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ON QUASI-UNIFORM CONVERGENCE OF
SEQUENCES OF 5,-STRONGLY
QUASI-CONTINUOUS FUNCTIONS ON R™

Abstract

A function f : R™ — R is called si-strongly quasi-continuous at a
point x € R™ if for each real € > 0 and for each set A 5 x belonging to
the density topology, there is a nonempty open set V' such that

0#ANV CfH(f(x) —e f(x) +e) N C(f),

where C(f) denotes the set of continuity points of f. It is proved that
every A-almost everywhere continuous function f : R™ — R is the quasi-
uniform limit of a sequence of s;-strongly quasi-continuous functions and
that each measurable function f : R™ — R is the quasi-uniform limit of
a sequence of approximately quasi-continuous functions f : R™ — R.

Let R, Z and N be respectively the set of all reals, the set of all integers
and the set of all positive integers, and let R™ be m-dimensional product space
R x .-+ x R with the standard metric | - |; i.e., using the distance

x—-yl=

m
Z|3«”i —vil?
i=1

between the points x = (z1,22,...,Zm), ¥ = (Y1,Y2,--.,Ym) € R™. More-
over, let A, (A\*) denote Lebesgue measure, (outer Lebesgue measure) in R™.
For each number n € N and for each system of integers (ki,..., k) let

. (k-1 ks kpw — 1 Ep,
Pk17---7k7n - n 77 X x n 77 '
2 2 2 2
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218 EwA STRONSKA

Moreover, let

Pn = {Pl?l,...,km;klw-'»km €Z}and P = UP”'
n

Observe that

(1) if (k1y - v oy bm) # (s oo b)), then P2 0 PP =0

() B = U, sz Pl

(3) if n1 > ng, then for each system of integers (k1,. .., k) there is a unique
system of integers (I1,...,l,,) such that P* , C P

(4) for each point x € R™ and for each index n € N there is a unique system

of integers (k1(x), ..., km(x)) such that x € P ) = P"(x).

For a set A C R™ and a point x € R™ let

du(4,x) = limsup w, (dz(A,X) = lim inf W)

the upper, (lower) outer density of the set A C R at the point x (compare [1]).

A point x € R™ is called a density point of a set A C R™ if there exists a
A-measurable (i.e., measurable in the sense of Lebesgue) set B C A such that
di(B,x) = 1. The family

Ta={A CR™; A is d-measurable and d;(A,x) =1 for x € A}

is a topology called the density topology ([2], [3], [12], [13]).

Moreover, let 7. be the Euclidean topology in R and let C(f) denote the
set of all points at which a real function f is continuous.

We will say that a function f: R™ — R is sy-strongly quasi-continuous at
a point x, (f € Qs, (x)) if for every set A € 7; containing x and for every real
€ > 0 there is a nonempty open set U such that

FFUEE) — e, fx) +e))nC(f) DUNA#D, ([6],[11]).

Observe that if there is a nonempty open set U C R™ N C(f) such that
dy(U, x) > 0 for x € R™ and the restricted function f|ux}) is continuous
at x, then f € Qg (x).

A sequence of functions f, : R™ — R, n = 1,2,..., is said to be quasi-
uniformly convergent to a function f ([10], p.143) if it pointwise converges to
f and for each real ¢ > 0 and for each index ¢ € N there is an index p € N
such that for each point x € R™

min(| fiy1(x) = FX)], - [firp (%) = FF)]) <&
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It is obvious (compare [6], [7], [11]) that every s;- strongly quasi-continuous
function f : R™ — R is A- almost everywhere (i.e., almost everywhere with re-
spect to A) continuous. Since quasi-uniform convergence preserves continuity,
the quasi-uniform limit of sequence of si-strongly quasi-continuous functions
is a A-almost everywhere continuous function.

We will prove the following.

Theorem 1. If a function f : R™ — R is A-almost everywhere continuous,
then there are si-strongly quasi-continuous functions g, : R™ — R, n =
1,2,..., such that the sequence (g,) quasi-uniformly converges to f.

ProOF. Let cl denote the closure operation and let

B={yeR;A(cl(f ' (y)) > 0}.

