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ON QUASI-UNIFORM CONVERGENCE OF
SEQUENCES OF s1-STRONGLY

QUASI-CONTINUOUS FUNCTIONS ON Rm

Abstract

A function f : Rm → R is called s1-strongly quasi-continuous at a
point x ∈ Rm if for each real ε > 0 and for each set A 3 x belonging to
the density topology, there is a nonempty open set V such that

∅ 6= A ∩ V ⊂ f−1((f(x)− ε, f(x) + ε)) ∩ C(f),

where C(f) denotes the set of continuity points of f . It is proved that
every λ-almost everywhere continuous function f : Rm → R is the quasi-
uniform limit of a sequence of s1-strongly quasi-continuous functions and
that each measurable function f : Rm → R is the quasi-uniform limit of
a sequence of approximately quasi-continuous functions f : Rm → R.

Let R, Z and N be respectively the set of all reals, the set of all integers
and the set of all positive integers, and let Rm be m-dimensional product space
R× · · · × R with the standard metric | · |; i.e., using the distance

|x− y| =

√√√√ m∑
i=1

|xi − yi|2

between the points x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ Rm. More-
over, let λ, (λ∗) denote Lebesgue measure, (outer Lebesgue measure) in Rm.

For each number n ∈ N and for each system of integers (k1, . . . , km) let

Pn
k1,...,km

=
[
k1 − 1

2n
,
k1

2n

)
× · · · ×

[
km − 1

2n
,
km

2n

)
.

Key Words: continuity, strong quasicontinuity, density topology, quasi-uniform con-
vergence

Mathematical Reviews subject classification: 26A15, 54C08, 54C30
Received by the editors April 26, 2004
Communicated by: B. S. Thomson

217



218 Ewa Strońska

Moreover, let

Pn = {Pn
k1,...,km

; k1, . . . , km ∈ Z} and P =
⋃
n

Pn.

Observe that

(1) if (k1, . . . , km) 6= (l1, . . . , lm), then Pn
k1,...,km

∩ Pn
l1,...,lm

= ∅;

(2) Rm =
⋃

k1,...,km∈Z Pn
k1,...,km

;

(3) if n1 > n2, then for each system of integers (k1, . . . , km) there is a unique
system of integers (l1, . . . , lm) such that Pn1

k1,...,km
⊂ Pn2

l1,...,lm
;

(4) for each point x ∈ Rm and for each index n ∈ N there is a unique system
of integers (k1(x), . . . , km(x)) such that x ∈ Pn

k1(x),...,km(x) = Pn(x).

For a set A ⊂ Rm and a point x ∈ Rm let

du(A,x) = lim sup
n→∞

λ∗(A ∩ Pn(x))
λ(Pn(x))

,

(
dl(A,x) = lim inf

n→∞

λ∗(A ∩ Pn(x))
λ(Pn(x))

)
the upper, (lower) outer density of the set A ⊂ R at the point x (compare [1]).

A point x ∈ Rm is called a density point of a set A ⊂ Rm if there exists a
λ-measurable (i.e., measurable in the sense of Lebesgue) set B ⊂ A such that
dl(B,x) = 1. The family

Td = {A ⊂ Rm;A is λ-measurable and dl(A,x) = 1 for x ∈ A}

is a topology called the density topology ([2], [3], [12], [13]).
Moreover, let Te be the Euclidean topology in Rm and let C(f) denote the

set of all points at which a real function f is continuous.
We will say that a function f : Rm → R is s1-strongly quasi-continuous at

a point x, (f ∈ Qs1(x)) if for every set A ∈ Td containing x and for every real
ε > 0 there is a nonempty open set U such that

f−1((f(x)− ε, f(x) + ε)) ∩ C(f) ⊃ U ∩A 6= ∅, ([6], [11]).

Observe that if there is a nonempty open set U ⊂ Rm ∩ C(f) such that
du(U, x) > 0 for x ∈ Rm and the restricted function f |(U∪{x}) is continuous
at x, then f ∈ Qs1(x).

A sequence of functions fn : Rm → R, n = 1, 2, . . . , is said to be quasi-
uniformly convergent to a function f ([10], p.143) if it pointwise converges to
f and for each real ε > 0 and for each index i ∈ N there is an index p ∈ N
such that for each point x ∈ Rm

min(|fi+1(x)− f(x)|, . . . , |fi+p(x)− f(x)|) < ε.
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It is obvious (compare [6], [7], [11]) that every s1- strongly quasi-continuous
function f : Rm → R is λ- almost everywhere (i.e., almost everywhere with re-
spect to λ) continuous. Since quasi-uniform convergence preserves continuity,
the quasi-uniform limit of sequence of s1-strongly quasi-continuous functions
is a λ-almost everywhere continuous function.

We will prove the following.

Theorem 1. If a function f : Rm → R is λ-almost everywhere continuous,
then there are s1-strongly quasi-continuous functions gn : Rm → R, n =
1, 2, . . . , such that the sequence (gn) quasi-uniformly converges to f .

Proof. Let cl denote the closure operation and let

B = {y ∈ R;λ(cl(f−1(y)) > 0}.

