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ON THE HENSTOCK-FUBINI THEOREM
FOR MULTIPLE STOCHASTIC INTEGRALS

Abstract

The generalized Riemann (or Henstock) approach to integration is
well-known for its explicitness and directness. It has been used to give
an alternative definition to the Itô integral and the multiple stochastic
integral, see [1, 3, 8, 9, 11, 12, 13, 14]. In this paper we shall derive
the Henstock-Fubini’s Theorem for multiple stochastic integral based
on the Henstock approach. We also show that the iterated multiple
integral formula is a direct consequence of Henstock-Fubini’s theorem..

1 Introduction.

The theory of multiple stochastic integral was first studied by N. Wiener in
1930. This study was later followed up in greater detail by K. Itô in early
1950’s, see [5].

The Riemann approach is well-known for its explicitness and directness in
studying integrals. It is impossible to define stochastic integrals using the Rie-
mann approach, since the integrators have paths of unbounded variation, and
the integrands are highly oscillatory. The deficiency of the Riemann approach
is due to the uniform meshes used in the Riemann sums. Uniform mesh is
unable to handle highly oscillatory integrands and integrators.

A way out of this apparent impasse of the Riemann approach was intro-
duced by J. Kurzweil and R. Henstock independently in 1950s. They used
non-uniform meshes (meshes that vary from point to point) in the definition
of the Riemann-Stieltjes integral. This technically minor but conceptually
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important modification of the classical definition of Riemann leads to the in-
tegrals which are more general than the Riemann-Stieltjes integral and the
Lebesgue-Stieltjes integral.It has been used to give alternative definitions to
the Itô’s integral, see [1, 3, 8, 9, 11, 12, 14], and the multiple Wiener integral,
see [13]. The Henstock approach gives definitions that are equivalent to the
classical integrals.

In this paper, we shall use the generalized Riemann approach (or Henstock
approach) to study the general multiple stochastic integral and derive the
Henstock-Fubini’s Theorem for multiple stochastic integral over non-diagonals
for deterministic functions. We shall derive the iterated multiple integral for-
mula as a direct consequence of Henstock-Fubini’s Theorem.

2 Setting.

Let (Ω,F , P ) be a complete probability space, R = (−∞,∞), T = (a, b] and
Tm = (a, b]× (a, b]×· · ·× (a, b], that is, m copies of [a, b]. An interval I ⊂ Tm

is said to be left-open if I =
m∏

i=1

(ai, bi] ⊂ Tm, where each (ai, bi] is a left-open

interval in T . Let Gm be the collection of all left-open intervals in Tm.
It is noted that Tm can be decomposed into two parts: the diagonal part

D consisting of

D = {(x1, x2, x3, · · · , xm) ∈ Tm : xi = xj for some i 6= j}

and the non-diagonal part Dc which consists of

Dc = {(x1, x2, · · · , xm) : xi 6= xj whenever i 6= j}.

In addition, the non-diagonal part can be decomposed into m! connected sets
contiguous to the diagonal in the following way:

Let Sm be the set of all permutation of m distinct objects. Hence there
are m! elements in Sm. For each π ∈ Sm, define

Gπ = {(x1, x2, · · · , xm) : xπ(1) < xπ(2) < xπ(3) < · · · < xπ(m)}.

Note that each set Gπ is open in Tm. The m! contiguous sets are disconnected
from one another and disjoint from the diagonal.

The multiple stochastic integral over the non-diagonal set was dealt with
in [13], which is a generalization of [5]. It was shown in the paper that the
Henstock approach gives equivalent definition to the classical multiple Wiener
integral.
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For each π ∈ Sm, we shall denote the projection of Gπ to T p, where p ≤ m,
by Projp(Gπ), that is,

Projp(Gπ) = {(x1, x2, · · · , xp) ∈ Rp : (x1, x2, · · · , xp, xp+1, · · · , xm) ∈ Gπ} .

