(x) = d(x) (01 (x) for each x € X, then for each §—fine (PU)*-partition
P consider:

|Zf($i)/X9idﬂ—[Efdu\S|ZfXE(33i)/X€idM—/EfdM|+

€ €
+ fxcxi/ﬁidu <s+s=e
IS ) [ ol <5+
So f is (PU)*-integrable and (PU)* [, f = [}, fdu. O

3.3 Convergence Theorems and Nonabsolutely Convergence of the
PU*—Integral.

Proposition 3.3.1. If f and |f| are (PU)*-integrable then f is p—integrable.
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PrOOF. If f and |f| are (PU)*-integrable, consider the bounded sequence
fn = |f|An for each n € N it converges increasing to | f| and it is y—integrable
and

J vt =tim [ pudp =ty [ o< oy [ 1< o,

So |f] and f are u—integrable. O

Proposition 3.3.2. If (f,)n is an increasing sequence of (PU)*-integrable
functions converging to f pointwisely and lim, (PU)* fX fn < oo then f is
(PU)*-integrable and (PU)* [, f =lim,(PU)* [y fa.

PrOOF. Consider the increasing sequence (f, — f1)n. converging to f — fi;
since the functions (f,, — f1)n are non negative, then by Proposition 3.3.1,
they are p—integrable and

i [ (= fidu=tm(PU)” [ (Fa )=

X

zliTan(PU)*/an—(PU)*/Xh < +oo.

So by the monotone theorem for the p—integrable functions, the function
(f—f1) is p—integrable and hence (PU)*-integrable. Therefore f = (f—f1)+/f1
is (PU)*-integrable. O

Proposition 3.3.3. If (fn)n is a sequence of (PU)* integrable functions con-
verging pointwisely to f and such that there are two functions h and g (PU)*-
integrable with h < f, < g for each n € N then f is (PU)*-integrable and

(PU)* [y f = 1im,(PU)* [y fn.

PRrROOF. Consider the sequence (f, — h),; it is non negative and (PU)*-
integrable, so it is u—integrable and results:

0<(fn—"h)<(g—nh).

Since the function g—h is non negative and (PU)*-integrable, it is y—integrable
and by the dominate convergent theorem, the sequence of functions (f, —
h) converges to f — h which is a p—integrable function and hence (PU)*-
integrable. By the equality f = (f — h) + h it follows the (PU)*-integrability
of f. O

Definition 5. We say that a real function f has finite [, fdu but [, |f|du
is infinite if
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i) or exists a sequence 4,, € M with A,, C 4,11, UA, = X, f is u—integrable
on A, for each n and exists finite lim,, [, fdu while [, |f|dp = +oo0.

Then we set
j/ fdurzlhnjf fops
X noJA,

i) or if f = Y 2 anxa,, An € M, UAn = X, A;NA; =0 and
T anu(A,) s finite while 377 Jan|u(A,) = +oo , then we set

+oo
; anp(An) = /X fdp.

Proposition 3.3.4. If f is u—measurable and exists finite fX fdup but fX |fldu =
400 then [ is (PU)*-integrable and [ fdp = (PU)* [y f.

PROOF. If € > 0, by lemma 2, there is a gage § on X such that if P = {(6;,x;)}
is a (PU)*-partition of X, then we have:

€> |Z(f(x1)/xozdl$* /Xfﬁidp)| = |Zf(xi)/X()id,u, ngidm _
= \Z(f(xi)/xeidu—/xfdm.

O

An example of a function which is PU*-integrable but it is not
pu—integrable.

Consider the space X = {0,1}N. Let @ = ajas ... ax be a finite string of 0
and 1; consider the set A5z = [@]y = {y € X : v =ap, for some 8 € X}, itisa
clopen set (i.e. an open and closed set) with respect to the topology induced
by the metric p so defined:

if o, € X pla,B) =5 ifa#fand a1 = B1,...0 = B, Ons1 # Br1

pla,a) = 0.

With respect to this metric p, X = {0,1} is a complete, separable and
compact metric space ( see [3]). Define on the family {A5} the following set
function m:

1
2k
and let m* be the outer measure induced by m on the family of all the subsets
of X. If M is the o—algebra of all the subsets of X m*—measurable in the

m(Ag) =
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Caratheodory sense, then the open sets are in M and m* is a complete measure

on M.

Define on X the following real function

ap far=0
ay foag=1and ag=0

fla) =

a, ifay,as,...0n_1=10a,=0

f(1111...111...) =0

where a = (ay,as,...) € {0,1} and a,, = (- )" " for every n € N. Then,
by Proposition 3.3.4, we have:

H

/fdm Zan :Z )"~ = (PU)' /f,

so f is PU*-integrable but | f| is not u-integrable.
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