Franciszek Prus-Wiśniowski, Instytut Matematyki, Uniwersytet Szczeciński, ul. Wielkopolska 15, PL-70-453 Szczecin, Poland. email: wisniows@univ.szczecin.pl

SEPARATION BY AMBIVALENT SETS

Abstract

A characterization of when two sets in \mathbb{R} can be separated by ambivalent sets is given. Two applications of the characterization are also presented.

A set is said to be ambivalent if it is G_{δ} and F_{σ} simultaneously. Ambivalent sets form an algebra of sets [3, p. 65]. The following characterization of separation of sets in \mathbb{R} by ambivalent sets has turned out to be a useful tool in proving various facts about Baire class one functions. It would be of interest to find a proof of the proposition not resting on the use of transfinite induction.

Proprosition 1. Let A and B be disjoint subsets of [0, 1]. Then the following statements are equivalent:

- (i) A and B can be separated by ambivalent sets¹.
- (ii) A and B can be separated by a Baire class one function².
- (iii) There is no perfect set K such that both A and B are dense in K.

PROOF. (i) \Rightarrow (ii). Let U be an ambivalent set that contains A and that is disjoint from B. Then the characteristic function of the complement of U is of Baire class one and separates A and B.

(ii) \Rightarrow (iii). If (iii) were false, then the function f separating A and B would have no continuity point when restricted to K. This is impossible for f is of Baire class one.

Key Words: G_{δ} set, F_{σ} set, ambivalent set, function of Baire class one Mathematical Reviews subject classification: 26A21

Received by the editors June 9, 2003

Communicated by: B. S. Thomson

¹ It means that there are disjoint ambivalent sets U and V such that $A \subset U$ and $B \subset V$.

 $^{^2}$ It means that there is a Baire class one function $\ f:\ [0,\,1]\to [0,\,1]$ such that $f\big|_A\equiv 0$ and $f|_{B} \equiv 1$.

(iii) \Rightarrow (i). Let A and B be disjoint sets that are not simultaneously dense in any perfect set K. Set $F_0 = \overline{A} \cup \overline{B}$ and define a transfinite sequence $(F_{\alpha})_{\alpha < \omega_1}$ of subsets of [0, 1] as follows. If an ordinal $\alpha \geq 1$ has a predecessor then we set

$$F_{\alpha} = \overline{A \cap F_{\alpha-1}} \cap \overline{B \cap F_{\alpha-1}} ,$$

and if $\alpha \geq 1$ is a limit ordinal, then we set

$$F_{\alpha} = \bigcap_{\gamma < \alpha} F_{\gamma} .$$

Then $(F_{\alpha})_{\alpha<\omega_1}$ is a nonincreasing sequence of closed sets and by [1, Thm 3.10] there is the smallest $\alpha_0<\omega_1$ such that $F_{\alpha}=F_{\alpha_0}$ for all $\alpha>\alpha_0$.

Suppose F_{α_0} is nonempty. Then the equality $F_{\alpha_0+1} = F_{\alpha_0}$ implies that

$$F_{\alpha_0} = \overline{A \cap F_{\alpha_0}} \cap \overline{B \cap F_{\alpha_0}} ,$$

and hence both A and B are dense in F_{α_0} . Since the sets A and B are disjoint, F_{α_0} must be perfect which contradicts (iii). Therefore $F_{\alpha_0} = \emptyset$.

Now for $\alpha \leq \alpha_0$ let us define sets

$$U_{\alpha} = F_{\alpha-1} \setminus \overline{B \cap F_{\alpha-1}}$$
 and $V_{\alpha} = \overline{B \cap F_{\alpha-1}} \setminus F_{\alpha}$

if α has a predecessor, and define $U_{\alpha} = V_{\alpha} = \emptyset$ otherwise.

Observe that for every α such that $1 \le \alpha \le \alpha_0$ we get

$$U_{\alpha} \sqcup F_{\alpha} \sqcup V_{\alpha} = \bigcap_{\lambda < \alpha} F_{\lambda}$$

(here the symbol \sqcup denotes a union of pairwise disjoint sets) and

$$F_0 = \bigsqcup_{\lambda \le \alpha} U_{\lambda} \sqcup F_{\alpha} \sqcup \bigsqcup_{\lambda \le \alpha} V_{\lambda} .$$

All sets in the sequences $(U_{\alpha})_{\alpha \leq \alpha_0}$ and $(V_{\alpha})_{\alpha \leq \alpha_0}$ are F_{σ} and so are the unions

$$U \stackrel{\mathrm{df}}{=} \bigsqcup_{\alpha \leq \alpha_0} U_{\alpha}$$
 and $V \stackrel{\mathrm{df}}{=} \bigsqcup_{\alpha \leq \alpha_0} V_{\alpha}$.

Further we get $A \subset U$ and $B \subset V$ since the inclusions

$$A \setminus F_{\alpha} \subset \bigsqcup_{\lambda \leq \alpha} U_{\lambda}$$
 and $B \setminus F_{\alpha} \subset \bigsqcup_{\lambda \leq \alpha} V_{\lambda}$

hold for all α . Clearly $U \cap V = \emptyset$ and $U \cup V = F_0$. Since F_0 is closed, $U = F_0 \setminus V$ is a G_δ in addition to being F_σ . Thus both U and V are ambivalent sets which completes the proof.