Let I =
p∏

i=1

Ii = I1 × I2 × · · · × Ip ∈ Gp, where each Ii ⊂ R is of the form

(ai, bi]. The interval I is said to be non-diagonal if I ⊂ Projp(Gπ) for some
π ∈ Sm.

Definition 2.1. Let X : Gp × Ω → R and Y : Gq × Ω → R such that
E(X2(I)) < ∞ and E(Y 2(J)) < ∞ for all I ∈ Gp, J ∈ Gq and p + q = m.
Then X and Y are said to be uncorrelated of second order if

E
(
X(I(1))X(I(2))Y (J (1))Y (J (2))

)
= E

(
X(I(1))X(I(2))

)
E
(
Y (J (1))Y (J (2))

)
whenever I(i) × J (j) ⊂ Gπ for some fixed π ∈ Sm, i = 1, 2, j = 1, 2.

Definition 2.2. Let X : Gp×Ω → R. Then X is said to satisfy the orthogonal
property if E (X(J)X(K)) = 0 for all disjoint pair of intervals J,K ∈ Gp and
which are in Projp(Gπ) for some fixed π ∈ Sm.

3 Multiple Stochastic Integral.

We begin this section by defining the non-uniform division of Tm that we shall
take.

Definition 3.1. Let δ be a positive function defined on the closure of Tm,

which we shall denote by Tm, ξ = (ξ1, ξ2, . . . , ξm) ∈ Tm and I =
m∏

i=1

Ii be an

interval of Tm. An interval-point pair (I, ξ) is said to be δ-fine if Ik ⊂ [ξk −
δ(ξ), ξk + δ(ξ)] for each k = 1, 2, 3, · · · ,m.

Note that ξk may or may not be in Ik for each k = 1, 2, 3, · · · ,m. A finite
collection D of interval-point pairs {(I(i), ξ(i)) : i = 1, 2, 3, . . . , n} is said to be
a δ-fine division of Tm if

(i) I(i), i = 1, 2, 3, . . . , n, are disjoint left-open intervals of Tm;

(ii)
n⋃

i=1

I(i) = (0, 1]m.
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We remind the readers that from Definition 3.1, a δ-fine division consists
of a δ-fine interval-point pairs {(I(i), ξ(i)) : i = 1, 2, 3, . . . , n}. We remark that
for any given positive function δ on Tm, a δ-fine division of Tm exists, which
can be proved using continued bisection.

Notation 3.2. Let f : Tm×Ω → R, Z : Gm×Ω → R and δ be a given positive
function on Tm. We shall denote the Riemann sum (D)

∑n
i=1 f(ξ(i), ω)Z(I(i), ω)

by S(f, δ,D,Z) if D = {(I(i), ξ(i)) : i = 1, 2, 3, . . . , n} is a δ-fine division of
Tm.

Definition 3.3. The function Z : Gm × Ω → R is said to be additive if for
each ω ∈ Ω,

Z(I ∪ J, ω) = Z(I, ω) + Z(J, ω)

whenever I, J ∈ Gm and I ∪ J ∈ Gm while I and J are disjoint.

Definition 3.4. A function f : Tm ×Ω → R is said to be multiple stochastic
integrable to a function M(f) with respect to an additive function Z : Gm ×
Ω → R on the interval Tm if for every ε > 0, there exists a positive function
δ on Tm such that

E
(
|S(f, δ,D,Z)−M(f)|2

)
< ε

whenever D = {(I(i), x(i)) : i = 1, 2, 3, . . . , n} is a δ- fine division of Tm.

Here Z is the integrator and f is the integrand. M(f) is the primitive
function of f with respect to Z on Tm.

Definition 3.5. The integral of f over any subinterval I ⊂ Tm is as defined
in Definition 3.4 above, except that the positive function δ is defined on I
instead of the entire Tm.