Since the function f is λ-almost everywhere continuous, the set B is countable.
Without loss of the generality we can assume that 0 6∈ B, because in the
contrary case we may consider the function f − a, where a 6= 0 is a real. Let
L(B) be the linear space over the field of all rationals generated by the set
B. Since the set L(B) is countable, there is a positive number c ∈ R \ L(B).
Fix k ∈ Z and n ∈ N. If k·c

2n ≤ f(x) < (k+1)·c
2n for x ∈ Rm, then we define

fn(x) = k·c
2n . Observe that every function fn, n ∈ N, is λ-almost everywhere

continuous and if D(fn) denotes the set of all discontinuity points of fn, then
D(fn) is a closed set of λ-measure zero. Moreover, D(fn) ⊂ D(fn+1) for n ∈ N
and if x ∈ D(fn+1)\D(fn) for some n ∈ N, then for every i > n the inequality
oscfi

(x) ≤ c
2n−1 holds, where oscg(x) denote the oscillation of a function g at

the point x.
Step 1. Recall that the set D(f1) is closed and of λ-measure zero. For

each point x ∈ D(f1) there is a unique cube P 1(x) ∈ P1 such that x ∈
P 1(x). Observe that the diameter (with respect to the standard metric in
Rm), diam(P 1(x)) ≤

√
m
2 . For a such cube P 1(x) there is a finite family of

cubes
Q1,1,x, Q2,1,x, . . . , Qi(1,1,x),1,x ∈ P,

whose closures are pairwise disjoint and contained in int(P 1(x)) \D(f1) (int
denotes the interior operation) and such that

λ(
⋃i(1,1,x)

i=1 Qi,1,x)
λ(P 1(x))

>
1
2
.

Moreover, we assume that if for x, y ∈ D(f1) the cubes P 1(x) and P 1(y) are
the same, then i(1, 1,x) = i(1, 1,y) and Qi,1,x = Qi,1,y for i ≤ i(1, 1,x). Let

S1
1 =

⋃
x∈D(f1)

⋃
i≤i(1,1,x)

Qi,1,x.
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Observe that

cl(S1
1) \D(f1) =

⋃
x∈D(f1)

⋃
i≤i(1,1,x)

cl(Qi,1,x)

and the family {Qi,1,x; i ≤ i(1, 1,x) and x ∈ D(f1)} is P-locally finite; i.e.,
for each point y ∈ Rm there is an index l ∈ N such that the family of triples
(i, 1,x), where x ∈ D(f1), for which Qi,1,x ∩ P l(y) 6= ∅ is finite.

Now, for each point x ∈ D(f1) there is the first positive integer s(1, 2,x)
such that diam(P s(1,2,x)(x)) < 1

22 and

x ∈ P s(1,2,x)(x) ⊂ P 1(x) \ cl(S1
1).

For a such integer s(1, 2,x) there is a finite family of cubes

Q1,s(1,2,x), Q2,s(1,2,x), . . . , Qi(1,s(1,2,x)),s(1,2,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(1,2,x)(x)) \D(f1)
and such that

λ(
⋃i(1,s(1,2,x))

i=1 Qi,s(1,2,x))
λ(P s(1,2,x)(x))

> 1− 1
22

.

Assume that if for x, y ∈ D(f1) the point y ∈ P s(1,2,x)(x), then P s(1,2,x)(x) =
P s(1,2,y)(y), i(1, s(1, 2,x)) = i(1, s(1, 2,y)) and Qi,s(1,2,x) = Qi,s(1,2,y) for i ≤
i(1, s(1, 2,x)).

Let
S1

2 =
⋃

x∈D(f1)

⋃
i≤i(1,s(1,2,x))

Qi,s(1,2,x).

Observe that

cl(S1
2) \D(f1) =

⋃
x∈D(f1)

⋃
i≤i(1,s(1,2,x))

cl(Qi,s(1,2,x))

and the family {Qi,s(1,2,x); i ≤ i(1, s(1, 2,x)) and x ∈ D(f1)} is P-locally
finite.

Generally, for j > 2, we proceed analogously and for each point x ∈ D(f1)
we find the first positive integer s(1, j,x) such that diam(P s(1,j,x)(x)) < 1

2j

and
x ∈ P s(1,j,x)(x) ⊂ P s(1,j−1,x)(x) \ cl(S1

j−1).

For such an integer s(1, j,x) there is a finite family of cubes

Q1,s(1,j,x), Q2,s(1,j,x), . . . , Qi(1,s(1,j,x)),s(1,j,x) ∈ P
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whose closures are pairwise disjoint and contained in int(P s(1,j,x)(x)) \D(f1)
and such that

λ(
⋃i(1,s(1,j,x))

i=1 Qi,s(1,j,x))
λ(P s(1,j,x)(x))

> 1− 1
2j

.

Moreover, we assume that if for x, y ∈ D(f1) the point y ∈ P s(1,j,x)(x), then
P s(1,j,x)(x) = P s(1,j,y)(y), i(1, s(1, j,x)) = i(1, s(1, j,y)) and Qi,s(1,j,x) =
Qi,s(1,j,y) for i ≤ i(1, s(1, j,x)). Let

S1
j =

⋃
x∈D(f1)

⋃
i≤i(1,s(1,j,x))

Qi,s(1,j,x).

Then
cl(S1

j ) \D(f1) =
⋃

x∈D(f1)

⋃
i≤i(1,s(1,j,x))

cl(Qi,s(1,j,x))

and the family {Qi,s(1,j,x); i ≤ i(1, s(1, j,x)) and x ∈ D(f1)} is P-locally finite.
Now, let Nl, l ∈ Z, be pairwise disjoint infinite subsets of positive integers

such that N =
⋃

l∈Z Nl. Observe that for each index l ∈ Z and for each point
x ∈ D(f1) the upper density

du

 ⋃
j∈Nl

int(S1
j ), x

 = 1.

