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Abstract

The functional equation k(p(x))+k(x) = x, p(x) = x2 + c, was used
to find quadratic invariant curves of a planar mapping. The continuity
of its solutions k on an interval is tied to its series representation throughP∞

i=0(p
(2i)(x)− p(2i+1)(x)), where the terms contain iterates of p. The

intervals of convergence of the series deserve much attention. Because of
the presence of iteration, such maximal intervals are sometimes difficult
to determine. In this paper we show how numerical computations using
Maple V5.1 and the use of discriminants and resultants may assist such
development.

1 Introduction.

The planar mapping G : R2 → R2,

G(x, y) = (y, 2y − x− 1
2
(g(y) + g(x))), (1.1)
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is induced from a differential equation with piecewise constant arguments ([6,
7]). The finding of quadratic invariant curves Γ : y = f(x) = αx2 + βx + γ of
G led us to the functional equation

k(p(x)) + k(x) = x, p(x) = x2 + c. (1.2)

In [6] and [7] solutions of (1.2) and their continuity are discussed. Its continuity
is tied to the convergence of the series

S(x) :=
∞∑

i=0

(p(2i)(x)− p(2i+1)(x)), (1.3)

where p(i) denotes the i-th iterate of p; i.e., p(k)(x) = p(p(k−1)(x)) and p(0)(x) ≡
x. The intervals of convergence of the series S(x) deserve much attention.
Some interesting work on an equation very close to (1.2) can be found in [5].
Because of the presence of iteration, such maximal intervals are sometimes
difficult to determine. This also requires one to determine whether or not
the series representation of k on a maximal open interval has a continuous
extension to include a boundary point.

The problem of convergence of S(x) is more difficult when the parameter
c is in [−3/4, 0]. The quadratic map p has two fixed points

x1 = (1−
√

1− 4c)/2, x2 = (1 +
√

1− 4c)/2.

When c ∈ (−3/4, 0) it is established through the ratio test that this series
is convergent on the open interval (−x2, x2), which contains x1. Here we
ask whether the function S(x) can be continuously extended to the boundary
point x2. We give numerical evidence suggesting that the answer is no. When
c = −3/4 the convergence cannot be determined by using the ratio test. Its di-
vergence at each point in the interval [−3/4, x1)∪ (x1, 0] is nonetheless proven
using other means ([7]). Here we are able to give an alternate proof demon-
strating the use of discriminants and resultants ([8, 9]) in proving inequalities
which infer divergence. Maple V5.1 is used in such computations.

When c = 0, S(x) is known to converge on x ∈ (−1, 1) ( [6]). Here we ask
whether it has a continuous extension to the boundary point 1. Numerical
rendering of the function does not give strong evidence pointing to an answer.
We are grateful to Professor W. Rudin who suggested that the Hadamard’s
gap condition can be checked, leading to a negative answer. This in turn posts
challenge of whether or not a different proof can be obtained with numerical
methods.

2 The Case c = −3/4.

In this case, the following result is given in [7]:
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Theorem 1. When c = −3/4 the series S(x) diverges for all x ∈ [−3/4,−1/2)∪
(−1/2, 0].

It shows that no solution of (1.2) is continuous at x = −1/2. Now we want
to give a different proof demonstrating the use of discriminant and resultant
calculations under Maple V5.1.

By taking ui(x) := p(2i)(x)− p(2i+1)(x), the series S(x) can be written as

S(x) =
∞∑

i=0

ui(x). (2.4)

Let us consider the ratio

∆n(x) := un+1(x)/un(x). (2.5)

For simplicity we let x(n) := p(n)(x). Then,

un+1(x) = p(2n+2)(x)− p(2n+3)(x) = p(x(2n+1))− p(x(2n+2))

= (x(2n+1))2 − (x(2n+2))2 = (x(2n+1) − x(2n+2))(x(2n+1) + x(2n+2))

= (x(2n) − x(2n+1))(x(2n) + x(2n+1))(x(2n+1) + x(2n+2))

= un(x)(x(2n) + x(2n+1))(x(2n+1) + x(2n+2)).