Lemma 3.6. (see, for example, [13, Lemma 3.3]) Let δ be a positive function
on Tm and {Dk} be a finite family of δ-fine divisions of Tm. Then there exists
a partition {A1, A2, . . . , Aq} of [0, 1] and a finite family of δ-fine divisions
of Tm denoted by {D′

k} such that each interval of any D′
k is of the form

Al1 ×Al2 × · · · ×Alm and each D′
k is a refinement of Dk. Furthermore,

S(f0, δ, Dk) = S(f0, δ, D
′
k)

for all k.

Definition 3.7. A finite collection of δ-fine division of Tm of the form D′
k

(in Lemma 3.6) is said to be a standard δ-fine division of Tm, that is, all the
partitions of {D′

k} have the same division points on T .

In view of Lemma 3.6, we shall assume that all finite collections of δ-fine
divisions of Tm that we consider in Definition 3.4 and 3.5 are all standard
divisions.
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4 Basic Properties of the Integral.

First we shall state some standard properties of multiple stochastic integrals
over Tm. For the first few standard properties, we omit the proofs as they are
classical in the theory of Henstock integration theory, see for example[2, 4, 6, 7].

Proposition 4.1. The multiple stochastic integral of f with respect to Z, if
it exists, is unique.

Proposition 4.2. Let f and g be multiple stochastic integrable with respect to
Z on Tm, and let their integrals be denoted by M(f) and M(g) respectively,
and let k ∈ R be fixed. Then kf and f + g are integrable, with

(a) M(f + g) = M(f) + M(g);

(b) M(kf) = kM(f).

Proposition 4.3. Let f be multiple stochastic integrable with respect to X and
Y on Tm, and let their respective integrals be denoted by MX(f) and MY (f)
respectively. Then f is multiple stochastic integrable with respect to X + Y ,
and, moreover,

MX+Y (f) = MX(f) + MY (f).

Theorem 4.4. (Cauchy’s Criterion) A function f : Tm×Ω → R is multiple
stochastic integrable on Tm with respect to Z if and only if given ε > 0, there
exists a positive function δ on Tm such that

E
(
|S(f, δ,D1, Z)− S(f, δ,D2, Z)|2

)
< ε

whenever D1, D2 are standard δ-fine divisions of Tm.

Theorem 4.5. A stochastic process f : Tm × Ω → R is a multiple stochastic
integrable function on Tm with respect to Z if and only if there exists a sequence
{δn} of positive functions on Tm, n = 1, 2, 3, . . . , with δn+1(ξ) < δn(ξ) for all
n = 1, 2, 3, . . . , such that M(f) is the limit of S(f, δn, Dn, Z) under L2-norm.

Proof. Suppose f is multiple stochastic integrable on Tm to M(f). For
n = 1, 2, . . . , there exists δn(ξ) > 0 on Tm such that the inequality in Definition
3.4 holds with ε = 1

n . For each n = 1, 2, 3, . . . , fix a δn-fine division Dn. We
may assume that δn+1(ξ) < δn(ξ) for each n. Hence we have

lim
n→∞

E
(
|S(f, δn, Dn, Z)−M(f)|2

)
= 0

thereby completing the necessity part of the proof
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Conversely, if there exists a decreasing sequence {δn(ξ)} of positive func-
tions defined on Tm such that for any δn-fine division Dn of Tm we have

lim
n→∞

E
(
|S(f, δn, Dn, Z)−M(f)|2

)
= 0.

Suppose that f is not multiple stochastic integrable on Tm to M(f). Then
there exists ε > 0 such that for every positive function δ, there exists a δ-fine
division D of Tm such that

E |S(f, δ,D,Z)−M(f)|2 ≥ ε.

Hence, for each δn there exists a δn-fine division Dn such that

E |S(f, δn, Dn, Z)−M(f)|2 ≥ ε,

leading to a contradiction. Therefore f is multiple stochastic integrable to
M(f).