Let

g1(x) =

{
k·c
2 if x ∈ S1

j , j ∈ N2k−1, k ∈ Z
f1(x) otherwise on Rm

and let

g2(x) =

{
k·c
2 if x ∈ S1

j , j ∈ N2k, k ∈ Z
f1(x) otherwise on Rm.

The functions g1, g2 are s1-strongly quasi-continuous at each point x. Indeed,
if x ∈ D(f1), then there is an integer k with f1(x) = k·c

2 . Since x ∈ D(f1), for
each positive integer j ∈ N2k−1 there is a cube P 1,s(1,j,x)(x) 3 x. But

λ(S1
j ∩ P 1,s(1,j,x)(x))

λ(P 1,s(1,j,x)(x))
> 1− 1

2j
,

g1(x) = f1(x) and int(S1
j ) ∩ P 1,s(1,j,x)(x) ⊂ C(g1), so

du

(
int

(
(g1)−1(

k · c
2

)
)

, x
)

= 1
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and consequently g1 is s1-strongly quasi-continuous at x. If x ∈ Rm \D(f1),
then from the construction of g1 follows that g1 ∈ Qs1(x).

Analogously we can show that g2 ∈ Qs1(x) for each point x ∈ Rm. More-
over,

|f1 − f | < c

2
and min(|g1 − f1|, |g2 − f1|) = 0, so

min(|g1 − f |, |g2 − f |) ≤ min(|g1 − f1|+ |f1 − f |, |g2 − f1|+ |f1 − f |) <
c

2
.

Step 2. For a nonempty closed set H ⊂ Rm and for a real η > 0, we put

O(H, η) =
⋃

x∈H

K(x, η), where K(x, η) = {u ∈ Rm; |u− x| < η}.

The set D(f2) is closed and of λ-measure zero. Let

D1
2 = (D(f2) \D(f1)) ∩

(⋃
j∈N S1

j

)
, and D2

2 = (D(f2) \D(f1)) \D1
2.

If for an index p0 ∈ N and a cube Qi,s(1,p0,y), where y ∈ D(f1) and i ≤
i(1, s(1, p0,y)), the set

Di,s(1,p0,y) = D1
2 ∩Qi,s(1,p0,y) 6= ∅,

then we find an open (in Qi,s(1,p0,y)) set U(Qi,s(1,p0,y)) ⊂ Qi,s(1,p0,y) con-
taining Di,s(1,p0,y) such that

λ
(⋃

i≤i(1,s(1,p0,y)) U(Qi,s(1,p0,y))
)

λ
(
S1

p0

) <
1

2p0

and du(U(Qi,s(1,p0,y)), x) = 0 for x ∈ Fr(Qi,s(1,p0,y)), where Fr(H) denotes
the boundary of the set H. If Di,s(1,p0,y) = ∅, then we take U(Qi,s(1,p0,y)) = ∅.
Thus, for every p ∈ N such that S1

p ∩D1
2 6= ∅ and for x ∈ Fr(Qi,s(1,p,y)),

λ

 ⋃
i≤i(1,s(1,p,y))

U(Qi,s(1,p,y))

 <
1
2p

· λ
(
S1

p

)
, (∗)

where U(Qi,s(1,p,y)) ⊃ Di,s(1,p,y) and du(U(Qi,s(1,p,y)), x) = 0.
Similarly, as in the first step, for each point x ∈ D(f2) \D(f1) there is the

first positive integer s(2, 1,x) such that:

• if x ∈ Di,s(1,p,y) for i ≤ i(1, s(1, p,y)), p ∈ N and y ∈ D(f1), then

x ∈ P s(2,1,x)(x) ⊂ U(Qi,s(1,p,y)) ∩ O
(

D1
2,

1
24

)
;
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• if x ∈ D2
2, then

x ∈ P s(2,1,x)(x) ⊂ O
(

D2
2,

1
24

)
\

⋃
j∈N

cl(S1
j ),

• diam(P s(2,1,x)(x)) < 1
24 and f1 is constant on P s(2,1,x)(x).

For a such positive integer s(2, 1, x) there is a finite family of cubes

Q1,s(2,1,x), Q2,s(2,1,x), . . . , Qi(1,s(2,1,x)),s(2,1,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(2,1,x)(x)) \D(f2)
and such that

λ(
⋃i(1,s(2,1,x))

i=1 Qi,s(2,1,x))
λ(P s(2,1,x)(x))

>
1
2
.

Moreover, we assume that if for x, y ∈ D(f2)\D(f1) the point y ∈ P s(2,1,x)(x),
then P s(2,1,x)(x) = P s(2,1,y)(y), i(1, s(2, 1,x)) = i(1, s(2, 1,y)) and Qi,s(2,1,x)

= Qi,s(2,1,y) for i ≤ i(1, s(2, 1,x)). Let

S2,1
1 =

⋃
x∈D1

2

⋃
i≤i(1,s(2,1,x))

Qi,s(2,1,x), S2,2
1 =

⋃
x∈D2

2

⋃
i≤i(1,s(2,1,x))

Qi,s(2,1,x),

and S2
1 = S2,1

1 ∪ S2,2
1 =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,1,x))

Qi,s(2,1,x).

Obviously

cl(S2
1) \D(f2) =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,1,x))

cl(Qi,s(2,1,x))

and the family {Qi,s(2,1,x); i ≤ i(1, s(2, 1,x)) and x ∈ D(f2) \ D(f1)} is P-
locally finite.

