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ON I-CAUCHY SEQUENCES

Abstract

We study I-convergence and I-Cauchy sequences in metric spaces
where I ⊂ P(Nk) is an ideal containing all singletons and k ∈ {1, 2}.

1 Introduction.

Throughout the paper, N denotes the set of positive integers, P(X) stands
for the power set of X. For a subset E of a metric space, clE will denote the
closure of E. The ball with center x and radius r will be written as B(x, r).

Recall that a sequence {xn}n∈N of points in a metric space (X, ρ) is said
to be statistically convergent to x ∈ X if d(A(ε)) = 0 for each ε > 0 where
A(ε) = {n ∈ N : ρ(xn, x) ≥ ε} and d(E) = lim

n→∞
(1/n) · card({k ∈ E : k ≤ n})

is the density of a set E ⊂ N provided that the limit exists.
Several papers on statistical convergence have been published. See [2], [3],

[5]. In [4] and [7] an interesting generalization of this notion was proposed.
Namely, it is easy to check that the family Id = {A ⊂ N : d(A) = 0} forms
an ideal of subsets of N. Thus, one may consider an arbitrary ideal I ⊂ P(N)
(assumed non-trivial, i.e. ∅ 6= I 6= P(N)) to modify the definition of statistical
convergence as follows. A sequence {xn}n∈N in (X, ρ) is called I-convergent
to x ∈ X (in short x = I− lim

n→∞
xn) if A(ε) ∈ I for each ε > 0. The article [4]

contains many examples and properties of I-convergence. We shall continue
these studies. Our main aim is to prove that, in a complete space (X, ρ), a
Cauchy-type condition (borrowed from [3]) is necessary and sufficient for the
I-convergence of a given sequence. We also give equivalent formulations of
I-Cauchy condition and obtain I-Cauchy condition for double sequences and
show some applications.
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Following [4], I is called admissible if it contains all singletons. The ideal
Ifin of all finite subsets of N is the smallest admissible ideal in P(N). Ob-
serve that the usual convergence, in a given space (X, ρ) coincides with Ifin-
convergence, and that the usual convergence implies I-convergence, for any
admissible ideal I.

2 I-Cauchy Condition.

Let (X, ρ) be a metric space and I ⊂ P(N) be an admissible ideal. It is easy
to check that the classical Cauchy condition for a sequence {xn}n∈N in (X, ρ)
is equivalent to the following: for each ε > 0 there exists a positive integer
k such that ρ(xn, xk) < ε for all n ≥ k. A similar idea was used by Fridy
[3] in formulation of the statistical Cauchy condition for a sequence of real
numbers. We can modify it to define a Cauchy-type condition associated with
I-convergence in (X, ρ). Namely, I-Cauchy condition reads as follows: for each
ε > 0 there exists a k ∈ N such that {n ∈ N : ρ(xn, xk) ≥ ε} ∈ I. Note that, for
Ifin, this yields the usual Cauchy condition. Fridy [3] proved that statistical
Cauchy condition is equivalent to the statistical convergence of a sequence of
reals. However, in any metric space we have the following proposition.

Proposition 1. If a sequence of points in X is I-convergent in X then it
fulfills I-Cauchy condition.

Proof. Let I − lim
n→∞

xn = x and ε > 0. Thus A(ε/2) = {n ∈ N : ρ(xn, x) ≥
ε/2} ∈ I. Pick an k ∈ N such that k /∈ A(ε/2). Hence {n ∈ N : ρ(xn, xk) ≥
ε} ⊂ {n ∈ N : ρ(xn, x) ≥ ε/2 or ρ(x, xk) ≥ ε/2} = A(ε/2) ∈ I.

In the next theorem we shall show that the equivalence of I-convergence
and I-Cauchy condition is true for complete metric spaces. Moreover, we shall
give a sufficient condition for a metric space to be complete, by the use of
I-convergence of I-Cauchy sequences. The proofs of Proposition 1 and of part
(1) in Theorem 2 mimic the arguments of Fridy [3].

Theorem 2. (1). If (X, ρ) is a complete space then every I-Cauchy sequence
in X is I-convergent in X.

(2). If every I-Cauchy sequence in X is I-convergent in X then X is complete.