5 Henstock-Fubini’s Theorem.

Recall in Section 2, we let Gs to denote the class of all left-open intervals in
Tm for any positive integer s. In the remaining part of this section let p and
q be two positive integers such that p + q = m. Also, let X : Gp × Ω → R
and Y : Gq × Ω → R and Z(I × J) = X(I)Y (J) for all I ∈ Gp and J ∈ Gq.
Further we shall assume that X and Y are uncorrelated of second order (see
Definition 2.1) and that both X and Y have the orthogonal properties (see
Definition 2.2).

Lemma 5.1. Let g : T p×Ω → R be multiple stochastic integrable on T p with
respect to X. Suppose we let M(I) for each I ∈ Gp denote the integral of g
with respect to X on each subinterval I, then

(i) M has the orthogonal property;

(ii) E (X(J)M(I)) = 0 whenever I and J are disjoint and in Projp(Gπ) for
a fixed π ∈ Sm;

(iii) cX −M has the orthogonal property, where c is a real constant; and

(iv) Y and cX −M are uncorrelated of second order, where c is a real con-
stant.

Proof. Let I and J be disjoint and in Projp(Gπ). Given ε > 0 choose a
positive function δ to be the corresponding function as in Definition 3.5 on
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the intervals I and J , with the corresponding integrals M(I) and M(J). For
such a chosen positive function δ it is clear that

E [S(g, δ,D(I), X)S(g, δ,D(J), X)] = 0,

where D(I) and D(J) are δ-fine divisions of I and J respectively. This is
because (a) X has the orthogonal property and (b) that if {I, J} are disjoint
and in Projp(Gπ), then any pair {U, V } of intervals such that U ⊂ I and
V ⊂ J are disjoint and in Projp(Gπ).

To prove (i): By Lemma 4.5 and the fact that E[fh] = lim
n→∞

E[fnhn] when-

ever we have lim
n→∞

E(fn − f)2 = 0 and lim
n→∞

E(hn − h)2 = 0,

E (M(I)M(J)) = lim
n→∞

E [S(g, δn, D(I), X)S(g, δn, D(J), X)] = 0

thereby proving (i).
To prove (ii): By using the similar reasoning as in (i) above,

E [X(J)M(I)] = lim
n→∞

E [X(J)S(g, δn, D(I), X)] = 0

thereby completing the proof of (ii).
To prove (iii): Using (i) and (ii) above, we have

E ([cX −M ](I)[cX −M ](J)) = c2E (X(I)X(J)) + E (M(I)M(J))
− cE (X(I)M(J))− cE (X(J)M(I))

= 0.

To prove (iv): Let I(i) × J (j) ⊂ Gπ, i = 1, 2, j = 1, 2. It is also clear that,
since X and Y are uncorrelated of second order, we have

E
[
Y (I(1))Y (I(2))X(J (1))S(g, δn, D(J (2)), X)

]
= E

[
Y (I(i))Y (I(2))

]
E
[
X(J (1))S(g, δn, D(J (2)), X)

]
.

Consequently, cX − Sn and Y are uncorrelated of second order, where

Sn(I) = S(g, δn, D(I), X)

for any interval I and any positive integer n, where δn are given in Lemma
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4.5.

E
{

Y (I(1))Y (I(2))
(
cX(J (1))−M(J (1))

)(
cX(J (2))−M(J (2))

)}
= lim

n→∞
E
{

Y (I(1))Y (I(2))
(
cX(J (1))− Sn(J (1))

)
×(

cX(J (2))− Sn(J (2))
)}

= lim
n→∞

E
{

Y (I(1))Y (2))
}

E
{(

cX(J (1))− Sn(J (1))
)

(
cX(J (2))− Sn(J (2))

)}
= lim

n→∞
E
{(

cX(J (1))− Sn(J (1))
)(

cX(J (2))− Sn(J (2))
)}

×

E
{

Y (I(1))Y (I(2))
}

= E
{(

cX(J (1))−M(J (1))
)(

cX(J (2))−M(J (2))
)}

×

E
{

Y (I(1))Y (I(2))
}

thereby completing our proof of the entire lemma.