Now, for each point x ∈ D(f2) \ D(f1) there is the first positive integer
s(2, 2,x) such that diam(P s(2,2,x)(x)) < 1

22 · diam(P s(2,1,x)(x)) and

x ∈ P s(2,2,x)(x) ⊂ P s(2,1,x)(x) \ cl(S2
1).

For a such integer s(2, 2,x) there is a finite family of cubes

Q1,s(2,2,x), Q2,s(2,2,x), . . . , Qi(1,s(2,2,x)),s(2,2,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(2,2,x)(x)) \D(f2)
and such that

λ(
⋃i(1,s(2,2,x))

i=1 Qi,s(2,2,x))
λ(P s(2,2,x)(x))

> 1− 1
22

.
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Moreover, we assume that if for x, y ∈ D(f2)\D(f1) the point y ∈ P s(2,2,x)(x),
then P s(2,2,x)(x) = P s(2,2,y)(y), i(1, s(2, 2,x)) = i(1, s(2, 2,y)) and Qi,s(2,2,x)

= Qi,s(2,2,y) for i ≤ i(1, s(2, 2,x)). Let

S2,1
2 =

⋃
x∈D1

2

⋃
i≤i(1,s(2,2,x))

Qi,s(2,2,x), S2,2
2 =

⋃
x∈D2

2

⋃
i≤i(1,s(2,2,x))

Qi,s(2,2,x),

and S2
2 = S2,1

2 ∪ S2,2
2 =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,2,x))

Qi,s(2,2,x).

Then

cl(S2
2) \D(f2) =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,2,x))

cl(Qi,s(2,2,x)).

and the family {Qi,s(2,2,x); i ≤ i(1, s(2, 2,x)) and x ∈ D(f2) \ D(f1)} is P-
locally finite.

Generally, for j > 2 and for each point x ∈ D(f2)\D(f1) let s(2, j,x) be the
smallest positive integer such that diam(P s(2,j,x)(x)) < 1

2j ·diam(P s(2,j−1,x)(x))
and

x ∈ P s(2,j,x)(x) ⊂ P s(2,j−1,x)(x) \ cl(S2
j−1).

For a such integer s(2, j,x) there is a finite family of cubes

Q1,s(2,j,x), Q2,s(2,j,x), . . . , Qi(1,s(2,j,x)),s(2,j,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(2,j,x)(x)) \D(f2)
and such that

λ(
⋃i(1,s(2,j,x))

i=1 Qi,s(2,j,x))
λ(P s(2,j,x)(x))

> 1− 1
2j

.

Moreover, we assume that if for x, y ∈ D(f2)\D(f1) the point y ∈ P s(2,j,x)(x),
then P s(2,j,x)(x) = P s(2,j,y)(y), i(1, s(2, j,x)) = i(1, s(2, j,y)) and Qi,s(2,j,x)

= Qi,s(2,j,y) for i ≤ i(1, s(2, j,x)). Let

S2,1
j =

⋃
x∈D1

2

⋃
i≤i(1,s(2,j,x))

Qi,s(2,j,x), S2,2
j =

⋃
x∈D2

2

⋃
i≤i(1,s(2,j,x))

Qi,s(2,j,x),

and S2
j = S2,1

j ∪ S2,2
j =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,j,x))

Qi,s(2,j,x).

Then

cl(S2
j ) \D(f2) =

⋃
x∈(D(f2)\D(f1))

⋃
i≤i(1,s(2,j,x))

cl(Qi,s(2,j,x)).
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and the family {Qi,s(2,j,x); i ≤ i(1, s(2, j,x)) and x ∈ D(f2) \ D(f1)} is P-

locally finite. Note too, since
(⋃

j∈N S2,1
j

)
∩S1

p ⊂
⋃

i≤i(1,s(1,p,y)) U(Qi,s(1,p,y))
for every p ∈ N and y ∈ D(f1), by (∗) we have

λ

(
⋃
j∈N

S2,1
j ) ∩ S1

p

 <
1
2p

· λ(S1
p). (∗∗)

Let Nk,t, k ∈ Z, t ∈ N, be pairwise disjoint infinite subsets of positive
integers such that for all k ∈ Z, Nk =

⋃
t∈N Nk,t. Observe that for all integers

k and each point x ∈ D(f2) \D(f1) the upper density

du

 ⋃
j∈Nk,t

int(S2
j ), x

 = 1.

Recall that⋃
l∈N S2,1

l ⊂
⋃

j∈N S1
j and

⋃
l∈N S2,2

l ⊂ Rm \
⋃

j∈N S1
j .

Moreover, there is an index j2 ∈ N such that

S1
j ⊂ O

(
D(f1),

1
24

)
for j > j2.

Next, for k ∈ Z we define the functions g3, g4 : Rm → R by

g3(x) =



f2(x) if x ∈ D(f2)
g1(x) if x ∈ S1

j \
⋃

l∈N S2,1
l , (j ∈ N2k−1,1) ∧ (j > j2)

g1(x) + c
22 if x ∈ S1

j \
⋃

l∈N S2,1
l , (j ∈ N2k−1,2) ∧ (j > j2)

f1(x) if x ∈
⋃

l∈N2k−1,1

(
S2,1

l ∪ S2,2
l

)
f1(x) + c

22 if x ∈
⋃

l∈N2k−1,2

(
S2,1

l ∪ S2,2
l

)
f2(x) otherwise on Rm

and let

g4(x) =



f2(x) if x ∈ D(f2)
g2(x) if x ∈ S1

j \
⋃

l∈N S2,1
l , (j ∈ N2k,1) ∧ (j > j2)

g2(x) + c
22 if x ∈ S1

j \
⋃

l∈N S2,1
l , (j ∈ N2k,2) ∧ (j > j2)

f1(x) if x ∈
⋃

l∈N2k,1

(
S2,1

l ∪ S2,2
l

)
f1(x) + c

22 if x ∈
⋃

l∈N2k,2

(
S2,1

l ∪ S2,2
l

)
f2(x) otherwise on Rm.
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The function g3 and g4 are s1-strongly quasi-continuous. Indeed,
(-) if x ∈ D(f2), then there exists an index k ∈ Z such that g3(x) =

f2(x) = k·c
4 . Then, for some k0 ∈ Z, we have two cases

g3(x) =
2k0 · c

4
=

k0 · c
2

= f1(x) or g3(x) =
(2k0 + 1) · c

4
=

k0 · c
2

+
c

4
.