The following corollary is a special case ($\alpha = 1$) of Sierpiński theorem on separation by ambivalent sets [5].

Corollary 1. Any two disjoint G_{δ} sets in \mathbb{R} can be separated by ambivalent sets

PROOF. If two disjoint G_{δ} sets were both dense in the same perfect set K, then K would be a union of two disjoint residual sets which is impossible. \square

In [2] S. Kempisty gave a proof of an approximation theorem on Baire class one functions (see also [3, Proposition 3.37 and the following Remark there]). At the end of his note Kempisty refined the result by proving that given an $\epsilon>0$, for every function f of Baire class one there is a function of Baire class one that differs from f by less than 2ϵ and that takes values only in the set of integer multiples of ϵ . Actually, Kempisty claimed that the function g differs from f by less than ϵ , but the claim is not supported by his proof. However, a simple application of the above separation property yields a proof of the original statement of refined approximation theorem.

Proprosition 2. Let $f:[0,1] \to \mathbb{R}$ be a Baire class one function. Given $\epsilon > 0$, there is a Baire class one function g such that $|f(x) - g(x)| < \epsilon$ on [0,1] and values of g are integer multiples of ϵ .

PROOF. Given an integer i, let $h_i : \mathbb{R} \to [0, 1]$ be a continuous function defined by

$$h_i(x) = \min\left\{1, \max\left\{0, \frac{x - i\epsilon}{\epsilon}\right\}\right\}.$$

Then $h_i \circ f$ is a Baire class one function that separates sets $\{x: f(x) \leq i\epsilon\}$ and $\{x: f(x) \geq (i+1)\epsilon\}$. Hence by Proposition 1 for every integer i there is an ambivalent set A_i such that

$$\{x: f(x) < i\epsilon\} \subset A_i \subset \{x: f(x) < (i+1)\epsilon\}.$$

Setting $B_i = A_i \setminus A_{i-1}$ for $i \in \mathbb{Z}$, we get a partition of [0, 1] into disjoint ambivalent sets and hence the function $g = \sum_{i \in \mathbb{Z}} i \epsilon \chi_{B_i}$ is the required Baire class one function.

The second application of our separation property consists of a short proof of a characterization of Baire class one functions found by D. Preiss [4]. Incidentally, the new proof yields easily a slightly strengthened condition (see (iii) below).

Proprosition 3 ([4]). Let $f:[a,b] \to \mathbb{R}$. The following assertions are equivalent:

- (i) f is of Baire class one.
- (ii) For each closed subset P of [a, b] and for any real numbers $\alpha < \beta$ at most one of the sets $\{x \in P : f(x) \ge \beta\}$ and $\{x \in P : f(x) \le \alpha\}$ is dense in P.
- (iii) For each closed subset P of [a, b] and for any rational numbers $\alpha < \beta$ at most one of the sets $\{x \in P : f(x) \ge \beta\}$ and $\{x \in P : f(x) \le \alpha\}$ is dense in P.

PROOF. (i) \Rightarrow (ii). Since the sets $\{x: f(x) \geq \beta\}$ and $\{x: f(x) \leq \alpha\}$ are disjoint, it suffices to prove (ii) for perfect sets only. Let $h: \overline{\mathbb{R}} \to \mathbb{R}$ be a continuous function such that h(y) = 0 for $y \leq \alpha$ and h(y) = 1 for $y \geq \beta$. Then $h \circ f$ is a Baire class one function that separates the sets $\{x: f(x) \geq \beta\}$ and $\{x: f(x) \leq \alpha\}$. Hence by Proposition 1 (ii) holds.

- (ii) \Rightarrow (iii). Obvious.
- (iii) \Rightarrow (i). Given rationals $\alpha < \beta$, there is by Proposition 1 an ambivalent set $A_{\alpha,\beta}$ such that

$$\{x: f(x) \leq \alpha\} \subset A_{\alpha,\beta} \subset \{x: f(x) < \beta\}.$$

Thus, given $a \in \mathbb{R}$, we get

$$\{x: f(x) < a\} = \bigcup_{\substack{\alpha < \beta < a \\ \alpha, \beta \in \mathbb{Q}}} A_{\alpha, \beta}$$

and

$$\{x: f(x) > a\} = \bigcup_{\substack{\alpha < \alpha < \beta \\ \alpha, \beta \in \mathbb{O}}} CA_{\alpha, \beta}$$

(where the symbol CE denotes the complement of a set E), and since both unions are taken over countable families of indices, the sets $\{x: f(x) < a\}$ and $\{x: f(x) > a\}$ are F_{σ} which completes the proof that f is Baire class one.

References

- [1] J. Foran, Fundamentals of Real Analysis, Pure and Applied Mathematics Series, Marcel Dekker Inc., New York - Basel - Hong Kong, 1991
- [2] S. Kempisty, Sur l'approximation des fonctions de premiere classe, Fund. Math., 2 (1921), 131–135

- [3] J. Lukeš, J. Malý, L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189, Springer Verlag, Berli-Heidelberg, 1986
- [4] D. Preiss, Approximate derivatives and Baire classes, Czech. Math. J., **21(96)** (1971), 373–382
- $[5]\$ W. Sierpiński, Sur une propriété dans les ensembles amibigus, Fund. Math., ${\bf 6}\ (1924),\ 1–5$