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AN ANSWER TO SOME QUESTIONS OF
ENE

Abstract

Four approximately continuous generalizations of the wide Denjoy
integral are considered and a complete chart of relations between them
is given.

1 Introduction.

In 1939 Tolstov [21] gave an example of a function integrable in the wide Den-
joy sense, but not integrable in the sense of Burkill’s approximately continuous
integral. An easy counterexample in the opposite direction was already well
known by that time: an approximately differentiable discontinuous function
which being a Burkill’s primitive is not a wide Denjoy primitive. So the prob-
lem of defining an integral that would include both of these integrals arose.

The first solution was due to Ridder [15]. He generalized the wide Denjoy
integral (β-integral [16]) and Burkill’s integral (D4-integral [15]). The same
definitions (respectively AD-integral [7] and AP ∗-integral [8]) one can find in
papers by Kubota. Ridder and Kubota, then claimed to have proved that these
two generalizations are equivalent. However, they used a similar fallacious
argument to justify this claim. There were then a few incorrect attempts to
repair Ridder and Kubota’s proof (for details see [5, 19]). Eventually Lee [10]
and Sarkhel [19] proved that Burkill’s integral is included in Ridder’s β-integral
(Kubota’s AD-integral).

It is still unknown whether the approximate Henstock integral (or the
approximate Perron integral) is a strict generalization of Burkill’s integral. So,
the problem we mentioned above may be replaced by the following one. Define
an integral that includes both the wide Denjoy and the approximate Henstock
integrals. The β-integral (AD-integral) is a solution of this problem, as was
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shown by Lu [11]. Before Lu’s proof was known, Gordon suggested another
solution: the so-called AKN -integral [5], which turned out to be strictly more
general than the β-integral (AD-integral).

The other (and earlier) solution of the first problem is due to Sarkhel
and Kar. Using an orderly connected topology [20] or a more general abstract
limit process [18] T , they defined the TD-, [18], and TP-integrals [20, 17],
respectively of Denjoy (constructive) and Perron types, and proved that these
integrals are equivalent. Taking for T the approximate limit process, Tap, they
obtained an integral strictly more general than the β-integral (AD-integral)
[20]. A descriptive definition of this integral was also given.

In this paper we want to give a complete chart of relations between the
integrals mentioned above: the β-integral (AD-integral), the TapD-integral,
and the AKN -integral. This will be an answer to questions asked by the late
Vasile Ene.

2 Preliminaries.

Symbols |E|, int E, cl E, fr E denote the Lebesgue outer measure, interior,
closure, and boundary of a set E ⊂ R, respectively. The family of sets {En}∞n=1

is called an E-form if
⋃∞

n=1 En = E.
If F : E → R and A ⊂ E is non-void, then ωF (A), F � A denote the

oscillation of F on A and the restriction of F to A, respectively. We write CF

and DF for the set of points x ∈ E at which F is respectively continuous and
discontinuous. We say that F satisfies condition N if |F (N)| = 0 for every
N ⊂ E with |N | = 0.

We assume that notions of AC- and VB-function on a set E ⊂ R are known
to the reader. We say that an F : 〈a, b〉 → R is [ACG]-, [VBG]-, ACG-, and
VBG-function, if there is an 〈a, b〉-form {En}∞n=1 such that for each n

• F is AC on En and En is closed,

• F is VB on En and En is closed,

• F is AC on En,

• F is VB on En,

respectively. We say that F is approximately continuous if it is continuous
with respect to the density topology. The approximate derivative at a point
x, F ′

ap(x), is defined in the same way.
Consider the following four classes of measurable functions defined on a

fixed interval 〈a, b〉.

• L1: [ACG]-functions,
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• L2: [VBG]-functions satisfying condition N ,

• L3: ACG-functions,

• L4: VBG-functions satisfying condition N .