Lemma 5.2. Let δ be a positive function on T p. Then

E

∣∣∣∣∣(D)
n∑

i=1

aiX(I(i))

∣∣∣∣∣
2

= E

(
(D)

n∑
i=1

a2
i X

2(I(i))

)

for any standard δ-fine partial division D = {(I(i), x(i)) : i = 1, 2, . . . , n} for
which all the intervals I(i) and the points x(i) are from Projp(Gπ). The same
result applies to Y on T q.

Proof. This follows from the fact that X has orthogonal property (see Defi-
nition 2.2).

Lemma 5.3. Let δ be a positive function on T p and δ1 on T q, and p+q = m.
Suppose that D1 = {(K(j), y(j)) : j = 1, 2, 3, . . . , r} is a standard δ1-fine partial
division of T q and Dj = {(I(i)

j , x
(i)
j ) : i = 1, 2, 3, . . . , n(j)}, j = 1, 2, 3, . . . , r,

are standard δ-fine partial divisions of T p such that K(j) × I
(i)
j are in Gπ for

all i, j. Then

(a)
r∑

j=1

E[Y 2(K(j))]E

∣∣∣∣∣∣
n(j)∑
i=1

aijX(I(i)
j )

∣∣∣∣∣∣
2
 = E


∣∣∣∣∣∣

r∑
j=1

n(j)∑
i=1

aijX(I(i)
j )Y (K(j))

∣∣∣∣∣∣
2

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(b)
r∑

j=1

E(Y 2(K(j))E

∣∣∣∣∣∣
n(j)∑
i=1

(aijX(I(i)
j )−M(I(i)

j ))

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

r∑
j=1

n(j)∑
i=1

(aijX(I(i)
j )−M(I(i)

j ))Y (K(j))

∣∣∣∣∣∣
2


where M is as given in Lemma 5.1.

Proof. To prove Part (a) of the Lemma, we use the fact that X and Y are
uncorrelated of second order and that each has orthogonal increment,

r∑
j=1

E[Y 2(K(j))]E

∣∣∣∣∣∣
n(j)∑
i=1

aijX(I(i)
j )

∣∣∣∣∣∣
2

=
r∑

j=1

E(Y 2(K(j)))E

n(j)∑
i=1

a2
ijX

2(I(i)
j )


=

r∑
j=1

n(j)∑
i=1

a2
ijE

(
Y 2(K(j))

)
E
(
X2(I(i)

j )
)

=
r∑

j=1

n(j)∑
i=1

a2
ijE

(
X2(I(i)

j )Y 2(K(j))
)

=
r∑

j=1

n(j)∑
i=1

E
[
aijX(I(i)

j )Y (K(j))
]2

= E

∣∣∣∣∣∣
r∑

j=1

n(j)∑
i=1

aijX(I(i)
j )Y (K(j))

∣∣∣∣∣∣
2

.

To prove (b) of the same Lemma, from part (iii) of Lemma 5.1 on the
orthogonality of cX −M , we have

E

(
n∑

i=1

(
aijX(I(i)

j )−M(I(i)
j )
))2

=
n∑

i=1

E
(
aijX(I(i)

j )−M(I(i)
j )
)2

.
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Hence, as in part (a) above,

r∑
j=1

E(Y 2(K(j))E

∣∣∣∣∣
n∑

i=1

(aijX(I(i)
j )−M(I(i)

j ))

∣∣∣∣∣
2


=
r∑

j=1

(
E(Y 2(K(j)))

n∑
i=1

E
(
aijX(I(i)

j )−M(I(i)
j )
)2
)

=
r∑

j=1

n∑
i=1

(
E(Y 2(K(j)))E(aijX(I(i)

j )−M(I(i)
j ))2

)
=

r∑
j=1

n∑
i=1

E

[
Y 2(K(j))

(
aijX(I(i)

j )−M(I(i)
j )
)2
]

= E


∣∣∣∣∣∣

r∑
j=1

n∑
i=1

(aijX(I(i)
j )−M(I(i)

j ))Y (K(j))

∣∣∣∣∣∣
2


thereby completing the proof.