Thus for x ∈ [−3/4,−1/2) ∪ (−1/2, 0], noting un(x) 6= 0,

∆n(x) =
un+1(x)
un(x)

= (x(2n) + x(2n+1))(x(2n+1) + x(2n+2)). (2.6)

It implies that ∆n+1(x) = ∆n(p(2)(x)) and by induction that

∆n(x) = ∆0(p(2n)(x)), (2.7)

where
∆0(x) = (x + p(x))(p(x) + p(2)(x))

has meaning extended to include x = −1/2. The convergence of (2.4) cannot
be determined by the ratio-test since x1 = −1/2 is an attractive fixed point
of p; i.e., p(x1) = x1 and pn(x) → x1 as n → +∞ for each x ∈ [−3/4,−1/2)∪
(−1/2, 0], and limn→+∞∆n(x) = ∆0(−1/2) = 1. The divergence of (2.4) was
given in [7] not by using ∆n(x). The following lemma and tighter controls
over the ratios ∆n(x) lead to a new proof of Theorem 1.

Lemma 1. Let wn > 0, n = 1, 2, ..., and wn tends to 0 decreasingly. If
n

n + 1
≤ wn+1

wn
≤ 1, (2.8)

then the series
∑∞

i=0 wi diverges.
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Proof. Under condition (2.8), wn+1 ≥ n
n+1wn. By induction we have wn+j ≥

n
n+j wn. Thus

n+j∑
i=n

wi = wn + wn+1 + ... + wn+j

≥ (1 +
n

n + 1
+ ... +

n

n + j
)wn

≥ jn

n + j
wn.

In particular,
∑2n

i=n wi ≥ n2

2nwn = n
2 wn. From (2.8), nwn ≥ (n − 1)wn−1.

It follows by induction that nwn ≥ w1, where w1 > 0 is definite. Therefore∑2n
i=n wi ≥ 1

2w1 > 0 and the sequence hn :=
∑n

i=0 wi cannot be a Cauchy
sequence. The divergence is implied by Cauchy’s criterion of convergence.
This completes the proof.

3 Basic Properties of ∆0(x).

Lemma 1 gives the divergence of S(x) as long as we can show that the ratios
∆n(x) satisfies (2.8); i.e., n

n+1 ≤ ∆n(x) ≤ 1 for all x ∈ [−3/4, 0]\{x1}. For
this reason we shall examine the properties of ∆0(x) in more detail. Using
Maple V5.1 we get

∆0(x) =
1
64

(2x− 1)(2x + 3)(4x2 − 5)(4x2 + 3), (3.9)

which has no zeros on the interval [−3/4, 0].

Lemma 2. On [−3/4, 0] the function ∆0(x) is positive and has a unique
maximal value 1 at x1 = −1/2. It is strictly increasing on [−3/4,−1/2) and
strictly decreasing on (−1/2, 0]. We also have ∆0(0) < ∆0(−3/4).

Proof. Using Maple V5.1 we get the derivative

∆′
0(x) =

1
2
(x +

1
2
)(48x4 + 16x3 − 48x2 + 12x− 15). (3.10)

Observe the factor

β(x) := 48x4 + 16x3 − 48x2 + 12x− 15
= x{x[x(48x + 16)− 48] + 12} − 15 < 0 (3.11)

for x ∈ [−3/4, 0]. In fact, x[x(48x+16)− 48] ≥ 0 and x{x[x(48x+16)− 48]+
12} ≤ 0 since −20 ≤ 48x+16 ≤ 16 and −60 ≤ x(48x+16)−48 ≤ −33. This
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implies the monotonicity of ∆0(x) on [−3/4,−1/2) and (−1/2, 0]. Further-
more, it is easy to calculate that ∆0(−1/2) = 1, ∆′

0(−1/2) = 0, ∆′′
0(−1/2) =

−4 < 0. Direct calculation yields ∆0(0) = 45
64 ≈ 0.703 and ∆0(−3/4) = 3465

4096 ≈
0.8459, confirming ∆0(0) < ∆0(−3/4). This completes the proof.

Next, we consider the function

γ(y) := ∆0(−
3
16
− 3

2
y2 + y4). (3.12)

Lemma 3. For n ≥ 1 in Z+ and y < 0, ∆0(y) = n
n+1 implies γ(y) > n+1

n+2 .

Proof. Let

δ(κ, y) := ∆0(y)− κ

κ + 1
, η(κ, y) := γ(y)− κ + 1

κ + 2
,

where κ ≥ 1 is a real constant. Note that δ(κ, y) is a polynomial in y of degree
6. Let yj(κ), j = 1, 2, ..., 6, denote the six branches of the algebraic function
(p.300, [1]) of κ defined by δ(κ, y) = 0. They are clearly continuous in κ. We
first claim that for each j the continuous function η(κ, yj(κ)) has no zero in
[1, 8] ∪ [9,+∞).

