Real Analysis Exchange
Vol. 30(1), 2004/2005, pp. 115-122

Hugh G. R. Millington, Department of Computer Science, Mathematics &
Physics, University of the West Indies, Cave Hill Campus, P. O Box 64,
Bridgetown, Barbados. email: hgrmill@uwichill.edu.bb

RUNS AND INTEGRATION

Abstract

We use the convergence notion of a run to define integration processes
which subsume those of Riemann-Stieltjes, Lebesgue and Henstock-
Kurzweil.

1 Introduction.

Runs were introduced by Hewitt Kenyon and A. P. Morse in their paper
“Runs”, Pacific Journal of Mathematics, 1958 [6], as an alternative to filters
[4] and nets [5]. No standard text in topology mentions them. Nonetheless, we
find them to be an ideal tool for defining integration. We illustrate this view-
point by using runs to define an integration process which subsumes Lebesgue
and Riemann-Stieltjes integration. Elementary additivity properties of the
integral are established under very general conditions. A variant of the main
definition yields a generalization of the gauge (Henstock-Kurzweil) integral
[1, 3, 12], thereby extending a description using nets (Moore-Smith limits)
given in [3]. Although all of the definitions are valid in very abstract situa-
tions, they suggest viewpoints which are new even for real-valued functions on
the real line. For the equivalence of runs with filters and nets we refer to [6].

For any relation R we denote by dom R and rng R respectively the domain
of R := {z : Jy(z,y) € R}, and the range of R := {y : 3z (z,y) € R}. For
all z € dom R, we denote by Rz the set {t : (z,t) € R}. A run in a set
Z is a relation R such that rng R C Z, and, for all z,y € dom R, there
exists z € dom R such that Rz C Rx N Ry; i.e., such that if (z,t) € R, then
(z,t),(y,t) € R; R' is a subrun of R if and only if R is a run, R’ is a run,
and for all z € dom R there exists y € dom R’ such that R'y C Rz. Runs R
and R’ will be called linked if and only if Rz N R'z" # 0, for all z € dom R
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and 2/ € dom R’. A run R in a topological space Z converges to z € Z if
and only if for each neighborhood N of z there exists x € dom R such that
Rx C N. Clearly, if R and R’ are linked runs in a Hausdorff space converging
to z and 2’ respectively, then z = 2/.

Let R be a relation and f a function defined on rng R. We denote by fo R
the relation consisting of all ordered pairs (z, f(z)), with (z,2) € R. Let R;
be a run in a set Z;, i = 1,...,k. We denote by Ry ® --- ® Ry, the collection
of all ordered pairs ((z1,...,2k), (21,--.,2k)), in which (x;,z;) € R; for each
1 < < k. The following properties of runs are easily checked.

If R is a run in a set Z, and f is a function from Z to a set T, then fo R
isaruninT. If R; is a run in a set Z;, i =1,...,k, then R ® --- @ Ry, is
arunin Zy X -+ X Zy. A run R in a topological space Z converges to z € Z
if and only if every subrun of R converges to z. If, for 1 < i <k, Z; is a
topological space and R; is a run in Z; converging to z;, and f is a continuous
function on the product space Z1 X --- X Zy, to a topological space T, then
fo(Ri®- - ®Ry) is arunin T converging to f(z1,...,2x).

In particular, therefore, if R;, R, are runs in a commutative topological
semigroup, (Z,+), converging respectively to z; € Z;, for i = 1,2, then the run,
R1+ Ry, consisting of all ordered pairs ((x1, z2), $1+s2) for which (z;, s;) € R;,
1 =1, 2, converges to z1 + 22.

2 Integration.

We turn now to the definition of an integration process [11]. In what follows,
E is a set, H and N are families of subsets of E such that H is closed under
finite intersections, and HNN € N, for all H € H and N € N, f is a function
on Etoaset X, AC F, nisa function on H to aset Y, and <, > is a binary
operation on X XY to a commutative topological semigroup, (Z,+). We shall
denote < z,y > by z.y. For any non-empty P C H, non-empty finite F' C P,
and choice function h : p € P — h, € p, we denote by S(f,h,n, F') the sum
> per f(hp)n(p).

