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NO TRANSCENDENCE BASIS OF R OVER
Q CAN BE ANALYTIC

Abstract

It has been proved by Sierpiński that no linear basis of R over Q
can be an analytic set. Here we show that the same assertion holds
by replacing “linear basis” with “transcendence basis”. Furthermore,
it is demonstrated that purely transcendental subfields of R generated
by Borel bases of the same cardinality are Borel isomorphic (as fields).
Following Mauldin’s arguments, we also indicate, for each ordinal α such
that 1 ≤ α < ω1 (2 ≤ α < ω1), the existence of subfields of R of exactly
additive (multiplicative, ambiguous) class α in R.

1 Introduction.

Sierpiński showed in [9] that no linear basis of R over Q can be analytic (in
particular, Borel). In this note, we prove the same statement for the so-called
transcendence bases of R over Q:

Theorem 1.1. No transcendence basis of R over Q can be analytic.1

Moreover, suggested by the reading of Le Gac’s [6], in Section 3 we give
an elementary proof for the following assertion:

Theorem 1.2. Fields of reals generated by algebraically independent Borel
sets of the same cardinality are Borel isomorphic (as fields).2
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1The phrases “of R” and “over Q” shall be frequently omitted.
2By appealing to a deep result by Kallman [4], Le Gac shows that Q-linear subspaces of

R generated by Borel bases of the same cardinality are Borel isomorphic (as groups). Our
approach, depending on Mauldin’s [7], does not require Kallman’s analysis.
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Before proceeding further, let us fix the terminology according to Isaacs’s
book [3], to which we refer the reader for the necessary elements of field theory
needed below.

A set T ⊆ R is a transcendence basis if T is algebraically independent and
maximal, in the sense of set-theoretic inclusion (by virtue of Zorn’s Lemma,
it does exist). Given F a subfield of R , we put F ∗ := F \ {0}. alg F is the
subfield of R ([3], theorem 17.5) consisting of the numbers algebraic over F ,
i.e., the roots of the polynomials in F [X]. If x ∈ alg F , degF x stands for the
degree of x over F . Sn denotes the symmetric group on {1, . . . , n}. Whenever
T is a transcendence basis, F := Q(T ) is a purely transcendental extension
of Q in R and

R = alg F =
∞⋃

n=1

Fn, (1)

where Fn := {x ∈ R : degF x ≤ n}.
We refer the reader to chapter 8 of [1] for the elements of the theory of

analytic and borelian subsets of Polish spaces needed below.

2 Proof of Theorem 1.1.

The proof consists in showing that wheneverA is an algebraically independent,
analytic set of reals, the field alg Q(A) is analytic and of Lebesgue measure
zero.3 In case A is a transcendence basis, by (1) this clearly leads to the
absurd conclusion that R itself is Lebesgue null.

Suppose A algebraically independent and of analytic type. Defined, for
every n ∈ N ,

An := {(x1, . . . , xn) ∈ An : xi 6= xj for i 6= j}

(An denoting the cartesian product of n copies of A), we have

F := Q(A) =
⋃
n∈N

⋃
R

R(An), (2)

where, for any n, R ranges over all the field Q(X1, . . . , Xn) of rational functions
in n indeterminates over Q , i.e., R = P/Q with P,Q ∈ Q [X1, . . . Xn], Q 6= 0.
Note that each R above is well-defined on An and continuous. Consequently,
F is analytic, inasmuch as it is the union of denumerably many continuous
images of analytic subsets of Polish spaces.

3In this connection, we wish to quote a recent result due to Edgar and Miller [2]: the
Hausdorff dimension of any analytic, proper subring (in particular, subfield) of R is 0.
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Let us now show that the analyticity of F implies that every Fn (Fn as in
(1)) is analytic as well. To this aim, for every n ∈ N define

Pn : Fn×F ∗×R ⊆ Rn+2 → R (a0, . . . , an−1, an, x) 7→
n∑

i=0

aix
i,

πn : Rn+2 → R (a0, . . . , an, x) 7→ x.