Suppose that x ∈ D(f1) ⊂ D(f2). If k = 2k0, then for each index j ∈ N2k−1,1

there is a cube P s(1,j,x)(x) 3 x such that

λ
(
S1

j ∩ P s(1,j,x)(x)
)

λ(P s(1,j,x)(x))
> 1− 1

2j
.

Moreover, if j > j2 is such that S1
j ∩D1

2 6= ∅, then by the formula (∗∗) we have

λ
(
(S1

j \
⋃

l∈N S2,1
l ) ∩ P s(1,j,x)(x)

)
λ(P s(1,j,x)(x))

=
λ

((
S1

j \ ((
⋃

l∈N S2,1
l ) ∩ S1

j )
)
∩ P s(1,j,x)(x)

)
λ(P s(1,j,x)(x))

=
λ

(
S1

j ∩ P s(1,j,x)(x)
)

λ(P s(1,j,x)(x))
−

λ
((

(
⋃

l∈N S2,1
l ) ∩ S1

j

)
∩ P s(1,j,x)(x)

)
λ(P s(1,j,x)(x))

>
λ

(
S1

j ∩ P s(1,j,x)(x)
)

λ(P s(1,j,x)(x))
−

1
2j · λ

(
S1

j ∩ P s(1,j,x)(x)
)

λ(P s(1,j,x)(x))

>

(
1− 1

2j

)
− 1

2j
·
(

1− 1
2j

)
> 1− 1

2j−1
.

For all y ∈
(
S1

j \
⋃

l∈N S2,1
l

)
∩P s(1,j,x)(x), by definition, g3(y) = g1(y) = k0·c

2 .

Thus

du

(
int

(
(g3)−1(

k0 · c
2

)
)

, x
)

= 1.

Similarly, if k = 2k0 + 1, then for each index j ∈ N2k−1,2 there is a cube
P s(1,j,x)(x) 3 x such that if j > j2 and S1

j ∩D1
2 6= ∅, then

λ
(
(S1

j \
⋃

l∈N S2,1
l ) ∩ P s(1,j,x)(x)

)
λ(P s(1,j,x)(x))

> 1− 1
2j−1

.

Then, for all y ∈
(
S1

j \
⋃

l∈N S2,1
l

)
∩P s(1,j,x)(x), by definition, g3(y) = g1(y)+

c
4 = k0·c

2 + c
4 = (2k0+1)·c

4 . Thus

du

(
int

(
(g3)−1(

(2k0 + 1) · c
4

)
)

, x
)

= 1
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and consequently g3 ∈ Qs1(x) for each x ∈ D(f1).
Suppose that x ∈ D(f2)\D(f1). If k = 2k0, then for each index l ∈ N2k−1,1

there is a cube P s(2,l,x)(x) 3 x such that

λ
(
S2,1

l ∩ P s(2,l,x)(x)
)

λ(P s(n,l,x)(x))
> 1− 1

2l
or

λ
(
S2,2

l ∩ P s(2,l,x)(x)
)

λ(P s(n,l,x)(x))
> 1− 1

2l

because for all l ∈ N2k−1,1 we have S2,1
l ∩S2,2

l = ∅. Thus, by definition, for all
y ∈ (S2,1

l ∪ S2,2
l ) ∩ P s(2,l,x)(x) we have g3(y) = f1(y) = k0·c

2 and

du

(
int

(
(g3)−1(

k0 · c
2

)
)

, x
)

= 1

Similarly, if k = 2k0 + 1, then for each index l ∈ N2k−1,2 there is a cube
P s(2,l,x)(x) 3 x such that

λ
(
S2,1

l ∩ P s(2,l,x)(x)
)

λ(P s(n,l,x)(x))
> 1− 1

2l
or

λ
(
S2,2

l ∩ P s(2,l,x)(x)
)

λ(P s(n,l,x)(x))
> 1− 1

2l

because for all l ∈ N2k−1,2 we have S2,1
l ∩ S2,2

l = ∅. Observe that for all
y ∈ (S2,1

l ∪ S2,2
l ) ∩ P s(2,l,x)(x), by definition , g3(y) = f1(y) + c

4 = k0·c
2 + c

4 =
(2k0+1)·c

4 . Thus

du

(
int

(
(g3)−1(

(2k0 + 1) · c
4

)
)

, x
)

= 1

and consequently g3 ∈ Qs1(x) for each x ∈ D(f2) \D(f1).
(-) if x ∈ Rm \ D(f2), then by the construction of g3, we have that g3 ∈

Qs1(x).
So, g3 ∈ Qs1(x) for each x ∈ Rm. Analogously we can show that g4 is

s1-strongly quasi-continuous at each point of its domain. Observe too, that
g3(x) = g4(x) = f2(x) for all

x 6∈ O
(

D(f2),
1
24

)
= O

(
D(f1),

1
24

)
∪ O

(
D(f2) \D(f1),

1
24

)
.