Classes Li are linear spaces for each i. For i = 1, 3 this is elementary and
well-known, for i = 2 it was shown by Sarkhel and Kar, Corollary 3.1.1 and
Theorem 3.6 in [20], for i = 4 it was shown by Ene, Corollary 2 in [2]. Note
that every function from Li is approximately differentiable at almost every
point of 〈a, b〉.

Let F be a linear space of Baire one Darboux functions defined on 〈a, b〉.

Definition 2.1. We say that an f : 〈a, b〉 → R is Fi-integrable, i = 1, 2, 3, 4,
if there exists an F ∈ Fi = Li ∩ F such that F ′

ap(x) = f(x) for almost all
x ∈ 〈a, b〉. The integral of f is defined to be F (b)− F (a).

For each i, the Fi-integral is properly defined; this is a consequence of Li

being a linear space, and the following monotonicity lemma, Theorem 1 in [9].

Lemma 2.2. Suppose that an F : 〈a, b〉 → R satisfies condition N and has
the Darboux property. If F ′(x) ≥ 0 at almost every point x of the set where F
is differentiable, then F is nondecreasing.

The proof of the above lemma relies upon a more general monotonicity
theorem of Bruckner, see [1].

In the rest of this section and in the next section, we will consider the par-
ticular case where F is the linear space of approximately continuous functions,
F = Cap. (Recall that an approximately continuous function has the Darboux
property.) The F1-integral is Ridder’s β-integral (Kubota’s AD-integral), the
F4-integral is Gordon’s AKN -integral, while the F2 is equivalent to Sarkhel’s
TapD-integral. The F3-integral was originally considered by Kubota [6] (also
known as the AD-integral), but it was abandoned in favor of the F1-integral.

Let us turn to relations between the integrals defined above. Clearly (for
any F), the Fi-integral is more general than the Fj-integral, iff Fi ⊃ Fj . The
following inclusions are obvious: F4 ⊃ F3 ⊃ F1, F4 ⊃ F2 ⊃ F1. Sarkhel and
Kar constructed an approximately continuous function F ∈ L2 \ L3, Exam-
ple 3.1 in [20]. Thus, for F = Cap, F3 6⊃ F2.

Ene, at the end of [2], asked the following questions:

1. [VBG] ∩N ∩ Cap  VBG ∩N ∩ Cap on 〈a, b〉? (i.e., F2  F4?);

2. Is there a function F : 〈a, b〉 → R such that F ∈ ACG ∩ Cap and F /∈
[VBG] ∩N ∩ Cap? (i.e., F3 6⊂ F2?).

(Ene asked a related question in [3], Remark 5(v).) Answers to both questions
are in the affirmative, as we will see in the next section.
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3 Examples.

All the examples below are cases of the following result of Petruska and
Laczkovich [13]: Let f : 〈a, b〉 → R be a Baire one function, H ⊂ 〈a, b〉 a
nullset. Then, the restriction f � H can be extended to an approximately con-
tinuous function. However, the constructions we give do not follow from the
above theorem nor from its proof, since we need to obtain a function from the
class Li.

Example 3.1. There exists a function F ∈ F3 \ F2.

Construction. Let C be the Cantor ternary set and let I
(n)
i , i = 1, . . . , 2n−1,

be the intervals of the nth rank contiguous to C, n = 1, 2, 3, . . . . Let Z

denote the collection of endpoints of I
(n)
i ’s. Let J

(n)
1 , . . . , J

(n)
2n be connected

components of the set 〈0, 1〉\
⋃2n−1

i=1 I
(n)
i . We choose a countable set {x(n)

i }i,n ⊂
C \ Z, dense in C, as follows:

• let x
(1)
i ∈ J

(1)
i , i = 1, 2;

• for N ≥ 1, put S = {x(n)
i : n = 1, . . . , N, i = 1, . . . , 2n}, and pick an

x
(N+1)
i ∈ J

(N+1)
i \ S, i = 1, . . . , 2N+1.