By the Product Formula in Chapter 12 of [3], the discriminant Dis(δ(κ, y))
satisfies

Dis(δ(κ, y)) := (−1)n(n−1)/2a2n−2
0

∏
1≤i<j≤6

(yi(κ)− yj(κ))2

=
1
a0

res(δ(κ, y),
d

dy
δ(κ, y), y)

=
−64(344κ4 + 47κ3 + 1080κ2 + 783κ + 135)

(κ + 1)5
, (3.13)

where a0 = 1 is the leading coefficient of δ(κ, y) in y and res(f, g, y) denotes
the resultant of f and g in y. From (3.13), the discriminant Dis(δ(κ, y)) has
no zero when κ ≥ 1, so the number of real branches defined by δ(κ, y) = 0 is a
constant integer and is independent of κ ≥ 1. On the other hand, when κ = 1,

δ(1, y) = y6 + y5 − 5
4

y4 − 1
2

y3 − 9
16

y2 − 15
16

y +
13
64

. (3.14)

The Maple command readlib(realroot), designed by Descartes’ rule of signs as
explained in [2], returns a list of isolating intervals for all real roots of a uni-
variate polynomial with integer coefficients, although multiplicity information
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is not included. It is obviously applicable to δ(1, y) with rational coefficients.
Using this command we get

realroot(δ(1, y), 1/16)=[[
3
16

,
1
4
], [

9
8
,
19
16

], [
−15
16

,
−7
8

], [
−13
8

,
−25
16

]], (3.15)

implying that there are exactly four intervals of diameter 1/16 each covering
only one real root of δ(1, y). This indicates that there are exactly four real
branches, denoted by yj(κ), j = 1, 2, 3, 4. For our purpose it is adequate to
consider only the real branches. Furthermore, using Maple V5.1 we get

6∏
j=1

η(κ, yj(κ)) = res(δ(κ, y), η(κ, y), y) =
F (κ)

(κ + 2)6(κ + 1)24
, (3.16)

where

F (κ) :=− 1024κ26 − 16896κ25 − 92864κ24 + 178944κ23 + 6211776κ22

+ 49682112κ21 + 250195264κ20 + 923952256κ19

+ 2654250048κ18 + 6107481792κ17 + 11431687088κ16

+ 17534730304κ15 + 22084987424κ14 + 22797180128κ13

+ 19202459056κ12 + 13145665248κ11 + 7343342128κ10

+ 3454612320κ9 + 1496148668κ8 + 670443280κ7

+ 308826380κ6 + 126545612κ5 + 40393016κ4 + 9231296κ3

+ 1399372κ2 + 124848κ1 + 4913.

Maple V5.1 also helps us to know that on (0,∞), F (κ) has a unique zero which
lies in the open interval (8, 9). Therefore, every η(κ, yj(κ)), j = 1, 2, 3, 4, has
no zeros in [1, 8] ∪ [9,+∞). This proves what we claimed.

In order to determine whether each η(κ, yj(κ)), j = 1, 2, 3, 4, is positive,
we consider zeros yj(1), j = 1, 2, 3, 4, of δ(1, y) again. Choosing diameter
1/210, much smaller than that in (3.15), we get

realroot(δ(1, y), 1/210) = (3.17)

[[
97
512

,
195
1024

], [
601
512

,
1203
1024

], [
−239
256

,
−955
1024

], [
−801
512

,
−1601
1024

]];

i.e., four intervals are obtained and each of them covers exactly one of the real
roots yj(1), j = 1, 2, 3, 4. Similarly, for the function η(1, y) we obtain that

realroot(η(1, y), 1/210) = (3.18)

[[
655
512

,
1311
1024

], [
749
512

,
1499
1024

], [
−1311
1024

,
−655
512

], [
−1499
1024

,
−749
512

]];
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i.e., another four intervals of diameter 1/210 are obtained and all real roots
of η(1, y) are covered by them. The eight intervals given in (3.17) and (3.18)
do not intersect each other. So δ(1, y) and η(1, y) have no common real zeros.
Evaluating η(1, y) at an end-point of each interval given in (3.17), for example,

η(1, 97/512) =
73061011970173804315956031776285616643744540637313822534414404355
315936875005671560093754083051011296956685286201647333762932932608

> 0,

we assert that η(1, y) > 0 for y in [97/512, 195/1024], the first interval of
(3.17), and similarly η(1, y) > 0 for y in the other three intervals. Hence all
η(1, yj(1)) > 0, j = 1, 2, 3, 4. This further implies that

η(κ, yj(κ)) > 0, j = 1, 2, 3, 4, ∀κ ∈ [1, 8] (3.19)

since the sign of each η(κ, yj(κ)), a continuous function with no zeros in [1, 8]
as claimed in the beginning of the proof, cannot change for all κ ∈ [1, 8].