Moreover, since |f2 − f | < c
4 and min(|g3 − f2|, |g4 − f2|) = 0,

min(|g3 − f |, |g4 − f |) = min(|g3 − f2|+ |f2 − f |, |g4 − f2|+ |f2 − f |) <
c

4
.

Step 3. The set D(f3) is closed and of λ-measure zero. Let

D1
3 = (D(f3) \D(f2)) ∩

 2⋃
r=1

⋃
j∈N

Sr
j

 and let D2
3 = (D(f3) \D(f2)) \D1

3.
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If for an index r0 ∈ {1, 2} and an index p0 ∈ N and a cube Qi,s(r0,p0,y), where
y ∈ D(f2) and i ≤ i(1, s(r0, p0,y)), the set

Di,s(r0,p0,y) = D1
3 ∩Qi,s(r0,p0,y) 6= ∅,

then we find an open (in Qi,s(r0,p0,y)) set U(Qi,s(r0,p0,y)) ⊂ Qi,s(r0,p0,y) con-
taining Di,s(r0,p0,y) such that

λ
(⋃

i≤i(1,s(r0,p0,y)) U(Qi,s(r0,p0,y))
)

λ (Sr0
p0)

<
1

2p0

and du(U(Qi,s(r0,p0,y)), x) = 0 for x ∈ Fr(Qi,s(r0,p0,y)). If Di,s(r0,p0,y) = ∅,
we take U(Qi,s(r0,p0,y) = ∅. Thus, for every p ∈ N and r ∈ {1, 2} such that
Sr

p ∩D1
3 6= ∅ and for x ∈ Fr(Qi,s(r,p,y)) we have

λ

 ⋃
i≤i(1,s(r,p,y))

U(Qi,s(r,p,y))

 <
1
2p

· λ
(
Sr

p

)
,

where U(Qi,s(r,p,y)) ⊃ Di,s(1,p,y) and du(U(Qi,s(r,p,y)), x) = 0.
Similarly, as in the second step, for each point x ∈ D(f3) \D(f2) there is

the first positive integer s(3, 1,x) such that:

• if x ∈ Di,s(r,p,y) for p ∈ N, r ∈ {1, 2}, i ≤ i(1, s(r, p,y)) and y ∈ D(f2),
then

x ∈ P s(3,1,x)(x) ⊂ U
(
Qi,s(r,p,y)

)
∩ O(D1

3,
1
29

) ;

• if x ∈ D2
3, then

x ∈ P s(3,1,x)(x) ⊂ O
(

D2
3,

1
29

)
\

2⋃
r=1

⋃
j∈N

cl(Sr
j ) ;

• diam(P s(3,1,x)(x) < 1
29 and f2 is constant on P s(3,1,x)(x).

For a such positive integer s(3, 1, x) there is a finite family of cubes

Q1,s(3,1,x), Q2,s(3,1,x), . . . , Qi(1,s(3,1,x)),s(3,1,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(3,1,x)(x)) \D(f3)
and such that

λ(
⋃i(1,s(3,1,x))

i=1 Qi,s(3,1,x))
λ(P s(3,1,x)(x))

>
1
2
.
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Moreover, we assume that if for x, y ∈ D(f3)\D(f2) the point y ∈ P s(3,1,x)(x),
then P s(3,1,x)(x) = P s(3,1,y)(y), i(1, s(3, 1,x)) = i(1, s(3, 1,y)) and Qi,s(3,1,x)

= Qi,s(3,1,y) for i ≤ i(1, s(3, 1,x)). Let

S3,1
1 =

⋃
x∈D1

3

⋃
i≤i(1,s(3,1,x))

Qi,s(3,1,x), S3,2
1 =

⋃
x∈D2

3

⋃
i≤i(1,s(3,1,x))

Qi,s(3,1,x) and

S3
1 = S3,1

1 ∪ S3,2
1 =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,1,x)

Qi,s(3,1,x).

Obviously

cl(S3
1) \D(f3) =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,1,x))

cl(Qi,s(3,1,x))

and the family {Qi,s(3,1,x); i ≤ i(1, s(3, 1,x)) and x ∈ D(f3) \ D(f2)} is P-
locally finite.

Now, for each point x ∈ D(f3)\D(f2) let s(3, 2,x) be the smallest positive
integer such that diam(P s(3,2,x)(x)) < 1

22 · diam(P s(3,1,x)(x)) and

x ∈ P s(3,2,x)(x) ⊂ P s(3,1,x)(x) \ cl(S3
1).

For a such integer s(3, 2,x) there is a finite family of cubes

Q1,s(3,2,x), Q2,s(3,2,x), . . . , Qi(1,s(3,2,x)),s(3,2,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(3,2,x)(x)) \D(f3)
and such that

λ(
⋃i(1,s(3,2,x))

i=1 Qi,s(3,2,x))
λ(P s(3,2,x)(x))

> 1− 1
22

.

Moreover, we assume that if for x, y ∈ D(f3)\D(f3) the point y ∈ P s(3,2,x)(x),
then P s(3,2,x)(x) = P s(3,2,y)(y), i(1, s(3, 2,x)) = i(1, s(3, 2,y)) and Qi,s(3,2,x)

= Qi,s(3,2,y) for i ≤ i(1, s(3, 2,x)). Let

S3,1
2 =

⋃
x∈D1

3

⋃
i≤i(1,s(3,2,x))

Qi,s(3,2,x), S3,2
2 =

⋃
x∈D2

3

⋃
i≤i(1,s(3,2,x))

Qi,s(3,2,x) and

S3
2 = S3,1

2 ∪ S3,2
2 =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,2,x))

Qi,s(3,2,x).