Moreover, put En := πn(P−1
n ({0})).

Evidently, En consists of those reals that are roots of some polynomial in
F [X] having degree equal to n. Hence, for every n ∈ N : Fn =

⋃n
i=1 Ei.

By applying proposition 8.2.6 in [1] twice (note that, in view of our initial
assumption, Fn×F ∗×R is analytic in Rn+2) we conclude that all the En –thus
also the Fn– are analytic. A fortiori, Lebesgue measurable ([1], theorem 8.4.1).

It remains to check that each Fn is Lebesgue null: suppose, on the contrary,
that there exists a certain Fn with positive Lebesgue measure. Then, by
Steinhaus’s Theorem (see proposition 1.4.8 in [1]) there must exist δ > 0 such
that

B(0, δ) ⊆ diff(Fn) := {x− y : x, y ∈ Fn},

which is in contrast with the following couple, valid for every n:

diff(Fn) ⊆ Fn2 and R \ Fn2 = R .

Indeed, the former is just a consequence of the elementary algebraic fact:

degF x ≤ m and degF y ≤ n =⇒ degF (x− y) ≤ mn.

Concerning the latter, for every n ∈ N and q ∈ Q∗ we have the following:

n = degQ
n
√

2 = degQ q
n
√

2 = degF q
n
√

2,

due to both Eisenstein’s Criterion (theorem 16.21 in [3]) and the fact that F is
a purely transcendental extension of Q –a polynomial that is irreducible over
Q cannot be reduced over any purely transcendental extension of Q : apply
this to Xn − 2 ∈ Q[X]–. Consequently, for every q ∈ Q∗ and n ∈ N , letting
N := n2 + 1 we have q N

√
2 ∈ R \ Fn2 .

3 Proof of Theorem 1.2.

It consists in combining and adapting Le Gac’s [6] and Mauldin’s [7] ideas to
the field theoretical case.

Assume that A and A′ both are algebraically independent, Borel sets in R
such that cardA = cardA′ = c (the case cardA = cardA′ ≤ ℵ0 is obvious
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and of no interest).4 On the basis of theorem 8.3.6 in [1], there exists a
Borel isomorphism g : A → A′. Clearly, this is extended uniquely to a field
(algebraic) isomorphism G : Q(A) → Q(A′). We are going to show that G is
a Borel isomorphism as well.

To this aim, we firstly note that for every n ∈ N the map g induces a Borel
isomorphism gn : An → A′

n defined as follows:

gn(x1, . . . , xn) := (g(x1), . . . , g(xn)).

Secondly, we introduce the following definition: we call a set X ⊆ An transver-
sal in An if for any (x1, . . . , xn) ∈ An there exists an unique σ ∈ Sn for which
(xσ(1), . . . , xσ(n)) ∈ X. For example, the Borel set

Bn := {(x1, . . . , xn) ∈ An : x1 < . . . < xn}

is transversal in An. We leave to the reader the easy task to prove that, for
any n ∈ N and any Borel X transversal in An, the restriction map gn|X : X →
X ′ := gn(X) is a Borel isomorphism, and that X ′ is transversal in A′

n.
Furthermore, for every n ∈ N let us agree to denote with Rn the set of all

the proper rational functions in Q(X1, . . . , Xn), i.e., the set

Rn := Q(X1, . . . , Xn) \

(
n⋃

i=1

Q(X1, . . . , X̂i, . . . , Xn)

)
,

the symbol X̂i meaning that the indeterminate Xi is omitted.
This done, we may reformulate (2) in this way (Bn and B′n as above):

F := Q(A) = Q
⋃(⋃

n∈N

⋃
R∈Rn

R(Bn)

)
(3)

and, analogously,

F ′ := Q(A′) = Q
⋃(⋃

n∈N

⋃
R∈Rn

R(B′n)

)
. (4)

Indeed, if we have z = R(x1, . . . , xn) for certain z ∈ R, (x1, . . . , xn) ∈
An and R = R(X1, . . . , Xn) ∈ Rn, then z = R̃(xσ(1), . . . , xσ(n)), where
σ ∈ Sn is such that (xσ(1), . . . , xσ(n)) ∈ Bn and R̃ = R̃(X1, . . . , Xn) :=
R(Xσ−1(1), . . . , Xσ−1(n)) ∈ Rn.