Denote by Py (A) the family of all countable P C H such that A C |JP
and PNN = 0. Given P,Q € Py (A), we say that Q is finer than P if for each
q € @ there exists p € P with ¢ C p. A truncation on Py (A) is a function
A on Py (A) such that A(P) is a finite subset of P for each P € Py (A). A
truncation I' is larger than a truncation A if and only if A(P") C T'(P’) for all
P’ € Py (A). If P € Py(A) has pairwise intersections in A, it will be called
an NM-mesh in ‘H covering A. Subsets A; and A of E are separated by H
with respect to N if and only if there exist H; and Hy in ‘H with A; C H;,
i = 1,2, such that H; N Hy € N. (Notice that if A" contains only the empty
set then an A-mesh is actually a countable, pairwise-disjoint subfamily of H.
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We introduce N-meshes to allow covers of A which are possibly not pairwise-
disjoint, as occur in Riemann integration.) For each A C FE, let P4 be a
subfamily of Py (A) directed by refinement. We define the run F(A, f,n,P)
to be the collection of all ordered pairs ((P,A),S(f,h,n,T(Q))), for which
P € P4, A is a truncation on Py(A), h is a choice function on @ for some
Q € P4 finer than P, and T is a truncation on Py (A) larger than A.

Definition 2.1. The function f is P-integrable over A with respect to n if
and only if F(A, f,n,P) is a run in Z converging to some z € Z.

For motivation of the definition we refer to [11]. The idea of using an
arbitrary P4 is taken from [7]. If f is P-integrable over A with respect to
n, and Z is Hausdorff, then we denote by P- [, f.dn the unique point of Z
to which F(A, f,n, P) converges. The phrase “P—fA f-dn exists” will then be
synonymous with “F(A, f,n,P) converges in Z to P-[, f.dn”. The case of
non-Hausdorff Z can be treated by consideration of the standard quotient
space. Our first two theorems establish additivity properties of the integral.

Theorem 2.1. Let X be a commutative semigroup, with <,> being additive
in its first argument, and let f1, fo be X -valued functions on E. If P-fA f1-dn,
P-[, fa-dn both exist, then P-[,(f1 + f2).dn exists, and

P—/A (f1+f2).dn=7>—/A f1~dn+7’-/Af2-dn

PROOF. Let f1, fo be X-valued functions on E which are integrable over A.
Then, by earlier remarks, F (A, f1,1n,P) + F(A, fa,n,P) is a run converging
to P—fA fi.dn+ P—fA f2.dn. We shall now show that it has F(A, fi1 + f2,71,P)
as a subrun. We shall write (P,A) < (@Q,T") if and only if P,Q € Px(A)
with @ finer than P, and A, I' are truncations on Py (A) with I' larger than
A. Let D consist of all ordered pairs (P,A), where P € P4 and A is a
truncation on Py (A). Then D is directed by <. Given any (P, A;) € D,
i = 1,2, choose (P',A’) € D such that (P;,A;) < (P, A’), i = 1,2. Suppose
((P',A"),S8(f1+ fa,h,n,T(Q))) € F(A, f1 + f2,n,P). Since < is transitive,
((Pi, ), S(fi, hyn, T(Q))) € F(A, fi,n, P). Further, by the additivity of <, >
in its first argument,

S(fl +f2ah,n?F(Q)) = S(flaha’rhr(Q)) +S(f27h,n?F(Q))7

and therefore,

(((P17A1)7(P27A2))7S(f1+f27hvn7F(Q))) Ef(Aafhna,P)_'_‘F(Aaf%nalp)'
Thus, F(A, fi + f2,m,P) is a subrun of F(A, f1,1,P) + F(A, fa,n,P). O

Similarly, we can show the linearity of the integral when X is a vector
space over the real or complex numbers, Z is a topological vector space over
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the same field of scalars, and <, > is linear in its first argument. Note that
P4 may consist of all countable, pairwise-disjoint subfamilies of H which cover
A, or of all finite, pairwise-disjoint subfamilies of H which cover A. Indeed,
we may take P4 to be the family of all finite A/-meshes in H covering A.

We can show that the integral is an additive set-function, if the families P4
satisfy the following conditions:

o Py C Py(A) is directed by refinement, and {H} € Py, for all AC H €
H;

e if P € Pyyp then there exists P’ € P4 finer than {p € P:pN A # 0};

o if ;i € Pa,, and p1 Np2 € N for all p; € Q;, i = 1,2, then Q; UQ> €
Pa,ua,-

Theorem 2.2. Let Ay, Ay be subsets of E which are separated by H with
respect to N'. If the integrals on both sides exist then

P-|  fdn+P- fdn—P f.dn.
Aq AjUAS

ProoOF. Fori=1,2,let A; C H; € H with H{NHy € N. Let P; € Pa,, A; be
a truncation on Py (4;), P € Pa,ua,, and A be a truncation on Py (A U As).
Choose Q; € Py, finer than {H;}, P;, and {p € P : pN A; # 0}, and denote
Q1UQ2 by Q. Then Q € Pa,ua,. Let I'; be a truncation on Py (A4;) such that
I; is larger than A;, and I'1(Q1) UT2(Q2) 2 A(Q1 UQ2). Let h; be a choice
function on @Q;, and h be the choice function on Q given by h(q) = hi(q),if ¢ €
Q;. Let T be a truncation on Py (A1 U As) such that T'(Q) =T'1(Q1) UT2(Q2),
and T(P) = A(P), if P # Q1 U Q. Then,