Proof. (1). Let {xn}n∈N be an I-Cauchy sequence in a complete space
(X, ρ). Consider εm = 1/2m, m ∈ N, and, according to I-Cauchy condition,
pick numbers k(m) ∈ N, m ∈ N, such that Am = {n ∈ N : ρ(xn, xk(m)) ≥
εm/2} ∈ I for all m ∈ N. Define inductively B1 = clB(xk(1), ε1), Bm+1 =
Bm ∩ clB(xk(m+1), εm+1), m ∈ N. Let us prove that Bm 6= ∅ for each m ∈ N.
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Indeed, we have A1 ∈ I and xn ∈ B1 for all n /∈ A1. Assume that m ∈ N
and C ∈ I is a set such that xn ∈ Bm for each n /∈ C. We have Am+1 ∈ I

and xn ∈ clB(xk(m+1), εm+1) for each n /∈ Am+1. Thus C ∪ Am+1 ∈ I and
xn ∈ Bm+1 for all n /∈ C ∪ Am+1. Since additionally Bm+1 ⊂ Bm for all
m ∈ N, and the diameter of Bm tends to 0, there is an x ∈ X such that⋂
m∈N

Bm = {x}, by the Cantor theorem for complete spaces. It suffices to

show that I− lim
n→∞

xn = x. Let ε > 0 and pick an m ∈ N such that εm < ε/2.

We have
A(ε) ⊂ {n ∈ N : ρ(xn, xk(m)) + ρ(xk(m), x) ≥ ε}.

But ρ(xk(m), x) ≤ εm < ε/2 since x ∈ Bm. Therefore

A(ε) ⊂ {n ∈ N : ρ(xn, xk(m)) + ε/2 ≥ ε} = {n ∈ N : ρ(xn, xk(m)) ≥ ε/2}

⊂ {n ∈ N : ρ(xn, xk(m)) > εm} ⊂ Am ∈ I.

(2). Let {xn}n∈N be a Cauchy sequence in (X, ρ). Since I is admissible,
{xn}n∈N is an I-Cauchy sequence. Thus, by assumption, we have I− lim

n→∞
xn =

x for some x ∈ X. Put k0 = 0 and for ε = 1/n, n ∈ N, pick inductively
kn ∈ N \ ({0, . . . , kn−1} ∪ A(εn)). Thus ρ(xkn

, x) < 1/n for every n which
implies that lim

n→∞
xkn = x. Consequently, lim

n→∞
xn = x.

Note that I-Cauchy sequences lack some natural properties of Cauchy se-
quences. For instance, a subsequence of an I-Cauchy sequence can be not
I-Cauchy which is shown in the following example inspired by [4, Prop. 3.1(ii)].

Example 3. Assume that a metric space (X, ρ) contains at least two distinct
points x and y. Let I ⊂ P(N) be an admissible ideal such that there exists
a partition of N into pairwise disjoint infinite sets such that A ∈ I and B /∈
I, C /∈ I. Let A = {mn : n ∈ N}, B ∪ C = {kn : n ∈ N} with mn and kn

strictly increasing. Define {xn}n∈N as follows. Put xkn
= x for all n ∈ N. Let

xmn =
{

x if n ∈ A ∪B
y if n ∈ C

.

Observe that I − lim
n→∞

xn = x, thus {xn}n∈N is I-Cauchy, by Theorem 2.

However, the subsequence {xmn
}n∈N is not I-Cauchy (consider ε = ρ(x, y).)

The statements of Proposition 1 and Theorem 2 (1) were mentioned in
[7]. The authors of [7] use however filters rather than ideals. Their I-Cauchy
condition is formulated in a different but equivalent form. Now, we shall prove
this equivalence and we add one more equivalent condition.

For ε > 0 and a sequence {xn}n∈N of points in (X, ρ), we denote Ek(ε) =
{n ∈ N : ρ(xn, xk) ≥ ε}, k ∈ N.
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Proposition 4. For a sequence {xn}n∈N of points in (X, ρ), the following
conditions are equivalent:

(1). {xn}n∈N is an I-Cauchy sequence,

(2). (cf. [7]) (∀ε > 0)(∃D ∈ I)(∀m,n /∈ D) ρ(xm, xn) < ε,

(3). (∀ε > 0) {k ∈ N : Ek(ε) /∈ I} ∈ I.