For κ ≥ 9, computation gives

δ(9, y) = y6 + y5 − 5
4
y4 − 1

2
y3 − 9

16
y2 − 15

16
y − 63

320
. (3.20)

Using the same method as for δ(1, y) in (3.15), we know that the polynomial
δ(9, y) has exactly four real zeros, three of which are negative and one is
positive. Since y < 0 is required, we need only to consider the negative three,
denoted by yj(9), j = 1, 2, 3. It is also easy to check that η(9, yj(9)) > 0, j =
1, 2, 3, as done above for κ = 1. Note that yj(κ) < 0, j = 1, 2, 3, y4(κ) >
0, ∀κ ≥ 9, because

δ(κ, 0) =
45
64
− κ

κ + 1
> 0, ∀κ >

45
19

.

Thus

η(κ, yj(κ)) > 0, j = 1, 2, 3, ∀κ ∈ [9,+∞) (3.21)

since the sign of each η(κ, yj(κ)) cannot change for κ ≥ 9.
Summarizing (3.19) and (3.21) we see that η(n, y(n)) > 0 for any integer

n ≥ 1 if y(n) is a negative branch of the algebraic function of n defined by
δ(n, y) = 0. This completes the proof.
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4 Proof of Divergence.

We are now ready to give a proof for Theorem 1 using the ratios ∆n(x) and
the comparison test. As explained in the beginning of section 3, it suffices to
prove that

n

n + 1
≤ ∆n(x) ≤ 1 (4.22)

for all x ∈ [−3/4, 0]\{x1} and integers n > 0. By Lemma 2, ∆n(x) =
∆0(p(2n)(x)) ≤ 1 for all x ∈ [−3/4, 0]\{x1} since p(2n)(x) ∈ [−3/4, 0] for
all x ∈ [−3/4, 0]. Hence the inequality on the right hand side of (4.22) holds.

In order to prove the inequality on the left hand side of (4.22), observe that
∆n(x) = ∆0(p(2n)(x)) ≥ ∆n(0) for x ∈ (x1, 0] and ∆n(x) = ∆0(p(2n)(x)) ≥
∆n(−3/4) for x ∈ [−3/4, x1) since x1 < p(2n)(x) ≤ p(2n)(0) and p(2n)(−3/4) ≤
p(2n)(x) < x1 respectively for x in the two intervals. Thus, proving the in-
equality on the left-hand side of (4.22) is reduced to the following lemma.

Lemma 4. ∆n(0) ≥ n
n+1 and ∆n(− 3

4 ) ≥ n
n+1 for all integers n > 0.

Proof. Clearly ∆1(0) ≥ 1
2 , i.e., the first inequality in Lemma 4 holds for

n = 1. Assume that the first inequality holds for the natural number n. Then
∆0(0(2n)) = ∆n(0) ≥ n

n+1 by (2.7). Noticing that ∆0 is strictly decreasing
on (−1/2, 0], shown in Lemma 2, and that 0(2n) ∈ (−1/2, 0], we get that the
inverse ∆−1

0 of ∆0 exists on the interval [45/64, 1) with the range (−1/2, 0] and
that 0(2n) ≤ ∆−1

0 ( n
n+1 ). Since p(2)(x) = − 3

16 −
3
2x2 + x4 is strictly increasing

on (−1/2, 0], we have

0(2n+2) = p(2)(0(2n)) ≤ p(2)(∆−1
0 (

n

n + 1
))

= − 3
16
− 3

2
(∆−1

0 (
n

n + 1
))2 + (∆−1

0 (
n

n + 1
))4.

By (2.7) we get ∆n+1(0) = ∆0(0(2n+2)) ≥ γ(∆−1
0 ( n

n+1 )) ≥ n+1
n+2 , where γ(y) is

defined in (3.12)and Lemma 3 is applied. This proves the first inequality in
Lemma 4 by induction.