S(f7 hlunarl(Ql)) + S(f7 h27777r2(Q2)) = S(f, h>7]7F(Q))7
((Pi7Ai)7S(f7 hlvnan(Ql)» € f(AiafvnvPAi)7 and
((P’ A)?S(fah7naF(Q))) € ]:(Al U Ag, fa7777)A1UA2)'

Thus ‘F(Al ) A27 f7 7, PA1UA2)7 f(Alv f7 , PAl) + ‘F(A27 f7 , PA2) are linked
runs, and their limits are therefore equal. O

For the classical definition of the Riemann-Stieltjes integral [9], p.122, and
[2], p-298, we identify F, X, Y and Z with the real line, and <, > with the
binary operation of multiplication on the real line. Let H be the family of
all non-empty, closed subintervals, [s, t], of the real line, n([s,t]) = g(t) — g(s)
for some monotone increasing function g, N consist of the empty set together
with all one-point subsets of the real line, A = [a,b], and P4 be the family
of all finite N-meshes P C H with (JP = [a,b]. In this case the use of
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truncations is superfluous, and, for a bounded real-valued function f on [a, b,
the Riemann-Stieltjes integral may be defined as the limit, when it exists, of
the run whose ordered pairs are of the form, (P, S(f,h,n,Q)), where P € P4
and h is a choice function on @ for some @) € P4 which is a refinement of
P (]9], thms. 6.6, 6.7, and [2], thms. 5.8, 5.9), or, equivalently, as the limit of
the run whose ordered pairs are of the form (J,S(f,h,n,Q)), where § > 0,
@ € P4, with the length of ¢ less than ¢ for all ¢ € @, and h is a choice
function on @, [2], Theorem 5.10, p.309.

Modifying the latter approach, we can use runs to define a generalized
gauge (Henstock-Kurzweil) integral [1]. Let ¢ be a uniformity on E [4]. A
gauge on E is a function on F to U. Given @ € Py (A), a choice function
h on @ and a gauge § on E, we shall say that (Q,h) is o-fine if and only if
(t,hg) € 6(hy) for all g € Q and t € q. Now let P4 be a subfamily of Py (A)
such that for each gauge § on E there exists a Q@ € P4 and a choice function h
on @ such that (Q, h) is 0-fine. (For the gauge integral of a real-valued function
on a closed, bounded interval of the real line, validity of the latter condition is
guaranteed by Cousin’s theorem [1].) Denote by K(A, f,n, P,U) the collection
of all ordered pairs, ((3,A),S(f,h,n,T(Q))), in which ¢ is a gauge on E, A
is a truncation of Py (A), T' is a truncation of Py (A) larger than A, Q € Py
and h is a choice function on @ such that (@, h) is d-fine.

Definition 2.2. The function f is gauge-integrable over A with respect to
P if and only if K(A, f,n,P,U) is a run in Z converging to some z € Z.

The generalized gauge integral of an X-valued function f on E will be
denoted by G- 4 J-dn. Through a straightforward modification of its proof,
Theorem 2.1 extends to this integral.

Theorem 2.3. Let X be a semigroup, and <,> be additive in its first argu-
ment. If g-fA f1.dn, g-fA fa.dn both exist, then g-fA(f1 + f2).dn exists, and

Q-/A(f1+f2)-d77=Q-/Af1.dn+g-/Afz~d77

A similar extension of Theorem 2.2 can be established if the families P4
satisfy the following conditions:

e for all A C H € 'H, and gauge 6§ on F, there exist Q) € P4, and a choice
function h on @, such that ¢ C H for all ¢ € Q, and (Q, h) is d-fine.

o if Q; € Pa,, and py Npy € N for all p; € Q;, i = 1,2, then Q1 U Qs €
Pa,ua,-
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Theorem 2.4. Let Ay, Ay be subsets of E which are separated by H with
respect to N'. If the integrals on both sides exist then

g-/ f.dn—i—g-/ fdn=gG- f-dn.
Ay Az AjUA,

We note that the above definition of a generalized gauge integral is ap-
plicable to any subset of a uniform space, and allows countable covers of the
domain of integration. However, when E, X, Y and Z are identified with the
real line, under the uniformity generated by the standard Euclidean metric,
and <, > with multiplication, A is a closed subinterval of E with non-empty
interior, H is the family of all closed subintervals [s, ¢] of E having non-empty
interior, with n([s,]) = g(t) — g(s) for some monotone increasing function g
on E, N consists of the empty set together with all one-point subsets of the
real line, and P4 consists of all finite A-meshes P C ‘H with |JP = A, then
the above yields a definition of the gauge integral of a real-valued function f
on A [1]. Our definition using runs therefore improves on that given in [3]
using nets.

