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ON CONTINUOUS N-FUNCTIONS AND AN
EXAMPLE OF MAZURKIEWICZ

Abstract

Let f and g be continuous real functions on the interval [a, b], and
let K denote the set of all knot points of f. Let E be a set of measure
zero for which f(F) has measure zero and (f + g)(F) does not, and let
g be differentiable at each point of E closure. We prove that K must
meet E, and moreover the intersection of K with the closure of £ must
contain a nonvoid perfect subset. Thus in particular, the function of
Magzurkiewicz is a continuous N-Function with as many knot points as
there are real numbers.

In [M] Mazurkiewicz constructed a continuous N-Function F' such that F 4 al
is not an N-function if @ # 0. (Here I denotes the identity function.) In the
present note we carry this idea further by using knot points.

We say that the point z is a knot point of the continuous function f if the
upper Dini derivatives of f at z (denoted D f(z) and D~ f(z)) are oo and
the lower Dini derivatives of f at x (denoted Dy f(z) and D_ f(x)) are — oc.
(See also [Y, p. 168].) Perhaps the most familiar example of a knot point is 0
for the function \/[[sin L.

We begin with three easy lemmas. Their proofs are included for the sake
of completeness.

Lemma 1. Let f and h be continuous functions on [a,b] and let E be a set of
measure zero such that f(E) has measure zero but h(E) does not. Then there
exists a compact subset A of E closure (denoted E~) such that A and f(A)
have measure zero but h(A) does not.
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PRrROOF. Let U, and V,, be open neighborhoods of F and f(F) respectively
such that m(U,) < 3= and m(V,) < 5+, where m denotes Lebesgue outer
measure. Let By denote the closure of the union of finitely many components

of the set Uy N f~1(V}) that meet E such that
1
m(h(ENBY) > (1= 2 )m(h(E)).

Let Bs denote the closure of the union of finitely many components of the set
Uy N f~1(V) N By that meet E such that

m(h(E N By) > (1~ 5—12)m(h(EﬂBl)) :

In general, let B,, denote the closure of the union of finitely many components
of the set U, N f~1(V,,) N B,,_1 that meet E such that

1
m(h(ENB,)) > (1= 2 )m(h(EN B,1))-
Put A=n,B,.

Now A is the intersection of a contracting sequence of nonvoid compact
sets, so A is compact. For any a € A and any index n, a lies in a component
of B,, shorter than 2% that contains points of E. Thusa € E~ and A C E~.
Also

1 1
m(A) <m(U,) < on and m(f(A4)) <m(V,) < on
for each index n, so m(A) = m(f(A4)) = 0.
It follows from the construction that inf, m(h(E N B,)) > 0, so

m(mnh(Bn)> > 0.

Let b € Nyh(B,). Then h™1(b) is a compact set that meets B, for all n.
But (B,) is a contracting sequence of compact sets, and it follows that h~*(b)
meets N, B, and b € h(ﬂan). Thus N, h(B,) = h(ﬂan) = h(A). Finally,
m(h(A)) > 0. O

Lemma 2. Let h be a continuous function on [a,b]. Let A be a compact set
for which m(h(A)) > 0, and let (Dy) be a sequence of closed sets such that
m(h(A N Dn)) = 0 for each n. Then there is a compact set Ag C A\ UgDx
such that m(h(Ap)) > 0.
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PROOF. Observe that
1
U{x € A : distance from x to Dq is > E} = A\ Dy,
k

and each set in the union is compact. It follows that there is a compact set
P; C A\ D; such that

m(n(P) > (1= D)m(a(a\ 1) = (1= Hm(n(4)).
In general, for each index n > 1, choose a compact set P, C P,_1 \ D,, such
that
m(h(P,)) > (1 - %)m(h(Pn,l \ D)) = (1 - %)m(h(Pn,l)) .

It follows from the construction that m(N,h(P,)) > 0.
Put Ay =N, P,. By an argument essentially the same as the argument in
the last paragraph in the proof of Lemma 1,

Nnh(Pp) = h(NyPn) = h(Ap) .
Finally, m(h(AO)) > 0, and Ag is a compact subset of A\ U, D,, . O

Lemma 3. Let g and h be continuous functions on [a,b] and let g be differen-
tiable at each point of a set E. Then there exists a sequence of closed sets (Sy,)
such that for each n, g is absolutely continuous on ENS,, h is of bounded
variation on E NS, and every point in E\ U,S, is a knot point of h.