For any x ∈ {x(n)
i }i,n we choose two monotone sequences of closed intervals

contiguous to C: {Rk(x)}∞k=1 (decreasing), {Lk(x)}∞k=1 (increasing), both con-
verging to x, so that x is a right density point of

⋃∞
k=1 Rk and a left density

point of
⋃∞

k=1 Lk. Let R′
k and L′k be closed intervals concentric to Rk and Lk

respectively, such that

|R′
k| =

k − 1
k

|Rk|, |L′k| =
k − 1

k
|Lk|.

Note that x is also a right density point of
⋃∞

k=1 R′
k and a left density point of⋃∞

k=1 L′k. By a successive application of the above construction of sequences
{Rk(x)}∞k=1, {Lk(x)}∞k=1, we can require that these sequences for two different
x ∈ {x(n)

i }i,n have no point in common. (This is possible thanks to the
monotonicity of {Rk}k and {Lk}k.) Define the function F by

F (x) =


1
n if x = x

(n)
i

1
n if x ∈

⋃∞
k=1 R′

k(x(n)
i ) ∪

⋃∞
k=1 L′k(x(n)

i )
0 if x ∈ C \ {x(n)

i }i,n

linear on the connected components of Rk \R′
k and Lk \ L′k.
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Note that F is upper semicontinuous, discontinuous exactly at x
(n)
i ’s, and

approximately continuous. F is an AC-function on Rk’s, Lk’s, C \ {x(n)
i }i,n.

Thus F is an ACG-function. However, F is VB on no portion of C and so it
is not a [VBG]-function.

The idea of the above example was used by Sarkhel and Kar [20] to prove
the converse; namely, that F2 6⊂ F3. Note that Example 3.1 also provides an
affirmative answer to the first question of Ene.

Now, we will show how badly the inclusions F3 ⊂ F1, F4 ⊂ F2 fail.

Example 3.2. There exists a function F ∈ F2 ∩ F3 \ F1.

Construction. Define F as in Example 3.1, but using 1
22n instead of the

value 1
n . Then F is VB on C.

For the proof of the lemma below see for instance [14].

Lemma 3.3. (Lusin-Menchov). Let the set D ⊂ R be closed, and E ⊃ D
be measurable. Then, there exists a perfect set P , E ⊃ P ⊃ D, such that for
each x ∈ D all four extreme densities of E at x are equal to those of P at x.

Lemma 3.4. Let the set X ⊂ C be closed and nowhere dense in C. Then,
for each c > 0 there exists an approximately continuous function φ on 〈0, 1〉
such that φ(C \X) = {0}, φ(X) = {c}, 0 ≤ φ(x) ≤ c for every x ∈ 〈0, 1〉, and
Dφ = X.

Proof. Apply Lemma 3.3 for D = X, E = X ∪ (〈0, 1〉 \ C) to obtain a
suitable set P . For each closed interval Ii contiguous to C, if Ii ∩ P 6= ∅, let
Ji = 〈inf P ∩ Ii, sup P ∩ Ii〉 ⊂ Ii. We put

φ(x) =


c if x ∈ Ji or x ∈ X,

0 if x ∈ C \X,

linear on the connected components of Ii \ int Ji.

Obviously, the function φ is approximately continuous on X and continuous
on 〈0, 1〉 \C. It remains to check that it is continuous at each point x ∈ C\X.
Since x /∈ P , there is a neighborhood U3x such that U ∩P = ∅. There are at
most two intervals of the kind Ii such that U ∩ Ii 6= ∅ and P ∩ Ii 6= ∅. So for
an ε > 0, if necessary, we can shrink U to obtain φ(U) ⊂ 〈0, ε). That means,
φ is continuous at x.

