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A NEW PROOF OF A LIOUVILLE-TYPE
THEOREM FOR POLYHARMONIC
FUNCTIONS

Abstract

We give a new and simple proof that every polyharmonic function
on R™ which is bounded is constant.

Liouville’s theorem states that if a function is holomorphic and bounded
on all C, then it is constant. It is also well-known that a similar result holds
for harmonic functions: if a function is harmonic and bounded on all R™,
then it is a constant (see [6] or [2, p.31]). More generally, this is true for
every polyharmonic function of degree m, that is, a function f with A™f =
0, where A := Y7 | 9%/027 is the laplacian. The first proof of this fact
was given, it seems, by Nicolesco in 1932 [7, p.136]; there he starts from
Pizetti’s formula [8, p.182] to get an integral mean value characterization of
polyharmonic functions, from which he derives Liouville’s theorem.

The aim of this note is to give a short and new proof of this result, assuming
the result for harmonic functions and starting again from Pizetti’s formula (in
itself a little gem which deserves to be better known).

Pizetti’s formula. Let U be an open set in R”, m € N, f € C*™(U). Take
x € U and r > 0 such that the closed ball with center z and radius r is in U.
Write M(f,z,r) the mean value of f on the sphere with center 2 and radius
r. Then

m—1

M(foar) =S N f(2)-a;r% + Rp(foa,r),

=0
where a; := 27%T(n/2)/(j!T(j + n/2)) and the remainder satisfies

|Rm(f7$,7”)| < sup ‘Amf(y” 'amr2m'

ly—z|<r
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As Pizetti himself remarks, the formula reduces to a Taylor expansion
when f is radial. Moreover the well-known mean value theorem for harmonic

functions is a special case.

PROOF. Since Pizetti’s original proof (for n = 3) is not easily accessible, we

will give it here, but amended so that it is valid for any n > 3.
First, take 0 < € < r. Applying Green’s formula

/(f~Ag—g~Af)(z)dz=/ (f - 0vg — 9-0,1)(y) do(y)
Q o0

with g(z) =72 — ||z —2z|> " and Q= Q. = {z € R" 1 e < ||z — z|| < r},
we get, since grad g(z) = (n — 2)||z — z|| 7" (2 — ) and Ag =0 on R™ \ {z},

1 1
[ A

n—2 n—2

=0t o Twdew) = T [ ety

1 1
(=) [, 2ot

If we let € tend to 0, we obtain

/ f(y) do(y) = (n — 2)wn ()
OB(z,¢)

n—2

lim

8*>0+ s’nfl

(where wy, := [g,_, do(y)) by continuity of f at x, and

1 1
li - — o, d =0
dp (o) [, asdew

because |faB($7E) O f(y)do(y)| < SUP|.— || <r |lgrad f(2)|| - wne™ L. So

n—2
ot )y J0)0) — (0= 2enf @)

1 1
= — Af(z)dz
/B(:c,r)('z 733”“72 Tn2> ( )

= ’ 1 L n—1
~ [ [ G ) At dot dp

and therefore

r n—1
R e Wl G = E e

n—2

(1)
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Now, given a continuous function ¢ on R, we write Zyyp := ¢ and define
inductively Z¢ on Ry by

1 t pn—l
Tro(t) == —— —— | Z— d
wp(t) = —— ; (P tn2> k—1¢(p) dp
for k € N (note that p — p"~1/t"=2 > 0 for every 0 < p < t). When ¢ is the
constant function 1, a straightforward recurrence shows that

I'(n/2 £\
O = ram (3) —o

Hence, m inductive applications of (1) will give
m—1 . .
M(foz,r) =D A f(x)-a;r™ + T M(A™ f,z, p)(r).
j=0

The conclusion follows from the estimate |Z,,,(t)| < supg<g<; [(s)] - T 1(2),
which is also easily obtained by recurrence. O

Pizetti’s formula in R? is proved using g(z) :=In ||z — z|| — Inr.

Theorem 1. Let m € N and f € C*°(R") with A™f =0 and f bounded on
all R™. Then f is constant.

PrOOF. By induction on m. The case m = 1 is the classical result for har-
monic functions. Suppose then m > 2 and the assertion true for m — 1. By
Pizetti’s formula we have

m—2
amflAmilf(x) = M(f,$77") : r272m - Z Ajf(l') . ajr2j+2*2m
7=0

for all z € R™ and all » > 0. Letting r tend to infinity, we get, since M(f, z, )
is bounded, A™~!f(z) = 0. By the induction hypothesis, f is constant. [

There is a different proof of Pizetti’s formula in [3, pp.286-289]. From
Pizetti’s formula follows the spherical and, by integration, the volume mean
value property of harmonic functions, which is the only result used in [6].
Hence, we could say that Pizetti’s formula is essentially the only tool nec-
essary to our proof. In contrast, other recent Liouville-type theorems for
polyharmonic functions (e.g. [1], [4], [5]), because less elementary than our
statement, need several facts: the mean value property of harmonic functions
and also the Almansi expansion of polyharmonic functions in all three papers,
the analyticity of harmonic functions in [4] and [5], and even some properties
of spherical harmonics in [1].
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