Since the function f is A-almost everywhere continuous, the set B is countable.
Without loss of the generality we can assume that 0 € B, because in the
contrary case we may consider the function f — a, where a # 0 is a real. Let
L(B) be the linear space over the field of all rationals generated by the set
B. Since the set L(B) is countable, there is a positive number ¢ € R\ L(B).
Fix k € Zandn € N. If &£ < f(x) < % for x € R™, then we define
fa(x) = % Observe that every function f,, n € N, is A-almost everywhere
continuous and if D(f,) denotes the set of all discontinuity points of f,,, then
D(f,) is a closed set of A-measure zero. Moreover, D(f,,) C D(fn+1) forn € N
and if x € D(f,+1)\ D(fn) for some n € N, then for every i > n the inequality
oscy, (x) < 5a=r holds, where oscy(x) denote the oscillation of a function g at
the point x.

Step 1. Recall that the set D(f1) is closed and of A-measure zero. For
each point x € D(f;) there is a unique cube P!(x) € P; such that x €
Pl(x). Observe that the diameter (with respect to the standard metric in
R™), diam(P!(x)) < @ For a such cube P!(x) there is a finite family of
cubes

Qi1,x Q21,xr---» Qi(1,1,x),1,x ep,
whose closures are pairwise disjoint and contained in int(P!(x))\ D(f1) (int
denotes the interior operation) and such that

MU Qi) 1
API) T2

Moreover, we assume that if for x, y € D(f1) the cubes P!(x) and P(y) are
the same, then i(1,1,x) =4(1,1,y) and Q;1,x = @1,y for i <i(1,1,x). Let

st= U U Qiix

x€D(f1) 1<i(1,1,x)
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Observe that

dSH\D(f) = | U c@iix)

xeD(f1) i<i(1,1,x)

and the family {Q;1x;¢ < i(1,1,x) and x € D(fy)} is P-locally finite; i.e.,
for each point y € R™ there is an index [ € N such that the family of triples
(i,1,x), where x € D(f1), for which Q;1x N P'(y) # 0 is finite.

Now, for each point x € D(f;) there is the first positive integer s(1,2,x)
such that diam(P*(13¥)(x)) < & and

x € P*12¥(x) ¢ PY(x)\ cl(S}).
For a such integer s(1,2,x) there is a finite family of cubes
Q1,5(1,2,x)s @2,5(1,2%) -+ Qi(1,5(1,2,%)),5(1,2,x) € P

whose closures are pairwise disjoint and contained in int(P*2%)(x))\ D(f)
and such that

/\(Uz( 1 12X))Q’LS(12X) > l—i
) 7
Assume that if for x, y € D(f1) the point y € P*(12%)(x), then P*(1,2%) (x) =
Ps12Y)(y), i(1,5(1,2,%x)) = i(1,5(1,2,y)) and Qis(1,2,x) = Qi,s(1,2,y) for i <
i(1,s(1,2,x)).

Let

521 = U U Qi,s(1,2,x)'

x€D(f1) i<i(1,5(1,2,))

Observe that

cl(S2) \ D(f1) = U U l(Qis1,2.x))

xeD(f1) i<i(1,s(1,2,x))

and the family {Q;s(1,2x);7 < i(1,5(1,2,x)) and x € D(f1)} is P-locally
finite.

Generally, for j > 2, we proceed analogously and for each point x € D(f1)
we find the first positive integer s(1,4,x) such that diam(P*(19%)(x)) < &
and

x € P*LiX) (x) ¢ psUa—1%) (x) \ CI(SJ 1)

For such an integer s(1, j,x) there is a finite family of cubes

Q1,5(1,5,%) Q2,5(1,5,x)5 > Qi(1,5(1,j,%)),5(1,5,x) € P
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whose closures are pairwise disjoint and contained in int(P*(173%) (x))\ D(f;)

and such that (Ls(L4)
i(1,s(1,5,x
AUizi™ " Qis1yix) s1- 2

MNP0 (x)) 27"

Moreover, we assume that if for x, y € D(f;) the point y € P*(17%)(x), then
PS(LjVX)(X) = PS(Lj’y)(y)a ’L(l,S(l,],X)) = Z(LS(LJ,Y)) and Qi,s(l,j,x) =
Qi,s(l,jy) for 4 S 1(178(1,], X)) Let

Sjl = U U Qi,s(l,j,x)~

XED(_fl) igi(LS(Lj’x))

Then
ASH\ D) = | U d@isaix)

x€D(f1) i<i(1,5(1,5,x))

and the family {Q; s(1,jx);7 < i(1,5(1,4,x)) and x € D(f1)} is P-locally finite.