Definition 5.4. A function f : T q → R is said to be of quadratic variation
zero with respect to Y if for any ε > 0 there exists δ(ξ) > 0 on T q such that∣∣∣∣∣(D)

n∑
i=1

f(y(i))E
{

Y 2(I(i))
}∣∣∣∣∣ < ε

whenever D = {(I(i), y(i)) : i = 1, 2, . . . , n} is a standard δ-fine partial division
of T q. A subset F ⊂ T q is said to be of quadratic variation zero with respect
to Y if the indicator function 1F is of quadratic variation zero with respect to
Y .

Lemma 5.5. Let f(x) > 0 on F ⊂ T q, then the subset F is of quadratic
variation zero if and only if f1F is of zero quadratic variation.

Proof. Let Qi = {x : 0 < f(x) ≤ i} for each i = 1, 2, . . . . Then it is easy to
verify that Lemma 5.5 holds true for each F

⋂
Qi for each i. Consequently,

we get the required result of Lemma 5.5.

Definition 5.6. The function Y : Gq × Ω → R is said to be of bounded
quadratic variation if its quadratic variation, denoted by V (Y ), is finite and
where

V (Y ) = inf
δ(ξ)>0

sup
D

∑
E(Y 2(I(i)))
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the supremum is taken over all δ-fine partial division D of T q and the infimum
is taken over all δ(ξ) > 0 defined on T q.

For the remaining of this section, as we involve stochastic integrals of
different integrators, we shall state the integrator on the prefix, for example,
the stochastic integral of f with respect to X on Tm will be written as MX

m (f)
to avoid confusion.

Before we prove Henstock-Fubini’s Theorem, we need one fundamental
lemma:

Lemma 5.7. (See, for example, [4, p.162 Lemma 17.1] ). Let δ be a positive

function defined on T p × T q. For each y ∈ T q, define δ1y(x) =
1√
2
δ(x, y) on

T p. For each y ∈ T q, let

D1(y) = {(I(i)
y , x(i)) : i = 1, 2, . . . , n(y)}

be a δ1y-fine division of T p. Define

δ2(y) = min
{

1√
2
δ(x(i), y) : i = 1, 2, . . . , n(y)

}
.

Then (I(i)
y × J, (x(i), y)) is δ-fine for each i if (J, y) is δ2-fine on T q.

We are now ready to prove the Henstock-Fubini’s theorem.

Theorem 5.8. (Henstock-Fubini’s Theorem). Let Tm = T p × T q and
F ⊂ Gπ for some fixed π ∈ Sm. Suppose f : Tm → R and that f1F is multiple
stochastic integrable on Tm with respect to Z. Then

(a) for each y ∈ T q, except possibly on a set of quadratic variation zero with
respect to Y , f(·, y)1F (·, y) is multiple stochastic integrable on T p with
respect to X; and

(b) MZ
m(f1F ) = MY

q MX
p (f1F ) if Y has bounded quadratic variation V (Y ),

where the symbol MZ
m(f1F ) denotes the multiple stochastic integral of

f1F with respect to the integrator Z on Tm.

Proof. The idea of the following proof follows closely that of [4, p.150 The-
orem 5.1.2] for classical integration theory.

Given ε > 0 there exists a positive function δ(x, y) > 0 on T p × T q such
that

E
(
|S(f1F , δ, D1, Z)− S(f1F , δ, D2, Z)|2

)
< ε

whenever D1 and D2 are standard δ-fine divisions of T p × T q. Let N be a
subset of T q consisting of y ∈ T q such that f(·, y)1F (·, y) is not integrable
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on T p. For each y ∈ N , let δy(x) = δ1y(x) =
1√
2
δ(x, y) given as in Lemma

5.7. By Cauchy criteria (Theorem 4.4), for the non-existence of integral of
f(·, y)1F (·, y) on T p, for each y ∈ N , there exists Q(y) > 0 and two standard
δy-fine divisions of T p; namely,

D′
1(y) = {(I(i)

y , x(i)
y ) : i = 1, 2, 3, . . . , s(y)}

D′
2(y) = {(J (i)

y , u(i)
y ) : i = 1, 2, 3, . . . , l(y)}

such that

0 < Q(y) ≤ E
(∣∣∣(D′

1(y))
∑

f(x(i)
y , y)1F (x(i)

y , y)X(I(i)
y )

−(D′
2(y))

∑
f(u(i)

y , y)1F (u(i)
y , y)X(J (i)

y )
∣∣∣2) .