Observe that

cl(S3
2) \D(f3) =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,2,x))

cl(Qi,s(3,2,x))
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and the family {Qi,s(3,2,x); i ≤ i(1, s(3, 2,x)) and x ∈ D(f3) \ D(f2)} is P-
locally finite.

Generally, for j > 2 and for each point x ∈ D(f3)\D(f2) let s(3, j,x) be the
smallest positive integer such that diam(P s(3,j,x)(x)) < 1

2j ·diam(P s(3,j−1,x)(x))
and

x ∈ P s(3,j,x)(x) ⊂ P s(3,j−1,x)(x) \ cl(S3
j−1).

For a such integer s(3, j,x) there is a finite family of cubes

Q1,s(3,j,x), Q2,s(3,j,x), . . . , Qi(1,s(3,j,x)),s(3,j,x) ∈ P,

whose closures are pairwise disjoint and contained in int(P s(3,j,x)(x)) \D(f3)
and such that

λ(
⋃i(1,s(3,j,x))

i=1 Qi,s(3,j,x))
λ(P s(3,j,x)(x))

> 1− 1
2j

.

Moreover, we assume that if for x, y ∈ D(f3)\D(f3) the point y ∈ P s(3,j,x)(x),
then P s(3,j,x)(x) = P s(3,j,y)(y), i(1, s(3, j,x)) = i(1, s(3, j,y)) and Qi,s(3,j,x) =
Qi,s(3,j,y) for i ≤ i(1, s(3, j,x)). Let

S3,1
j =

⋃
x∈D1

3

⋃
i≤i(1,s(3,j,x))

Qi,s(3,j,x), S3,2
j =

⋃
x∈D2

3

⋃
i≤i(1,s(3,j,x))

Qi,s(3,j,x) and

S3
j = S3,1

j ∪ S3,2
j =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,j,x))

Qi,s(3,j,x).

Observe that

cl(S3
j ) \D(f3) =

⋃
x∈(D(f3)\D(f2))

⋃
i≤i(1,s(3,j,x))

cl(Qi,s(3,j,x))

and the family {Qi,s(3,j,x); i ≤ i(1, s(3, j,x)) and x ∈ D(f3) \ D(f2)} is P-
locally finite.

Let Nk,t,l, k ∈ Z and t, l ∈ N; be pairwise disjoint infinite subsets of positive
integers such that for all k ∈ Z and t ∈ N, Nk,t =

⋃
l∈N Nk,t,l. Observe, that

for each point x ∈ D(f3) \D(f2) and k ∈ Z, t ∈ N the upper density

du

 ⋃
j∈Nk,t,l

int(S3
j ), x

 = 1.

Put

• N2k−1,3 = N2k−1,1,1 ∪N2k−1,2,1 and N2k−1,4 = N2k−1,1,2 ∪N2k−1,2,2 ;
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• N2k,3 = N2k,1,1 ∪N2k,2,1 and N2k,4 = N2k,1,2 ∪N2k,2,2.

Recall, too, that

•
⋃

p∈N S3,1
p ⊂

⋃2
r=1

⋃
l∈N Sr

l ,
⋃

p∈N S3,2
p ⊂ Rm\

⋃2
r=1

⋃
l∈N cl (Sr

l ) and

•
⋃

p∈N S3
p =

⋃
p∈N S3,1

p ∪
⋃

p∈N S3,2
p .

There are indexes j3, l3 ∈ N such that

S1
j ⊂ O

(
D(f1),

1
29

)
for j > j3 and S2

l ⊂ O
(

D(f2) \D(f1),
1
29

)
for l > l3.

Next, for k ∈ Z we define the functions g5, g6 : Rm → R by

g5(x)



f3(x) if x ∈ D(f3)

g3(x) if x ∈ S1
j \

(⋃
p∈N S3,1

p ∪
⋃

l∈N S2,1
l

)
, (j∈N2k−1,3)∧(j >j3)

g3(x) + c
23 if x ∈ S1

j \
(⋃

p∈N S3,1
p ∪

⋃
l∈N S2,1

l

)
, (j∈N2k−1,4)∧(j >j3)

g3(x) if x ∈ S2
l \

⋃
p∈N S3,1

p , (l ∈ N2k−1,3) ∧ (l > l3)
g3(x) + c

23 if x ∈ S2
l \

⋃
p∈N S3,1

p , (l ∈ N2k−1,4) ∧ (l > l3)
f2(x) if x ∈

⋃
p∈N2k−1,1

S3
p

f2(x) + c
23 if x ∈

⋃
p∈N2k−1,2

S3
p

f3(x) otherwise on Rm

and

g6(x) =



f3(x) if x ∈ D(f3)

g3(x) if x ∈ S1
j \

(⋃
p∈N S3,1

p ∪
⋃

l∈N S2,1
l

)
, (j∈N2k,3)∧(j >j3)

g3(x) + c
23 if x ∈ S1

j \
(⋃

p∈N S3,1
p ∪

⋃
l∈N S2,1

l

)
, (j∈N2k,4)∧(j >j3)

g3(x) if x ∈ S2
l \

⋃
p∈N S3,1

p , (l ∈ N2k,3) ∧ (l > l3)
g3(x) + c

23 if x ∈ S2
l \

⋃
p∈N S3,1

p , (l ∈ N2k,4) ∧ (l > l3)
f2(x) if x ∈

⋃
p∈N2k,1

S3
p

f2(x) + c
23 if x ∈

⋃
p∈N2k,2

S3
p

f3(x) otherwise on Rm.