Now, let N;, [ € Z, be pairwise disjoint infinite subsets of positive integers
such that N = (J;, IVi. Observe that for each index I € Z and for each point
x € D(f1) the upper density

d, | |J int(S}), x| =1.

JEN;
Let
g1(x) = ke if xS}, j€Nop1, keZ
fi(x) otherwise on R™
and let

% ifXES},jENQk,kEZ
92(x) = 7
fi(x) otherwise on R™.
The functions g1, go are si-strongly quasi-continuous at each point x. Indeed,
if x € D(f1), then there is an integer k with fi(x) = % Since x € D(fy), for
each positive integer j € Noy_; there is a cube P1(13:X) (x) > x. But

A(S} N phehix) (x)) L]
APy 2

91(x) = f1(x) and int(S}) N PLsLix)(x) € C(g1), so

du <int <(gl)1(]“2'c)), x> =1
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and consequently g; is si-strongly quasi-continuous at x. If x € R™ \ D(f1),
then from the construction of g; follows that g1 € Qs, (x).

Analogously we can show that g» € Qs, (x) for each point x € R™. More-
over,

A= 71 < 5 and min(gy = ful,]g2 = 1) = 0. so
min(|g: — 1,92 = f1) < min(lgs — fil + |/ = fl,lg2 = il + | = /1) < 5.

Step 2. For a nonempty closed set H C R™ and for a real > 0, we put

O(H,n) = U K(x,n), where K(x,n) = {u € R"™;|u—x| < n}.
xeH

The set D(f2) is closed and of A-measure zero. Let
DY = (D(f2)\ D)) 1 (Ujen 1) and DF = (D(f2)\ D(f2)) \ Di.

If for an index po € N and a cube Q; (1,pyy), Where y € D(f1) and i <
i(las(lapan))7 the set

Di s(1poy) = D3N Qi s(1.ppy) 7 0

then we find an open (in Q; s(1,po.y)) 8¢t U(Qis(1,p0,y)) € Qi,s(1,p0,y) COD-
taining D; 4(1,p,,y) such that

A (Uigi(l,s(l,po,y)) U(Qi,s(lmo,y))) < L
A(S5,) 200

and dy(U(Qi,s(1,p0,y))s X) = 0 for x € Fr(Q; s(1,p,y)), Where Fr(H) denotes
the boundary of the set H. If D; ;(1 p,,y) = 0, then we take U(Q; s(1,p0,y)) = 0

Thus, for every p € N such that S; N D3 # () and for x € Fr(Qis1,p,y))5

Moo U U@isapy) | < = A(8Y), ()

i<i(1,5(1,p,y))

where U(Qi,s(l,p,y)) D Di,s(l,p,y) and du(U(Qi,s(l,p,y))a X) =0.
Similarly, as in the first step, for each point x € D(f2) \ D(f1) there is the
first positive integer s(2,1,x) such that:

o if x € D 41y fori <i(1,s(1,p,y)), p € Nand y € D(f1), then

1
x € PS@1%) (x) ¢ U(Qis1,py)) NO (D%’ 24) !
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e if x € D3, then
S X 1
xe P ¢ o (0, g )\ s
JEN
e diam(P*?1¥)(x)) < 4 and f; is constant on P*(31%)(x).
For a such positive integer s(2, 1, x) there is a finite family of cubes
Q1,5(2,1,x)7 Q2,5(2,1,x)u ceey Qi(l,s(2,1,x)),s(2,1,x) e P,
whose closures are pairwise disjoint and contained in int(P*21%)(x))\ D(fs)
and such that (1a(2.10))
MUz 7 Qis21.%)) - 1
A(Ps(2.1.%) (x)) 2

Moreover, we assume that if for x, y € D(f2)\D(f1) the point y € P*(21:%)(x),
then P*@12)(x) = P*31¥)(y), (1, 5(2,1,%)) = i(1,5(2,1,y)) and Qjs(2,1,)
= Qi,s(2,l,y) fOI' 7 S ’L(l, 5(27 1,X)). Let

Sf’l = U U Qi,5(2,1,%)5 53’2: U U Qi,s(2,1,%)>

xeD} i<i(1,s(2,1,x)) xeD32 i<i(1,s(2,1,x))
and 512 = Sf’l U Sf’Q = U U Qi,s(2,1,%)-
x€(D(f2)\D(f1)) i<i(1,5(2,1,x))
Obviously
CI(S%) \ D(f2) = U U cl(Qi,s(2,1,x))

x€(D(f2)\D(f1)) i<i(1,5(2,1,%))

and the family {Q; s2,1,x);% < i(1,5(2,1,x)) and x € D(f2) \ D(f1)} is P-
locally finite.