(5.1)

We may assume that s(y) = l(y), I
(i)
y = J

(i)
y for all i.

In fact the inequality (1) can be extended to all y ∈ T q\N with Q(y) = 0
by choosing any δy-fine division D′

1(y) = {(I(i)
y , x(i)

y ) : i = 1, 2, . . . , s(y)} and
setting D′

2(y) = D′
1(y) for all y ∈ T q\N . Next we shall prove that Q is of

quadratic variation zero.

Apply Lemma 5.7 to D′
1(y) and D′

2(y) and let

δ2(y) = min
{

1√
2
δ(x(i), y),

1√
2
δ(u(j)

y , y) : i = 1, 2, . . . , s(y), j = 1, 2, . . . , l(y)
}

.

Denote δ2 by δ′ and let Dj = {(K(j), y(j)) : j = 1, 2, . . . , r} be a stan-

dard δ′-fine division of T q. By Lemma 5.7,
(
I
(i)
y(j) ×K(j), (x(i)

y(j), y
(j))
)

and(
J

(i)
y(j) ×K(j), (u(i)

y(j), y
(j))
)

are δ-fine for all i and j. Since F is contained in

one contiguous set, which is open, assume that I
(i)
y(j) ×K(j) lies completely in

Gπ whenever (x(i)
y(j), y

(j)) ∈ F for the particular choice of δ(ξ) on T p × T q.
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By (1) and using Lemma 5.3(a), we have

0 ≤
∑

j

[
Q(y(j))E(Y 2(K(j)))

]
≤
∑

j

E(Y 2(K(j)))E
(∣∣∣S(f1F , δy(j), D

′
1(y

(i)), X)

−S(f1F , δy(j), D
′
2(y

(j)), X)
∣∣∣2)

= E

∣∣∣∣∣∣
∑

j

(
S(f1F , δy(j), D

′
1(y

(j)), X)− S(f1F , δy(j), D
′
2(y

(j)), X)
)

Y (K(j))

2
∣∣∣∣∣∣∣

< ε,

thus the function Q is of quadratic variation zero with respect to Y . Hence
the set N is of zero quadratic variation with respect to Y .

Next we shall prove (b). Without loss of generality assume that the func-
tion given by MX

p (f(·, y)1F (·, y)) exists for all y ∈ T q. For each ε > 0 there
exists δ(x, y) > 0 on T p × T q such that

E

(D)

∣∣∣∣∣∑
i

f(x(i), y(i))1F (x(i), y(i))Z(I(i))−MZ
m(f1F )

∣∣∣∣∣
2
 < ε (5.2)

whenever D = {(I(i), (x(i), y(i)) : i = 1, 2, . . . , n} is a standard δ-fine division
of T p × T q. For each y ∈ T q, let δ1y be as given in Lemma 5.7. We may
assume that for any δ1y-fine division D1(y) = {(I(i)

y , x
(i)
y ) : i = 1, 2, . . . , n(y)}

of T p we have

E
∣∣∣(D1(y))

∑
f(x(i)

y , y)1F (x(i)
y , y)X(I(i)

y )−MX
p (f(·, y)1F (·, y))

∣∣∣2 < ε.

