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A NEW PROOF OF A LIOUVILLE-TYPE
THEOREM FOR POLYHARMONIC

FUNCTIONS

Abstract

We give a new and simple proof that every polyharmonic function
on Rn which is bounded is constant.

Liouville’s theorem states that if a function is holomorphic and bounded
on all C, then it is constant. It is also well-known that a similar result holds
for harmonic functions: if a function is harmonic and bounded on all Rn,
then it is a constant (see [6] or [2, p.31]). More generally, this is true for
every polyharmonic function of degree m, that is, a function f with ∆mf =
0, where ∆ :=

∑n
i=1 ∂2/∂x2

i is the laplacian. The first proof of this fact
was given, it seems, by Nicolesco in 1932 [7, p.136]; there he starts from
Pizetti’s formula [8, p.182] to get an integral mean value characterization of
polyharmonic functions, from which he derives Liouville’s theorem.

The aim of this note is to give a short and new proof of this result, assuming
the result for harmonic functions and starting again from Pizetti’s formula (in
itself a little gem which deserves to be better known).

Pizetti’s formula. Let U be an open set in Rn, m ∈ N, f ∈ C2m(U). Take
x ∈ U and r > 0 such that the closed ball with center x and radius r is in U .
Write M(f, x, r) the mean value of f on the sphere with center x and radius
r. Then

M(f, x, r) =
m−1∑
j=0

∆jf(x) · ajr
2j + Rm(f, x, r),

where aj := 2−2jΓ(n/2)/(j! Γ(j + n/2)) and the remainder satisfies

|Rm(f, x, r)| ≤ sup
‖y−x‖≤r

|∆mf(y)| · amr2m.
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As Pizetti himself remarks, the formula reduces to a Taylor expansion
when f is radial. Moreover the well-known mean value theorem for harmonic
functions is a special case.

Proof. Since Pizetti’s original proof (for n = 3) is not easily accessible, we
will give it here, but amended so that it is valid for any n ≥ 3.

First, take 0 < ε < r. Applying Green’s formula∫
Ω

(f ·∆g − g ·∆f)(z) dz =
∫

∂Ω

(f · ∂νg − g · ∂νf)(y) dσ(y)

with g(z) := r2−n − ‖z − x‖2−n and Ω = Ωε := {z ∈ Rn : ε < ‖z − x‖ < r},
we get, since grad g(z) = (n− 2)‖z − x‖−n(z − x) and ∆g = 0 on Rn \ {x},

−
∫

Ωε

(
1

rn−2
− 1
‖z − x‖n−2

)
∆f(z) dz

=
n− 2
rn−1

∫
∂B(x,r)

f(y) dσ(y) − n− 2
εn−1

∫
∂B(x,ε)

f(y) dσ(y)

−
(

1
rn−2

− 1
εn−2

) ∫
∂B(x,ε)

∂νf(y) dσ(y).

If we let ε tend to 0, we obtain

lim
ε→0+

n− 2
εn−1

∫
∂B(x,ε)

f(y) dσ(y) = (n− 2)ωnf(x)

(where ωn :=
∫

Sn−1 dσ(y)) by continuity of f at x, and

lim
ε→0+

(
1

rn−2
− 1

εn−2

) ∫
∂B(x,ε)

∂νf(y) dσ(y) = 0

because |
∫

∂B(x,ε)
∂νf(y)dσ(y)| ≤ sup‖z−x‖≤r ‖grad f(z)‖ · ωnεn−1. So

n− 2
rn−1

∫
∂B(x,r)

f(y) dσ(y) − (n− 2)ωnf(x)

=
∫

B(x,r)

(
1

‖z − x‖n−2
− 1

rn−2

)
∆f(z) dz

=
∫ r

0

∫
Sn−1

(
1

ρn−2
− 1

rn−2

)
∆f(x + ρu) ρn−1 dσ(u) dρ

and therefore

M(f, x, r) = f(x) +
1

n− 2

∫ r

0

(
ρ− ρn−1

rn−2

)
M(∆f, x, ρ) dρ. (1)
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Now, given a continuous function ϕ on R+, we write I0ϕ := ϕ and define
inductively Ikϕ on R+ by

Ikϕ(t) :=
1

n− 2

∫ t

0

(
ρ− ρn−1

tn−2

)
Ik−1ϕ(ρ) dρ

for k ∈ N (note that ρ − ρn−1/tn−2 ≥ 0 for every 0 ≤ ρ ≤ t). When ϕ is the
constant function 1, a straightforward recurrence shows that

Ik1(t) =
Γ(n/2)

k! Γ(k + n/2)

(
t

2

)2k

= akt2k.

Hence, m inductive applications of (1) will give

M(f, x, r) =
m−1∑
j=0

∆jf(x) · ajr
2j + ImM(∆mf, x, ρ)(r).

The conclusion follows from the estimate |Imϕ(t)| ≤ sup0≤s≤t |ϕ(s)| · Im1(t),
which is also easily obtained by recurrence.

Pizetti’s formula in R2 is proved using g(z) := ln ‖z − x‖ − ln r.

Theorem 1. Let m ∈ N and f ∈ C∞(Rn) with ∆mf = 0 and f bounded on
all Rn. Then f is constant.

Proof. By induction on m. The case m = 1 is the classical result for har-
monic functions. Suppose then m ≥ 2 and the assertion true for m − 1. By
Pizetti’s formula we have

am−1∆m−1f(x) = M(f, x, r) · r2−2m −
m−2∑
j=0

∆jf(x) · ajr
2j+2−2m

for all x ∈ Rn and all r > 0. Letting r tend to infinity, we get, since M(f, x, r)
is bounded, ∆m−1f(x) = 0. By the induction hypothesis, f is constant.

There is a different proof of Pizetti’s formula in [3, pp.286–289]. From
Pizetti’s formula follows the spherical and, by integration, the volume mean
value property of harmonic functions, which is the only result used in [6].
Hence, we could say that Pizetti’s formula is essentially the only tool nec-
essary to our proof. In contrast, other recent Liouville-type theorems for
polyharmonic functions (e.g. [1], [4], [5]), because less elementary than our
statement, need several facts: the mean value property of harmonic functions
and also the Almansi expansion of polyharmonic functions in all three papers,
the analyticity of harmonic functions in [4] and [5], and even some properties
of spherical harmonics in [1].
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