Now, for each point x € D(f2) \ D(f1) there is the first positive integer
$(2,2,x) such that diam(P**2%)(x)) < & - diam(P**1%)(x)) and

x € P*32X)(x) ¢ PP (x) \ cl(S)).
For a such integer s(2,2,x) there is a finite family of cubes
Q1,52,2,x)s @2,52,2%) -+ Qi(1,5(2,2,%)),5(2,2,x) € P
whose closures are pairwise disjoint and contained in int(P*22%)(x))\ D(fz)

and such that .
AU Qi(2.2.) 1

>1——.
)\(PS(Z,Z,X) (x)) 22
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Moreover, we assume that if for x, y € D(f2)\D(f1) the point y € P*(2:2%)(x),
then P*32%)(x) = P*2¥)(y), i(1,5(2,2,%)) = i(1,5(2,2,y)) and Q;s(2,2.)
= Qj,s(2,2,y) fori < i(1,s(2,2,x)). Let

5371 = U U Qi,s(2,2,x)a ‘922,2 = U U Qi,s(2,2,x)7

xeD} i<i(1,5(2,2,x)) xeD3 i<i(1,s(2,2,x))

and S = 53’1 U 53’2 = U U Qi5(2,2,%)-

x€(D(f2)\D(f1)) i<i(1,5(2,2,x))
Then

01(522) \D(f2) = U U Cl(Qi,s(Q,z,x))~
x€(D(f2)\D(f1)) i<i(1,5(2,2,%))
and the family {Q; s2.2x);7 < i(1,5(2,2,x)) and x € D(f2) \ D(f1)} is P-
locally finite.

Generally, for j > 2 and for each point x € D(f2)\D(f1) let s(2, j,%) be the
smallest positive integer such that diam(P*(27%)(x)) < & -diam(P*2I-1%)(x))
and

x € P23 (x) ¢ psZI=1¥)(x)\ cl(Sffl).

For a such integer s(2, j,x) there is a finite family of cubes
Qus(2x)r Q2525 -5 Qi(1s2%0),52,5%) € P
whose closures are pairwise disjoint and contained in int(P*Z7%) (x))\ D(fs)
and such that (Ls(2.j0)
i(1,s5(2,7,%
AU Qi) L
A(P35(2:5:%) (x)) 27"

Moreover, we assume that if for x, y € D(f2)\D(f1) the point y € P23 (x),
then P*(7X)(x) = P7¥)(y), i(1,5(2,7,%)) = i(1,5(2,5,¥)) and Qi s(2,5x)
= Qi,s(2,5,y) fori < i(1,s(2,4,%)). Let

S?’l = U U Qi 5(2,j,%)s S?’Q = U U Qis(2,5.%)>

xeD3 i<i(1,5(2,5,%)) xeD3 i<i(1,5(2,5,%))

2,1 2,2
and SJQ = S] U Sj = U U Qi,s(?,j,x)‘
xE(D(f2)\D(f1)) i<i(1,8(2,5,%))
Then

cl(S7)\ D(f2) = U U d@iseixn)

x€(D(f2)\D(f1)) i<i(1,5(2,5,x))
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2 1
)ﬂSl C Uz<z(1 s(1,p,y)) U(Qi,s(lava))
( ) we have

and the famlly {st (2,5,%)3 ' S (1 8(2 Jyx )) and x € D(f?) \ (fl)} is P-
locally finite. Note too, since
)

for every p e Nand y € D(f,

MUsznst] < = s (+4)

2p
JEN

Let Ny, k € Z, t € N, be pairwise disjoint infinite subsets of positive
integers such that for all k € Z, Ny, = UteN Np ¢. Observe that for all integers
k and each point x € D(f3) \ D(f1) the upper density

dy, U int(SJQ»), x| =1

JENK,t
Recall that
2,1 2,2 m
Uien 817 € Ujen Sj and Uen S;7" CR™ \ Ujjen Sj -

Moreover, there is an index j2 € N such that
1 L
Sj1 c o (D(f1)724> for j > jo.