Example 3.5. There exists a function F ∈ F4 \ (F2 + F3).
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Construction. Let G be the Cantor ternary function. For an n = 1, 2, . . . let
Gn be a continuous piecewise linear function such that |G(x)−Gn(x)| < 1

n for
each x ∈ 〈0, 1〉. Choose an ascending sequence of subsets An ⊂ C, n = 1, 2, . . . ,
nowhere dense in C, such that |G(An)| tends to 1 as n →∞. (We may assume
that each set An \ An−1 is closed and that An ∩ Z = ∅, where Z is the set
constructed in Example 3.1.) Define a function F on C by the formula

F (x) =

{
G(x) if x ∈ C \

⋃∞
n=1 An,

Gn(x) if x ∈ An \An−1, n = 1, 2, . . . ,

A0 = ∅. Notice that F is VBG (on C) and (since |F (C)| = 0) it satisfies
condition N . Moreover, it is a Baire one function. Now, we will extend F to
a function defined on the whole interval 〈0, 1〉.

We proceed by induction. Assume we have defined approximately contin-
uous functions φ1, . . . , φn : 〈0, 1〉 → R satisfying:

1. |(F −G− φ1 − · · · − φn)(x)| ≤ 1
2n for each x ∈ C.

2. F −G− φ1 − · · · − φn = 0 on C \
⋃∞

m=1 Am.

3. The pre-image (F − G − φ1 − · · · − φn)−1(I) is a closed set, for each
compact interval I contained in (0,∞) or in (−∞, 0).

4. DF−G−φ1−···−φn
⊂

⋃∞
m=1 Am.

All four conditions are fulfilled for n = 0 (then F −G− φ1 − · · · − φn is taken
to be F −G). This is clear for conditions 1, 2, and 4. Condition 3 follows for
n = 0 since F −Gn is continuous on An and since (F −G)−1(I) is contained in
some An. We will define φn+1 and check conditions 1 – 4 for n + 1. Consider
the sets

B1
n+1 =

{
x ∈ C : (F −G− φ1 − · · · − φn)(x) ≥ 1

2n+1

}
,

B2
n+1 =

{
x ∈ C : (F −G− φ1 − · · · − φn)(x) ≤ − 1

2n+1

}
,

B3
n+1 =

{
x ∈ C : (F −G− φ1 − · · · − φn)(x) =

1
2n+1

}
,

B4
n+1 =

{
x ∈ C : (F −G− φ1 − · · · − φn)(x) = − 1

2n+1

}
.

Thanks to condition 3 these sets are closed. Apply Lemma 3.4 to construct
approximately continuous functions φi

n+1 : 〈0, 1〉 → R, i = 1, . . . , 4, such that
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• φi
n+1

(
C \Bi

n+1

)
= {0},

• φi
n+1(Bi

n+1) =
{

(−1)i+1

2n+1

}
,

5. 0 ≤ φi
n+1(x) ≤ 1

2n+1 , i = 1, 3; 0 ≥ φi
n+1(x) ≥ − 1

2n+1 , i = 2, 4; for each
x ∈ 〈0, 1〉;

• Dφi
n+1

= Bi
n+1.

Put φn+1 = φ1
n+1+φ2

n+1−φ3
n+1−φ4

n+1. Notice that φn+1

(
B3

n+1∪B4
n+1

)
= {0},

and φn+1

(
B1

n+1 \B3
n+1

)
=

{
1

2n+1

}
, φn+1

(
B2

n+1 \B4
n+1

)
=

{
− 1

2n+1

}
. Consider

the function F − G − φ1 − · · · − φn+1 on C. Conditions 1, 2, and 4 are
obviously satisfied (Bi

n+1 ⊂
⋃∞

m=1 Am). Let 0 < c ≤ d ≤ 2−(n+1). Then, by
the definition of φn+1,

(F −G− φ1 − · · · − φn+1)−1(〈c, d〉)
= (F −G− φ1 − · · · − φn)−1

(
〈c, d〉 ∪ 〈c + 2−n−1, d + 2−n−1〉

)
.

From the assumption of condition 3 holding for n, condition 3 follows for n+1.
Similarly for the negative interval case.