Let δ2(y) be also as that given in Lemma 5.7. By the same Lemma, the
division given by {(I(i)

y ×K(j)), (x(i)
y , y(j)) : i = 1, 2, . . . , n(y(j)), j = 1, 2, . . . , r}

is a standard δ-fine division of T p × T q whenever D2 = {(K(j), y(j)) : j =
1, 2, . . . , r} is a standard δ2-fine division of T q. Therefore

E


∣∣∣∣∣∣
∑

j

∑
i

f(x(i)
y(j), y

(j))1F (x(i)
y(j), y

(j))X(I(i)
y )Y (K(j))−MZ

m(f1F )

∣∣∣∣∣∣
2
 < ε.
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Applying Lemma 5.3(b) with aij = f(x(i)
y(j), y

(j))1F (x(i)
y(j), y

(i)), we get

E

∣∣∣∣∣∣
∑

j

∑
i

f(x(i)
y(j), y

(j))1F (x(i)
y(j), y

(j))X(I(i)
y(j))

−
∑

j

MX
p (f(·, y(j))1F (·, y(j)))[Y (K(j))]

∣∣∣∣∣∣
2


=
∑

j

{E[Y 2(K(j))]E[
∑

i

{f(x(i)
y(j), y

(i))1F (x(i)
y(j))X(I(i)

y(j))

−MX
p (f(·, y(j))1F (·, y(j))}]2}

≤ εV (Y ),

where V (Y ) denotes the quadratic variation of Y , see Definition 5.6 above.
Consequently

E

∣∣∣∣∣∣
∑

j

Mp(f(·, y(j)))1F (·, y(j))Y (K(j))−MZ
m(f1F )

∣∣∣∣∣∣
2

≤ 2εV (Y ) + 2ε

whenever D2 = {(K(j), y(j)) : j = 1, 2, . . . , r} is a standard δ2-fine division of
T q. Hence

MZ
m(f1F ) = MY

q MX
p (f(·, y)1F (·, y))

thereby completing the proof.

Theorem 5.9. (Iterated Wiener Integral). Let Gπ be an open connected
set of Tm mentioned in Theorem 5.8 above. Suppose that f : Tm → R and
that f1Gπ

is multiple stochastic integrable on Tm with value Mm(f1Gπ
). Then

Mm(f1Gπ
) =

∫ 1

0

∫ tπ(m)

0

. . .

∫ tπ(2)

0

f(t1, t2, . . . , tm)dWtπ(1)dWtπ(2) . . . dWtπ(m) .
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Proof. By Henstock-Fubini’s Theorem (Theorem 5.8),

Mm(f1Gπ(m))

= Mm−1(IM1(f(tπ(1), ·)1Gπ
(tπ(1), ·))

= Mm−1

(∫ 1

0

f(tπ(1), ·)1Gπ
(tπ(1), ·)dXtπ(1)

)
= Mm−1

(∫ tπ(2)

0

f(tπ(1), ·)1Gπ
(tπ(1), ·)dWtπ(1)

)
= Mm−2

(∫ tπ(3)

0

∫ tπ(2)

0

f(tπ(1), tπ(2), ·)1Gπ (tπ(1), tπ(2), ·)dWtπ(1)dWtπ(2)

)
= · · ·

=
∫ 1

0

∫ tπ(m)

0

· · ·
∫ tπ(3)

0

∫ tπ(2)

0

f(tπ(1), tπ(2), · · · , tπ(m))

1Gπ
(tπ(1), tπ(2) · · · , tπ(m))dWtπ(1)dWtπ(2) · · · dWtπ(m)

thereby completing the proof.

Remark 5.10. It is known that f1Gπ is multiple stochastic integrable if
and only if it is classical multiple stochastic integrable, see [13]. Therefore
the above holds true for the classical multiple stochastic integral defined by
Wiener-Itô.

6 Conclusion.

We have used Henstock approach to derive the Henstock-Fubini’s Theorem
for multiple stochastic integral, the idea of which was inspired by the classical
integration theory approach. We further remark that Henstock’s approach can
also be used to study the integral over the diagonal of Tm, and the classical
Hu-Meyer theorem, see for example [10], can be derived. This will appear as
a paper later
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