The proof to the second inequality in Lemma 4 is similar. It is also
easy to verify that it holds at n = 1. Assume that it holds for the natu-
ral number n. By (2.7), ∆0(p(2n)(−3/4)) = ∆n(−3/4) ≥ n

n+1 . Noticing that
∆0 is strictly increasing on [−3/4,−1/2), as shown in Lemma 2, and that
p(2n)(− 3

4 ) ∈ [−3/4,−1/2), we get that the inverse ∆−1
0 also exists on the in-

terval [3465/4096, 1) with the range [−3/4,−1/2) and that p(2n)(−3/4) ≥
∆−1

0 ( n
n+1 ). Since p(2)(x) = − 3

16 −
3
2x2 + x4 is also strictly increasing on
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[−3/4,−1/2), we get

p(2n+2)(−3
4
) = p(2)(p(2n)(−3

4
)) ≥ p(2)(∆−1

0 (
n

n + 1
))

= − 3
16
− 3

2
(∆−1

0 (
n

n + 1
))2 + (∆−1

0 (
n

n + 1
))4.

By (2.7) and Lemma 3, ∆n+1(− 3
4 ) = ∆0(p(2n+2)(− 3

4 )) ≥ γ(∆−1
0 ( n

n+1 )) ≥ n+1
n+2 .

This proves the second inequality in Lemma 4 by induction and the proof of
Lemma 4 is completed.

The result of Lemma 4 completes the proof of Theorem 1.

5 Case c = 0 and Case − 3/4 < c < 0.

For c = 0, the map p has two fixed points at x1 = 0 and x2 = 1. It was
shown in [6] that equation (1.2) on the interval [0, 1) has a unique continuous
solution given by

k(x) =
∞∑

i=0

(p(2i)(x)− p(2i+1)(x)) =
∞∑

i=0

(−1)ix2i

. (5.23)

Its extendability to a continuous solution k on [0, 1] is equivalent to

lim
x→1−

S(x) = 1/2.

Numerical experiments with Maple V5.1 to compute the sum

S(x, n) =
n∑

i=0

(−1)ix2i

of the first n terms give many crude data, for example,

S(0.999, 12) = .500399872685635403709706656021,

S(0.9992, 12) = .498875854474142353725438028783

in accuracy of 30 digits and

S(0.999, 12) = .5003998726856354037097066560212515168593,

S(0.9992, 12) = .4988758544741423537254380287830162041506

in accuracy of 40 digits, which do not allow us to dismiss this possibility.
Through personal communications, Professor Walter Rudin offered a negative
answer to the existence of limx→1− S(x). Thus we conclude that when c = 0
equation (1.2) does not have a continuous solution on [0, 1].
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Theorem 2. The one-sided limit limx→1−
∑∞

i=0(−1)ix2i

does not exist.

Proof. We first state the “high indices theorem” reported in [4]: Suppose
{λn} is an increasing sequence of positive numbers which satisfies Hadamard’s
gap condition

lim inf
n→∞

(λn+1/λn) > 1, (5.24)

and let an be real numbers such that the series

ξ(x) =
∞∑

n=0

anxλn (5.25)

converges for 0 ≤ x < 1. Then the series
∑∞

n=1 an converges if ξ(x) tends to
a finite limit as x → 1 from the left.

Clearly, {2i : i = 0, 1, 2, ...} satisfies (5.24) and
∑∞

i=0(−1)ix2i

converges
for x ∈ [0, 1). Since

∑∞
i=0(−1)i diverges, limx→1−

∑∞
i=0(−1)ix2i

does not
exist. This completes the proof.

We may ask whether numerical computations can provide such a conclusion
—that the one-sided limit does not exist. If so, can it reveal the values of
lim supx→1−

∑∞
i=0(−1)ix2i

and lim infx→1−
∑∞

i=0(−1)ix2i

?
When c = 0 equation (1.2) is a special case of a more general equation stud-

ied in [5]. There, readers may find many interesting results on the solutions
and their representations by series.

When − 3/4 < c < 0, it is shown in Theorem 4.2 of [7] that equation (1.2)
on (−x2, x2) has a unique continuous solution k given by

k(x) =
x1

2
+

∞∑
i=0

(p(2i)(x)− p(2i+1)(x)). (5.26)

Similar to the case of c = 0, whether it can be extended continuously to the
boundary x2 is tied to the existence of the limit limx→x2− S(x). The following
graph of k is obtained from using the Maple V5.1 plotting facility. The large
oscillation near the end points −x2 and x2 suggests that it has no continuous
extension to the closed interval [−x2, x2]. Is there a simple proof?
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k(p(x))+k(x)=x
parallelogram checks equation 

p(x)=x^2-0.65 in use

x

k(x)

p(x)

k(p(x))

-3

-2

-1

0

1

2

-1 -0.5 0.5 1

Figure3. Graphs of y=x , p (thin) and k (thick)
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