We have constructed the sequence φ1, φ2, . . . . Note that by condition 5 the
series

∑∞
n=1 φn is uniformly convergent on 〈0, 1〉, so its sum S =

∑∞
n=1 φn is

approximately continuous. Moreover, S = F−G on C. Since Z∩
⋃∞

n=1 An = ∅,
S is continuous at each point x ∈ Ii of each closed interval Ii contiguous to C.
Let Ti on Ii be a continuous piecewise linear function such that S = Ti on
fr Ii and |Ti − S| < 1

i on Ii. Note that the function

F̃ (x) =

{
S(x) + G(x) = F (x) if x ∈ C,

Ti(x) + G(x) if x ∈ Ii,

is an approximately continuous extension of F . (In the sequel we will write F
instead of F̃ .) Moreover, it is VBG and satisfies condition N .

Suppose that F is the sum of two approximately continuous functions,
an ACG-function H1 and a [VBG]-function H2 satisfying N . By the Baire
Category Theorem there is a portion C′ = I ∩C of C, I an open interval, such
that H2 is VB on C′ and H1 is AC on a dense Gδ subset O = CF �C′ of C′. Note
that at each point x ∈ C′, both limits limt→x, t∈O F (t) and limt→x, t∈O H1(t)
exist and are finite. That means, at this x the bilateral limit of H2 � C exists.
Note that the set DH2�C′ is at most countable; thus H2 is AC on CH2�C′ . Both
H1 and H2 are AC on O∩CH2�C′ . Thus, F = H1 +H2 is AC on this set. Since
O ∩ CH2�C′ is a dense Gδ subset of C′, it is dense also in C′ \

⋃∞
n=1 An. But,

we have F = G on C′ \
⋃∞

n=1 An, a contradiction.
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The chart below shows all relationships between the classes of approxi-
mately continuous primitives we have considered.

 
F2  

F1  F2 ∩ F3

6⊂ 6⊃ F2 + F3  F4

 
F3

 

Question 3.6. For a given approximately continuous [ACG]-function F , is
it possible to write F as the sum of a continuous ACG-function (i.e., a wide
Denjoy primitive) and an approximate Henstock primitive?

4 Some Remarks.

We end our note with an observation related to functions from the classes Fi.
The picture of primitives from classes Fi, i = 3, 4, was a little bit hazy, since
these classes are defined using nonclosed 〈a, b〉-forms. We will show that these
primitives are not so bad, since their discontinuity sets are nowhere dense.

Definition 4.1. We say that a real function F is quasi-continuous if the set
F � CF is dense in F (in the sense of graphs).

One can easily define one-sided and bilateral versions of the above notion.
The following lemmas were proved in [1], and [12], Lemma 2.(a), respectively.

Lemma 4.2. Every Darboux Baire one function which satisfies condition N
is quasi-continuous.

Lemma 4.3. Every quasi-continuous Darboux function is bilaterally quasi-
continuous.

Theorem 4.4. Let F ∈ F4. Then, the set DF is nowhere dense.

Proof. Suppose not. Then by the Baire Category Theorem there is an in-
terval I such that F is VB on a dense subset E of CF ∩ I, and such that
DF ∩ int I 6= ∅. Take x ∈ DF ∩ int I. Pick a sequence of points xn ∈ I
such that xn → x and |F (xn) − F (x)| ≥ M > 0 for all n. We may assume
that (xn)n is decreasing. By Lemmas 4.2 and 4.3, F is bilaterally quasi-
continuous. Hence, there exists a decreasing sequence of points yn ∈ CF such
that |F (yn)−F (x)| < M

4 and yn → x. We may assume that xn+1 < yn < xn.
Moreover, there are points zn ∈ E ∩ (xn+1, xn) and wn ∈ E ∩ (zn, xn) such
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that |F (zn)− F (yn)| < M
4 , |F (wn)− F (xn)| < M

4 . We have

|F (wn)− F (zn)| ≥ |F (x)− F (xn)| − |F (x)− F (yn)| − |F (yn)− F (zn)|

− |F (wn)− F (xn)| > M − 3
4
M =

M

4
.

Summing over all n’s, we obtain
∑∞

n=1 |F (wn)− F (zn)| = ∞. Since wn, zn ∈
E, F is not VB on E, a contradiction.
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