Proof. (1) ⇒ (2). Let ε > 0. Put D = Ek(ε/2) where k ∈ N is chosen for
ε/2 in the I-Cauchy condition for {xn}n∈N. Thus D ∈ I and for any m,n /∈ D
we have ρ(xn, xk) < ε/2 and ρ(xm, xk) < ε/2. Hence ρ(xn, xm) < ε by the
triangle inequality.
(2) ⇒ (3). Let ε > 0 and let D be chosen as in (2). We shall show that
{k ∈ N : Ek(ε) /∈ I} ⊂ D. Let k ∈ N be such that Ek(ε) /∈ I. Suppose that
k /∈ D. Pick an n ∈ Ek(ε) \D. Thus ρ(xn, xk) ≥ ε by the definition of Ek(ε).
But n, k /∈ D implies ρ(xn, xk) < ε by (2), contradiction.
(3) ⇒ (1). ¿From (3) we have (∀ε > 0) {k ∈ N : Ek(ε) ∈ I} 6= ∅ which
yields (1).

3 Double Sequences.

In [1], the notion of I-convergence was extended to the case when I is an ideal
of subsets of N2 and one considers a double sequence {xmn}m, n∈N of points in
(X, ρ). (The further generalization deals with multi-indexed sequences and
with ideals in P(Nk) for k ∈ N.) Namely, we say that {xmn}m, n∈N is I-
convergent to x ∈ X (in short I− lim xmn = x) if {(m,n) ∈ N2 : ρ(xmn, x) ≥
ε} ∈ I for each ε > 0. Again an ideal I ⊂ P(N2) is called admissible if it is
non-trivial and contains all singletons.

Proposition 5. Let {xmn}m, n∈N be a sequence of points in a complete metric
space (X, ρ) and let I ⊂ P(N2) be an admissible ideal. The following conditions
are equivalent:

(1). {xmn}m, n∈N is an I-convergent sequence,

(2). (∀ε > 0)(∃(M,N) ∈ N2) {(m,n) ∈ N2 : ρ(xmn, xMN ) ≥ ε} ∈ I.

If moreover, I contains all sets of the form {n} × N, N × {n} (for n ∈ N),
each of the above conditions is equivalent to:

(3). (∀ε > 0)(∀l ∈ N)(∃M,N ≥ l) {(m,n) ∈ N2 : ρ(xmn, xMN ) ≥ ε} ∈ I.
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Proof. To show (1) ⇔ (2), fix a bijection ϕ : N2 → N and put J = {ϕ(A) :
A ∈ I}. For an x ∈ X we have I − lim xmn = x ⇔ J − lim

k→∞
xϕ−1(k) = x.

By Proposition 1 and Theorem 2 part (1) this last condition is equivalent to
(∀ε > 0)(∃j ∈ N) {k ∈ N : ρ(xϕ−1(k), xϕ−1(j)) ≥ ε} ∈ J which in turn
is equivalent to (2) when we put (M,N) = ϕ−1(j). Now, assume that I

contains all sets of the form {n} × N, N × {n} (for n ∈ N). It is obvi-
ous that (3) ⇒ (2). Let us show implication (1) ⇒ (3). Assume that
I − lim xmn = x and fix ε > 0 and l ∈ N. Thus {(m,n) ∈ N2 : ρ(xmn, x) ≥
ε/2} ∈ I. Since (N × {1, . . . , l − 1}) ∪ ({1, . . . , l − 1} × N) ∈ I, we can pick
(M,N) ∈ {l, l + 1, . . .} × {l, l + 1, . . .} with ρ(xMN , x) < ε/2. Now, we
have {(m,n) ∈ N2 : ρ(xmn, xMN ) ≥ ε} ⊂ {(m,n) ∈ N2 : ρ(xmn, x) ≥
ε/2 or ρ(xMN , x) ≥ ε/2} = {(m,n) ∈ N2 : ρ(xmn, x) ≥ ε/2} ∈ I as de-
sired.

Remark. I-Cauchy condition in the form (3) was proved by Móricz [6] in the
particular case when I consists of all sets S ⊂ N2 with two-dimensional den-
sity d2(S) equal to 0 where d2(S) = lim

m,n→∞
(1/(mn)) · card(S ∩ ({1, . . . ,m} ×

{1, . . . , n})) and lim
m,n→∞

zmn = z is meant in the Pringsheim’s sense, that is

(∀ε > 0)(∃l ∈ N)(∀m,n ≥ l) |zmn − z| < ε. It is easy to check that the ideal
I defined in such a manner contains all sets of the form {n}×N, N×{n} (for
n ∈ N).
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Added in Proof. Recently another proof of Theorem 2(1) has been published
in the paper B. K. Lahiri, Pratulananda Das, Further results on I-limit superior
and I-limit inferior, Mathematical Communications, 8 (2003), 151–156.
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