As in the second step we can verify that g5, g6 ∈ Qs1(x) for each x ∈ Rm.
Observe too, that g5(x) = g6(x) = f3(x) for all

x 6∈ O
(

D(f3),
1
29

)
=

2⋃
i=0

O
(

D(fi+1) \D(fi),
1
29

)
, where D(f0) = ∅.
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Moreover, since |f3 − f | < c
23 and min(|g5 − f3|, |g6 − f3|) = 0,

min(|g5 − f |, |g6 − f |) = min(|g5 − f3|+ |f3 − f |, |g6 − f3|+ |f3 − f |) <
c

23
.

Generally, for n > 3, as in step 3, we define functions g2n−1, g2n : Rm → R
such that g2n−1, g2n ∈ Qs1(x) for each point x ∈ Rm, g2n−1(x) − g2n(x) =
fn(x) for all

x 6∈ O
(

D(fn),
1

2n2

)
=

n−1⋃
i=0

O
(

D(fi+1) \D(fi),
1

2n2

)
where D(f0) = ∅,

and min(|g2n−1 − fn|, |g2n − fn|) = 0. We will prove that the sequence (gn)
quasi-uniformly converges to f . First we shall show that the sequence (gn) con-
verges pointwise to f . Suppose that x ∈

⋃∞
n=1 D(fn) =

⋃∞
n=2

⋃n−1
i=0 (D(fi+1) \

D(fi) where D(f0) = ∅. Then there is an index M ∈ N such that g2n−1(x) =
g2n(x) = fn(x) for n > M and consequently

lim
n→∞

g2n−1(x) = lim
n→∞

g2n(x) = lim
n→∞

fn(x) = f(x).

Now suppose that x 6∈
⋃∞

n=1 D(fn). Fix a real ε > 0. There is an index
T ∈ N such that

c

2T−2
< ε. Since x 6∈ D(fT ), there is a real η > 0 with

x 6∈ O(D(fT ), η). Let M > T be a positive integer such that 1
2M < η. Then,

for all n > M > T we have x 6∈ O
(
D(fT ), 1

2M

)
and consequently

max(|g2n−1(x)− fn(x)|, |g2n(x)− fn(x)|) <
c

2M
.

Since for all n > M we obtain

max(|g2n−1(x)− f(x)|, |g2n(x)− f(x)|) <
c

2M
+

c

2n
<

ε

2
+

ε

2
< ε,

the sequence (gn) converges pointwise to f. It is obvious that min(|g2n−1 −
f |, |g2n − f |) < ε for all n > M and the proof is completed.

Recall that a function f : Rm → R is approximately quasi-continuous at
a point x ∈ Rm, (f ∈ Qap(x)) if for each real ε > 0 and each set U ∈ Td

containing x there is a nonempty set V ⊂ U belonging to Td with f(V ) ⊂
(f(x)− ε, f(x) + ε) ([4]).

In [4] it is proved that each λ-measurable function f : Rm → R is the
limit of a pointwise convergent sequence of approximately quasi-continuous
functions. We will prove the following assertion.
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Theorem 2. If f : Rm → R is a λ-measurable function, then there is a
sequence of approximately quasi-continuous functions gn : Rm → R which
quasi-uniformly converges to f .

Proof. Since f is λ-measurable, the set

Dap(f) = {x ∈ Rm; f is not approximately continuous at x}

is of λ-measure zero. There exists an Gδ-set A ⊃ Dap(f) of λ-measure zero.
Let (Gn) be a decreasing sequence of open sets G1 ⊃ G2 ⊃ . . . such that

A =
⋂∞

n=1 Gn. Fix an index n ∈ N. From Lemma 3 in [4] there is a sequence
of pairwise disjoint measurable sets An,k ⊂ Gn \A such that

•
⋃∞

k=0 An,k = Gn \A ;

• du(An,k, x) > 0 for each x ∈ A ∪An,k and each k ≥ 0, and

• du((Rm \Gn) ∪An,0, x) > 0 for each x ∈ Rm \Gn.

Let (wk) be a sequence of all rationals such that wi 6= wj for i 6= j and let

g2n−1(x) =

{
wk for x ∈ An,2k, k = 1, 2, . . .

f(x) otherwise on Rm

and

g2n(x) =

{
wk for x ∈ An,2k−1, k = 1, 2, . . .

f(x) otherwise on Rm.

Evidently the functions gn, (n ∈ N) are approximately quasi-continuous.
Since A =

⋂
n Gn and Gn ⊃ Gn+1 for n ≥ 1, we have f = limn→∞ gn.

Moreover, since min(|g2n−1 − f |, |g2n − f |) = 0 for every n ∈ N, the sequence
(gn) quasi-uniformly converges to f and the proof is completed.
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[4] Z. Grande, T. Natkaniec, E. Strońska, Algebraic structures generated by
d-quasicontinuous functions, Bull. Polish Acad. Sci., Math., 35 No. 11-
12 (1987), 717–723.

[5] Z. Grande, On quasi-uniform convergence of a sequence of s.q.c. func-
tions, Math. Slovaca, 48 (1998), 507–511.

[6] Z. Grande., On some special notions of approximate quasicontinuity, Real
Analysis Exch., 24 (1998-99), 171–183.
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