PRrROOF. For integers ¢,5 > 0, put

T, — {z : h(z+7) — h(x)

1
<1 for any r satisfying 0 < r < f,} .
r J

Then each set T}; is closed by continuity, A is of bounded variation on the set
EnN Tij7 and
EnNn (UijTij) = {LE cFE: D+h($) < OO} .

In a similar manner we find a sequence (V) of closed sets such that
En (UpVi) = {x € E : either DTh(z) < 0o or D™ h(z) < 0
or Dyh(z) > —oo or D_h(z) > —o0 } ,

and h is of bounded variation on each set E N Vj. It follows that each point
of B\ (UrV%) is a knot point of h.
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Likewise closed sets of the form

W, — {x: ‘g($+r)—g(w)

1
<4 for any r satisfying 0 < r < f}
r J

(for integers i, j > 0) cover F because g is differentiable on F.
Certainly g is absolutely continuous on each set ENW;;. Finally, the closed
sets of the form Vi, N W;; suffice. O

We are now able to prove our main result.

Theorem 1. Let f and g be continuous real valued functions on [a,b] and let
K be the set of all knot points of f. Let E C [a,b] be a set of measure zero
such that f(E) has measure zero and g is differentiable at each point of E~.
Then

(1) the set (f + g)(E \ K) has measure zero,

(2) if (f +g)(E) does not have measure zero, then the set K N E~ has a
nonvoid perfect subset.

(It follows that Mazurkiewicz’ function F' is a continuous N-Function with
as many knot points as there are real numbers. Note that in Theorem I the
hypothesis imposed on f is independent of the choice of g.)

PrOOF. By Lemma 3, there exists a sequence of closed sets (S,,) such that
for each n, g is absolutely continuous on NS, and f is of bounded variation
on ENS,, and each point of £\ U, S, is a knot point of f. For (1) it suffices
to prove that (f + g)(F N S,) has measure zero for each n.

We proceed by contradiction. Let N be an index for which (f+¢)(ENSy)
does not have measure zero. By Lemma 1, there is a compact subset A of
(ENSy)~ such that A and f(A) have measure zero but (f + g)(A) does not.
Now f is of bounded variation on £ N Sy and A is a subset of (ENSy)~. It
follows that f is of bounded variation on A; likewise g is absolutely continuous
on EN Sy and on A. But f is a continuous N-function on A because f(A)
has measure zero. It follows from [S, (6.7) chapter VII] that f is an absolutely
continuous function on A. Then f + g is absolutely continuous on A. Again
by [S, (6.7) chapter VII], (f + g)(A) has measure zero, contrary to the choice
of A. This contradiction proves (1).

To prove (2) we assume that (f + ¢)(E) does not have measure zero. By
Lemma 1, there is a compact subset B of E~ such that B and f(B) have
measure zero but (f + ¢)(B) does not. By Lemma 3, there exists a sequence
of closed sets (T,) such that for each n, g is absolutely continuous on BNT,,
and f 4 g is of bounded variation on B N T,,, and such that each point of
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B\ U,T, is a knot point of the functions f + ¢ and f. From an argument in
the preceding paragraph we see (f + ¢g)(B N T,,) has measure zero for each n.
Hence (f + ¢)(B \ U,T,) does not have measure zero. By Lemma 2, there is
a compact subset X of B\ U,T, such that (f + g)(X) does not have measure
zero. Then X must be uncountable, so X contains a nonvoid perfect subset
Y. Finally,

YCXCB\(UT,) CKandY CBCE™.

This proves (2). O

The following corollaries are immediate.

Corollary 1. Let f be a continuous N-function and let g be a differentiable
function on [a,b]. Let K be the set of all knot points of f. Then f+ g is an
N-function on the set [a,b] \ K .

Corollary 2. In Corollary 1, let K have no nonvoid perfect subset. Then
f + g is an N-function on |a,b].

Corollary 3. Let p be a continuous function that is not an N-function on
[a,b], let K be the set of all knot points of p, and let m(p(K)) =0. Let g be
a differentiable function on [a,b]. Then p — g is not an N-function on [a,b].

To see this, put f = p — ¢ in the proof of Theorem I. We leave the argument.

We conclude with one further observation. Let L be the set of all N-
functions f on [a,b] such that f + h is an N-function for every N-function h
on [a,b]. Then L is closed under addition; for if f; and f; lie in L, then for
any N-function h, fy + h and

(fi+fa)+h=fi+(fa+h)

are N-functions on [a,b]. Obviously if f lies in L and if ¢ is any real number,
then cf lies in L. Thus L can be regarded as a linear space that contains all
the constant functions. However L does not contain Mazurkiewicz’ function
F or the identity function I.
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