We can give a unified definition of the integration processes defined above.
For each A C E, let M4 be a run in the family of all ordered pairs (P, g)
for which P € Py (A) and g is a choice function on P. Let J (A4, f,n, M) be
the run in Z consisting of all ordered pairs ((z,A), S(f, h,n,T'(Q))) for which
x € domMy, A is a truncation on Py (A), (x,(Q,h)) € M4 and T is a
truncation on Py (A) larger than A.

Definition 2.3. The function f is M-integrable over A if and only if the
run J (A, f,n, M) converges to some z € Z.

This generalized integral of an X-valued function f on E will be denoted
by /\/l—fA f-dn. Tt is easily shown that it is additive.

Theorem 2.5. Let X be a semigroup, and <,> be additive in its first ar-
gument. If M-[, f1.dn, M-[, fo.dn both exist, then M-[,(fi + f2).dn exists,
and

M-/A(fl+f2)~d?7:M-/Afl-d??ﬂLM-/Afzdn

Its additivity as a set function can be proved under the following assump-
tions:

e for all A C H € H, and =z € dom M 4, there exists @, h such that
(z,(Q,h)) € My, and ¢ C H for all ¢ € Q;

o for all y € dom My,ua,, and i = 1,2, there exist x; € dom M 4,, such
that if (x;, (Qi, hi)) € Ma,, p1Npa € N for all p; € Q;, and h(q) = hi(q)
whenever ¢ € Q;, then (y, (Q1UQ2,h)) € Ma,ua,-
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Theorem 2.6. Let Ay, Ay be subsets of E which are separated by H with
respect to N'. If the integrals on both sides exist then

Mef Fan e fan = f.dn,
Aq A1UAS

By appropriate specialization of M 4 we obtain the integrals defined pre-
viously, and their additivity properties.

3 Set Functions.

We close with applications of runs to the generation of set functions by inner
or outer approximation, showing that runs may be of interest outside of in-
tegration theory. Given a Z-valued function v on a family, H, of subsets of
E, we say that v is additive if and only if v(A U B) = v(A) + v(B), for all
disjoint A and B in H.

Let (K, G) be a pair of families of subsets of E, such that K is closed under
finite unions, G is closed under finite unions and finite intersections, and for
al K e Kand G € G: (1) K\G € K, G\K € G, (2) there exist K’ € K and
G' € G with K/ C G and G' C K, and (3) if K C G then there exist K’ € K
and G’ € G with K CG' C K' C G [8, 10].

Let x and v be Z-valued functions, respectively on K and G. For each
G € G, let K~ (G, k) be the run consisting of all ordered pairs (K, x(K")),
for which K, K’ € K and K C K’ C G. For each A C E let G"(A,~v) be
the run consisting of all ordered pairs (G,~v(G")), for which G,G" € G, with
ACG CQG.

Theorem 3.1. Let k be additive, and G1,Go € G be disjoint. If K~ (G1, k)
and K~ (Ga, k) converge to z1, ze respectively, then K~ (G1 U Ga, k) converges
to z1 + 29.

PROOF. Let G1,G2 € G be disjoint, and K;,Ks € K with K; C G; € G,
i =1,2. For each K’ € K such that K1 UKs C K/ C G1UG3, let K] = K'\Gs»,
K} =K'\ Gy. Then k(K') = k(K'1) + k(K'3), and (K;,k(K))) € K~ (Gi, k),
i =1,2. Thus K~ (G1 UGy, k) is a subrun of K~ (G, k) + K~ (G2, k). O

Theorem 3.2. Let v be additive, and K1, Ko € K be disjoint. If Gt (K1,7)
and GT(Ks,7y) converge to zy,ze respectively, then GT (K1 U Ka,7y) converges
to z1 + zo.

PRrROOF. G (K U K3,7) is a subrun of Gt (K1,7v) + G*(K2,7). (The proof
uses the following separation property of (IC,G). For all disjoint K1, Ko € KC,
there ezist disjoint G1,G2 € G with K; CG;, i =1,2.) O
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Further conditions are required to guarantee the existence of the limits
appearing in the theorems above [1, 2, 11], or to guarantee that the set func-
tions defined by inner or outer approximation are extensions o-additive on a
o-algebra containing the original domain of definition.

We do not doubt the usefulness of filters and nets for describing conver-
gence. However we do think that there is still a place for runs, especially in
the theory of integration, where they correspond to the process under consid-
eration more efficiently than filters or nets. (See, [6], p.813, last paragraph.)
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