4It is a well-established fact that algebraically independent, uncountable Borel subsets
of R do exist: see [8] or [5], for instance.
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Lemma 3.1. Suppose A algebraically independent over Q, X and Y subsets
of A. Then

Q(X ∩ Y) = Q(X ) ∩Q(Y).

Proof. Put Z := X ∩ Y and consider the following chain of equalities:

Q(X ) ∩Q(Y) = (Q(Z)(X \ Y)) ∩ (Q(Z)(Y \ X )) = Q(Z).

The first one is always true, independently of our assumption on A (for, obvi-
ously, X = Z ∪ (X \ Y) and Y = Z ∪ (Y \X )). The second holds inasmuch as
X \Y and Y \X are disjoint and A\Z –in particular, the set (X \Y)∪(Y \X )–
is algebraically independent over Q(Z), by lemma 24.6 in [3].

Lemma 3.2. Let A be algebraically independent. Suppose there exist R ∈
Rn and S ∈ Rm, with (x1, . . . , xn) ∈ An and (y1, . . . , ym) ∈ Am such that
R(x1, . . . , xn) = S(y1, . . . , ym). Then, m = n, R = S and there exists σ ∈ Sn

such that yi = xσ(i) for every i = 1, . . . , n.

Proof. We have

z := R(x1, . . . , xn) = S(y1, . . . , ym) ∈ Q(x1, . . . , xn) ∩Q(y1, . . . , ym).

By Lemma 3.1 there exist distinct z1, . . . , zk ∈ A and T ∈ Q(X1, . . . , Xk) such
that

{z1, . . . , zk} = {x1, . . . , xn} ∩ {y1, . . . ym}

and

z = T (z1, . . . , zk) ∈ Q(z1, . . . , zk) = Q(x1, . . . , xn) ∩Q(y1, . . . , ym).

Up to rearranging the xi’s and the yi’s, we may assume zi = xi = yi for
i = 1, . . . , k. Then, from

T (x1, . . . , xk)−R(x1, . . . , xn) = 0 = T (y1, . . . , yk)− S(y1, . . . , ym),

the algebraic independence of A and the fact that R and S are proper, we
infer both k = m = n and T = S = R.

Lemma 3.3. Every rational map R : Bn → R(Bn) in (3) is injective. The
union in (3) is disjoint. (Identical propositions hold for (4).)

Proof. Let us assume there exists z ∈ R such that z = R(x1, . . . , xm) =
S(y1, . . . , yn) for certain (x1, . . . , xm) ∈ Bm and (y1, . . . , yn) ∈ Bn, R ∈ Rm

and S ∈ Rn. By Lemma 3.2, m = n and R = S. By definition of Bn, yi = xi

for every i = 1, . . . , n. This proves both the assertions.



316 Enrico Zoli

In virtue of proposition 8.3.5 and theorem 8.3.7 in [1] and of Lemma 3.3,
for any n ∈ N and R ∈ Rn the set R(Bn) turns out to be borelian and Borel
isomorphic to R(B′n) via the composite map

G|R(Bn) : R(Bn) → Bn → B′n → R(B′n).

Hence, we infer that F and F ′ are both Borel sets, and finally that G : F → F ′

is a Borel isomorphism. This concludes the proof.
Incidentally, the existence of algebraically independent, perfect subsets of

R [8], [5] allows us to establish the following

Theorem 3.4. There is a purely transcendental subfield of R of exactly ad-
ditive class 1 in R. For each ordinal α such that 2 ≤ α < ω1, there exists a
purely transcendental subfield of R of exactly additive (multiplicative, ambigu-
ous) class α in R.

Mutatis mutandis, the proof is that of Mauldin: we omit it and refer the
reader to theorem 1 in [7].
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