Next, for k € Z we define the functions g3, g4 : R™ — R by

fa(x) if x € D(f2)
91(x) if x € S\ Uien 7, (G € Nok—1,1) A (j > ja)
91(X) + 52 ifxes;\UZENS?’l7 (J € Nag—1.2) A\ (J > o)
93(X) = fl (X) ifx e UleN%_l ) Sl2,1 U Sl2,2
fx) + 5 Ex€Ueny, 1, Sl2’1USl2’2
fa(x) otherwise on R™
and let
fa(x) if x € D(f2)
gQ(X) ifXESjl\UleNSlllv (j€N2k71)/\<j>j2>
92(x) + 55 i x €SP\ Upen 5775 (7 € Naz) A (G > j2)
ga(x) = F1(x) ifx e UleN%_l Sl2,1 U Sl2,2
[+ 5 ifxeUen,, (S7TUSH?
fa(x) otherwise on R™.
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The function g3 and g4 are s;-strongly quasi-continuous. Indeed,
(-) if x € D(f2), then there exists an index k € Z such that g3(x) =
f2(x) = EE. Then, for some kg € Z, we have two cases

2ko - c ko c 2ko+1)-¢ ko-c ¢

g3(x) = —— = = fi(x) or gs(x) =~ = o

Suppose that x € D(fl) C D(f2). If k = 2kg, then for each index j € Nok_11
there is a cube P*(17%)(x) 5 x such that

A (S} Psix(x)) !
A(Ps(1,i) (x)) %
Moreover, if j > jo is such that S} N DX # 0, then by the formula (*x) we have
A ((Syl \Uen 87 N Ps(l’j”‘)(x))
A(Ps(1,i%) (%))
A (82 (WUen s2H 0 51>) N P32 (x)
NPT ()

(st PR ) A ((UierSPH NS 0 PO )

T APT() AP (x))
A(SINPix(x)) - A (5N PsLIN(x))

TTAEEINE) AP )

1 1 1 1
T N,
Forally € (Sjl \ Uien 5’12)1> N P*(13%)(x), by definition, g3(y) = g1(y) = k702»0,
Thus L
. (int <(93)1( o C)) , x> —1

Similarly, if k£ = 2k + 1, then for each index j € Naj_12 there is a cube
Ps(1ix)(x) 5 x such that if j > j, and S} N D} # (), then

A ((S} \Uien 57 N Ps(l’j’x)(x)) 1
AP (x)) T

Then, for all y € (Sjl \ Uien Slz’l) NP*13%) (x), by definition, g3(y) = g1(y)+

c __ ko-c c _ (2k0+1)~c
= "¢+ ¢ = =7~ Thus

L ()
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and consequently gs € Qs, (x) for each x € D(f1).
Suppose that x € D(f2)\D(f1). If k = 2ko, then for each index | € Naj_1 1
there is a cube P*(3/*)(x) 3 x such that

A\ (Sl2,1 A Ps(2.0.x) (X)> ) A (Slz’2 N Pslx) (x)) ) 1
>1— = or >l=5

)\(Ps(n,l,x) (X)) 9l )\(Ps(n,l,x) (X)) 9l

because for all | € Na,_1,; we have 512’1 N SZQ’2 = (). Thus, by definition, for all

y € (512’1 U 512’2) N P52:1%) (x) we have g3(y) = fi(y) = % and

o (it (10 (55))  x) =1

Similarly, if & = 2kg + 1, then for each index | € Ny;_; 2 there is a cube
P*21%)(x) 5 x such that

N (512’1 A ps24x) (X)> LA (512,2 A Pslx) (x)> 1
1—— =5
)\(PS(TLJ,X) (X)) > 21 or )\(Ps(n,l,X) (X)) - 2l

because for all | € Ny,_12 we have Sl2’1 N 512’2 = (. Observe that for all
y € (512’1 U Sl2’2) N P*25¥) (x), by definition , g3(y) = fi(y) + = k%'c +4=

7(%011)'0. Thus
2ko+ 1) -
du (int ((93)_1(( ko 4 ) c)) ’ X) 1

and consequently g3 € Qs, (x) for each x € D(f3) \ D(f1).
(-) if x € R™\ D(f2), then by the construction of g3, we have that g3 €

Qsl (X)
So, g3 € Qs, (x) for each x € R™. Analogously we can show that g4 is
s1-strongly quasi-continuous at each point of its domain. Observe too, that

