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SEPARATION BY AMBIVALENT SETS

Abstract

A characterization of when two sets in R can be separated by am-
bivalent sets is given. Two applications of the characterization are also
presented.

A set is said to be ambivalent if it is G5 and F,, simultaneously. Ambivalent
sets form an algebra of sets [3, p. 65]. The following characterization of
separation of sets in R by ambivalent sets has turned out to be a useful tool in
proving various facts about Baire class one functions. It would be of interest to
find a proof of the proposition not resting on the use of transfinite induction.

Proprosition 1. Let A and B be disjoint subsets of [0, 1]. Then the following
statements are equivalent:

(i) A and B can be separated by ambivalent sets'.
(ii) A and B can be separated by a Baire class one function?.
(iii) There is no perfect set K such that both A and B are dense in K.

PROOF. (i) = (ii). Let U be an ambivalent set that contains A and that is
disjoint from B. Then the characteristic function of the complement of U is of
Baire class one and separates A and B.

(ii) = (iii). If (iii) were false, then the function f separating A and B
would have no continuity point when restricted to K. This is impossible for f
is of Baire class one.
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1 It means that there are disjoint ambivalent sets U and V such that A C U and B C V.
2 Tt means that there is a Baire class one function f: [0, 1] — [0, 1] such that f}A =0

and f}le.
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(iii) = (i). Let A and B be disjoint sets that are not simultaneously
dense in any perfect set K. Set Fy = AU B and define a transfinite sequence
(Fa)a<w, of subsets of [0, 1] as follows. If an ordinal o > 1 has a predecessor
then we set

F, = AnF,_1 N BNF,_1,
and if & > 1 is a limit ordinal, then we set
F, = ﬂ E, .
y<a

Then (Fy,)a<w, I8 a nonincreasing sequence of closed sets and by [1, Thm 3.10]
there is the smallest oy < w; such that F,, = F},, for all o > ayg.
Suppose F,, is nonempty. Then the equality Fi,,+1 = Fj, implies that

Fo, = ANFy N BN Fy, ,

and hence both A and B are dense in Fy,,. Since the sets A and B are disjoint,
F,,, must be perfect which contradicts (iii). Therefore F,, = .
Now for a < aq let us define sets

U, = Fy 1 \ BNF, 4 and Vo = BNF,_1 \Fa

if a has a predecessor, and define U, = V, = 0 otherwise.
Observe that for every a such that 1 < a < ag we get

UsUF, UV, = [ Fa
A<a
(here the symbol U denotes a union of pairwise disjoint sets) and
Fy = |_| UyUF, LU |_| Vi .
A<« A<a
All sets in the sequences (Uqy)a<a, and (Va)a<a, are F, and so are the unions
UE ||V and Vv E ||V,
a<ap a<ag
Furhter we get A C U and B C V since the inclusions
A\F, ¢ | |Ux and B\F., C ||V
A< A<a

hold for all a. Clearly UNV = ) and UUV = Fy. Since Fy is closed, U = Fy\V
is a G5 in addition to being F,,. Thus both U and V are ambivalent sets which
completes the proof. O
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The following corollary is a special case (o« = 1) of Sierpiriski theorem on
separation by ambivalent sets [5].

Corollary 1. Any two disjoint Gs sets in R can be separated by ambivalent
sets.

Proor. If two disjoint Gy sets were both dense in the same perfect set K,
then K would be a union of two disjoint residual sets which is impossible. [

In [2] S. Kempisty gave a proof of an approximation theorem on Baire class
one functions (see also [3, Proposition 3.37 and the following Remark there]).
At the end of his note Kempisty refined the result by proving that given an
€ > 0, for every function f of Baire class one there is a function of Baire class
one that differs from f by less than 2e and that takes values only in the set of
integer multiples of €. Actually, Kempisty claimed that the function g differs
from f by less than €, but the claim is not supported by his proof. However,
a simple application of the above separation property yields a proof of the
original statement of refined approximation theorem.

Proprosition 2. Let f : [0, 1] — R be a Baire class one function. Given
€ > 0, there is a Baire class one function g such that |f(z) — g(x)| < € on
[0, 1] and values of g are integer multiples of € .

PROOF. Given an integer 4, let h; : R — [0, 1] be a continuous function

defined by '
hi(x) = min{l, max{O, x;ze}} .

Then h; o f is a Baire class one function that separates sets {z : f(z) < e}
and {z: f(z) > (i + 1)e }. Hence by Proposition 1 for every integer i there
is an ambivalent set A; such that

{z: flx)<ie} C A C {z: f(x) <(@i+1)}.

Setting B; = A; \ A;—1 for i € Z, we get a partition of [0, 1] into disjoint
ambivalent sets and hence the function g = ), , iexp, is the required Baire
class one function. O

The second application of our separation property consists of a short proof
of a characterization of Baire class one functions found by D. Preiss [4]. Inci-
dentally, the new proof yields easily a slightly strengthened condition (see (iii)
below).

Proprosition 3 ([4]). Let f : [a,b] — R . The following assertions are
equivalent:
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(i) f is of Baire class one.

(ii) For each closed subset P of [a, b] and for any real numbers o < (3 at
most one of the sets {x € P: f(x) >0} and {z € P: f(z)<a}
s dense in P.

(iii) For each closed subset P of [a, b] and for any rational numbers a < § at
most one of the sets {x € P: f(x)>pF} and {xeP: f(z)<a}
is dense in P.

PrROOF. (i) = (ii). Since the sets {z: f(z) > f } and {z: f(z)<a}
are disjoint, it suffices to prove (ii) for perfect sets only. Let h: R — R be
a continuous function such that h(y) = 0 for y < o and h(y) = 1 for y > 5.
Then ho f is a Baire class one function that separates the sets {x : f(z) > 5}
and {z: f(z) <« }. Hence by Proposition 1 (ii) holds.

(ii) = (iii). Obvious.

(iii) = (i). Given rationals o < (3, there is by Proposition 1 an ambivalent
set A,, g such that

{z: fle)<a} C Aoy C {z: fl@) <P},

Thus, given a € R, we get

{z: fl@)<a} = |J Aas
a<f<a
a, BEQ

and

{z: f() >a} = U CA,, 3
a<a<f
a, BeQ
(where the symbol C'E denotes the complement of a set E ), and since both
unions are taken over countable families of indices, the sets {z : f(z) <a }
and {z: f(x) > a } are F, which completes the proof that f is Baire class
one. O
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