93(x) = ga(x) = fa(x) for all

x20 (DU, 31) =0 (D). 57) uO (DU \ DI, 57)-

Moreover, since |fo — f| < § and min(|gz — fal, |94 — f2]) = 0,

min(|gs — f[,[g4 — f|) = min(|gs — fo| + [fo — fl,[ga — fo| + [fo = f]) <

e

Step 3. The set D(f3) is closed and of A-measure zero. Let

D3 = (D(f)\D(f2)n [ [J U S} | andlet D = (D(f3)\ D(f2))\ Dj.

r=1j€N
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If for an index 7o € {1, 2} and an index pp € N and a cube Q; s(ry,p,,y), Where
y € D(f2) and i < i(1, s(r9,po,y)), the set

Di,S(To’po’Y) = D?1> n Qi,S(TO,PO,Y) 7& (Z)’

then we find an open (in Q; s(rg.po.y)) €t U(Qi s(ro.po,y)) C Qi s(ro,po,y) CON-
taining D; 4(r.po,y) Such that

A (Uiﬁi(l,s(ro,pm}’)) U(ins(””po’w)) < i
A (Spo) 2Po

and d ( (Qz s(rg,po,y)) ) =0 for x € Fr(Qz s(ro,po,y)) It D; ,5(ro,posy) — (Z)
we take U(Q; s(ro,po,y) = 0. Thus, for every p € N and r € {1, 2} such that

SyN D} # () and for x € Fr(szs(T’pyy)) we have

1 T
A U U(Qi,s(r,p,y)) < 27 A (Sp) ’

1<i(1,s(r,p,y))

where U(Qi,s(r,p,y)) D Di,s(l,p,y) and du(U(Qi,s(T,p,y)>7 x) = 0.
Similarly, as in the second step, for each point x € D(f3) \ D(f2) there is
the first positive integer s(3,1,x) such that:
o ifx e Di,s(r,p,y) for pe Nv re {la 2}7 1< i(l,S(T,p, Y)) and NS D(fQ)a
then

1
x € Ps(?),l,x)(x) C U(Qi,s(r,p7}’)) mO(D%’ 279) ’

e if x € D3, then

2
< c Ps(3,17x)(x) co <D§, 219) \ U U cl(S});

r=1j€eN

o diam(P*G1¥)(x) < J5 and fo is constant on P3G (x).
For a such positive integer s(3, 1, x) there is a finite family of cubes
Q1,5(3,1,x)s @2,53,1,%) -+ Qi(1,5(3,1,%)),5(3,1,x) € Ps
whose closures are pairwise disjoint and contained in int(P*31%)(x))\ D(f3)

and such that (1s(31))
A(Uz_l * Qz ,8(3,1 x))

A(PS(?) 1 x)( )) >

1
5"
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Moreover, we assume that if for x, y € D(f3)\D(f2) the point y € P*(3:1:%)(x),
then P*G:12)(x) = P*31¥)(y), (1, 5(3,1,%)) = i(1,5(3,1,5)) and Q;s(3,1)
= Qi,s(S,l,y) fOI‘ Z S 7,(1, 8(37 I,X)). Let

Sf’l = U U Qi,s(3,1,X)a 5372 = U U Qi75(371’x) and

xeD} i<i(1,5(3,1,x)) xeD2 i<i(1,5(3,1,x))
53 = g3ty gt = U U  Qiseix-
x€(D(f3)\D(f2)) i<i(1,5(3,1,%)
Obviously
c(S?)\ D(f3) = U U l(Qi,s5(3,1.%))

xe(D(fs)\D(f2)) i<i(1,s(3,1,%))

and the family {Q; s31,%);% < i(1,5(3,1,x)) and x € D(f3) \ D(f2)} is P-
locally finite.
Now, for each point x € D(f3)\ D(f2) let s(3,2,x) be the smallest positive

integer such that diam(P*2%)(x)) < 4 - diam(P*1%)(x)) and

x € P*B32¥) (x) ¢ PsBIX) (x)\ cl(S3).
For a such integer s(3,2,x) there is a finite family of cubes
Q1,53,2,x)> @2,5(3,2,x)s +-+» Qi(1,5(3,2,x)),5(3,2,x) € Ps
whose closures are pairwise disjoint and contained in int(P*®32%)(x))\ D(f3)
and such that ]
/\(U;(:lis(?)’z’x)) Qis(3.2,%) ~1- 1
A(Ps(3,2,x) (X)) 22°

Moreover, we assume that if for x, y € D(f3)\D(f3) the point y € P*(3:2%)(x),
then P*2)(x) = P*32¥)(y), i(1,5(3,2,x)) = i(1,5(3,2,¥)) and Q; (3,2,%)
= Qi,s(3,2,y) for i <i(1,5(3,2,x)). Let

5,123,1 = U U Qi,s(3,2,x)7 5372 = U U Qi,s(3,2,x) and

xeD3 i<i(1,5(3,2,x)) xeD% 1<i(1,s(3,2,x))

Sy =531uSy? = U U Qi,5(3,2,%)
x€(D(f3)\D(f2)) i<i(1,5(3,2,x))

Observe that

cl($) \ D(fs) = U U l(Qi,s(3,2.%))

x€(D(f3)\D(f2)) i<i(1,5(3,2,%))
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and the family {Q; s3,2x):% < i(1,5(3,2,x)) and x € D(f3) \ D(f2)} is P-
locally finite.

Generally, for j > 2 and for each point x € D(f3)\D(f2) let s(3, 7, x) be the
smallest positive integer such that diam(P*3%)(x)) < 2 -diam(P3(7-1%) (x))
and

x € PG (x) ¢ P31 (x) \ cl(S7_,).

For a such integer s(3, j,x) there is a finite family of cubes
Q1s3.5x) Q253,50 -+ Qi(1,s(3,5%)),53.5.) € P

whose closures are pairwise disjoint and contained in int(P*®7*)(x)) \ D(f3)
and such that _ )

MUL ) Qi a0 -1
ANPENx) 2
Moreover, we assume that if for x, y € D(f3)\D(f3) the point y € P53, X)( ),
then P*G7)(x) = P*3I¥)(y), i(1, 5(3, %)) = i(1,5(3,5,y)) and Qi s(3,j,x) =
Qi,s(3,5,y) for i <i(1,s(3,4,%)). Let

S -U U Qo = U U Qo

xeDj i<i(1,5(3,5,%)) xeDj i<i(1,5(3,5,%))

3_ o3l a32 _
SP=9rugH? = U U Qis(3,5,%)-
x€(D(f3)\D(f2)) i<i(1,5(3,5,x))

Observe that

01(533) \D(f3) = U U (Qi,s(S,j,x))

x€(D(f3)\D(f2)) i<i(1,5(3,5,x))

and the family {Q; s(3,;x):% < i(1,5(3,7,%)) and x € D(f3) \ D(f2)} is P-
locally finite.

Let Ny :1, k € Z and t,1 € N; be pairwise disjoint infinite subsets of positive
integers such that for all k € Z and t € N, Ny, = UleN Ni.,¢,1- Observe, that
for each point x € D(f3) \ D(f2) and k € Z, t € N the upper density

dy, U int(S?),x =1.

JENK,t,1
Put

® Nop_13=Nog_1,1,1 UNgg_121 and Nog_14 = Nop_1,12UNog_122;
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® Noj3 = Nop 1,1 UNog o1 and Nop g = Nog 120U Nog 2 2.
Recall, too, that
2 2
hd UpeN SS ' cC Ur:1 UleN S UpeN Sz?j *cC Rm\Ur:l UleN cl (Slr) and
3 _ 3,2
° UpeN Sp - UpeN p UpeN Sp ’

There are indexes j3, I3 € N such that

S}CO(D(fl), 219> for j > jz and Sch( (f2)\ D(f1), > for 1 > I3.

Next, for k € Z we define the functions g5, gg : R™ — R by

f3(x) if x € D(f3)
93(x) if x € ST\ (Upen S UUen 7+ (5 € Naw—1,3)A(j > js)
g3(x) + 55 i x €SI\ (Upen S5 Uljen S ), (€ Naw—1,4) A5 > Js)
gs(x) { 93(%) ifxESlz\Upeng’l, (L € Nop-1,3) A (1> 1)
93(x) + 53 1fX€Sl\UeN 1 (1€ Nog—1,4) A (1> 13)
f2(x) ifxe Up€N2k—1,1 Sg
fo(x)+ 55 ifxe UpeNgk_1,2 S;’
f3(x) otherwise on R™
and
f3(x) if x € D(fs)
g3(x) if x € ST\ (Upen S31 UlUien S77 )5 (G€ Nar3) A(j > js)
g3(x) + & i x €SI\ (Upen S UUjen 571 )0 (5 € Nawa) A5 > js)
g6(x) = g3(x) if x € 57\ Upen Sy p Lo(l € Nogg) A (1> 13)
93(x) + 55 leES\UpeN 51 (1€ Noga) A (1> 13)
fox) it x € Upen,, Sp
fo(x)+ 55 ifx€Uen,,, S5
f3(x) otherwise on R™.

As in the second step we can verify that g5, gs € Qs, (x) for each x € R™.
Observe too, that g5(x) = gs(x) = f3(x) for all

2

x¢0(DiR). 5 ) - LJo( () \ DU, 35 ) where D(fo) =0.
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Moreover, since |f3 — f| < 53 and min(|gs — f3], |96 — f3]) =0,

min(|gs — f[, g6 — f|) = min(|gs — f3| + [f3 — fl, 196 — f3l +|f3 = f]) < 55

Generally, for n > 3, as in step 3, we define functions go,,—1, g2 : R™ — R
such that gon—1, g2n € Qs,(x) for each point x € R™, go,—1(x) — g2n(x) =
fn(x) for all

x#0(DUh). gz ) = Uo( () \ D). 3z ) where D(fo) =0,

2n?

and min(|gen—1 — fal,|92n — fn]) = 0. We will prove that the sequence (gn)
quasi-uniformly converges to f. First we shall show that the sequence (g,,) con-
verges pointwise to f. Suppose that x € 2>, D(fn) = Uy Uy (D(fir1) \
D(f;) where D(fy) = (. Then there is an index M € N such that go,—1(x) =
gan(x) = fn(x) for n > M and consequently

i g0 = Jim g2, (6) = i £,) = 09

Now suppose that x & |J;, D(f,). Fix a real £ > 0. There is an index
T € N such that T3 < e. Since x & D(fr), there is a real n > 0 with
x & O(D(fr), n). Let M > T be a positive integer such that 5z < 7. Then,
for all n > M > T we have x ¢ O (D(fT)7 2%) and consequently

max(|gzn-1(%) = fu () l920(0) = Fa(3)]) < 557-

Since for all n > M we obtain

c c e €
max(|gz2n—1(x) = f(x)],[g2n(x) — f(x)]) < oaf Ton <5 T35 <&

the sequence (g,) converges pointwise to f. It is obvious that min(|ga,—1 —

flylgan — f|) < € for all n > M and the proof is completed. O

Recall that a function f : R™ — R is approximately quasi-continuous at
a point x € R™, (f € Qqp(x)) if for each real ¢ > 0 and each set U € Ty
containing x there is a nonempty set V' C U belonging to 7; with f(V) C
(f(x) =&, f(x) + ) ([4])

In [4] it is proved that each A-measurable function f : R™ — R is the
limit of a pointwise convergent sequence of approximately quasi-continuous
functions. We will prove the following assertion.
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Theorem 2. If f : R™ — R is a A-measurable function, then there is a
sequence of approzimately quasi-continuous functions g, : R™ — R which
quasi-uniformly converges to f.

PRrROOF. Since f is A-measurable, the set
Dy,(f) = {x € R™; f is not approximately continuous at x}

is of A-measure zero. There exists an Gs-set A D D, (f) of A-measure zero.

Let (G,) be a decreasing sequence of open sets G; D G2 D ... such that
A =", Gy. Fix an index n € N. From Lemma 3 in [4] there is a sequence
of pairwise disjoint measurable sets A, C G, \ A such that

d UiozoAn,k =G\ A;
o dy,(Ank, x) >0 for cach x € AUA, ; and each k > 0, and
o d,(R™\ G,)UA, o, x) >0 for each x € R™ \ G,,.
Let (wy) be a sequence of all rationals such that w; # w; for ¢ # j and let

W forx e Aok, k=1,2,...
Gon—1(x) = .
f(x) otherwise on R™

and
(x) = Wk forx € Ay ok—1, k=1,2,...
Fon2) = f(x) otherwise on R™.

Evidently the functions g,, (n € N) are approximately quasi-continuous.
Since A = (,,Gn and G, D Gpqq for n > 1, we have f = lim, .o gn.
Moreover, since min(|gen—1 — f1, |g2n — f|) = 0 for every n € N, the sequence
(9n) quasi-uniformly converges to f and the proof is completed.
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