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SOME OBSERVATIONS ON REGULAR
DEPENDENCE OF TOTAL VARIATION ON
PARAMETERS

Abstract

Let I be a nondegenerate interval and let X # () be a set. For a
function f : X xI — Rand z € X define v(z) as the total variation of the
section f; on I. We investigate the regular dependence (measurability,
Baire property, etc.) of v on the regularity of the sections f*.

Let R be the set of all reals and let I be a nondegenerate interval (open,
closed, half-closed, bounded or not). For a function g : I — R we define the
total variation of g on I as

Vg, D) = sup Z l9(x:) — glai—1)],

where the supremum is taken over all partitions 7 = {xg,21,...,2,} of T (
ie,neN zg<z1 < --<axpandx; €1,i=0,1,...,n). We say that g is
of bounded variation on I if V(g,I) < cc.

Let X be the set of parameters. For a mapping f : X x I — R define the
total variation of the sections f(t) = f(z,t), v € X and t € I by

v(x) =V (fy,I) for z € X.

In [1] the authors investigate some sufficient conditions for regular dependence
(different measurability or continuity properties) of a mapping v : X — [0, 0]
on X. In this article we give some constructions concerning these results.
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In [1] the authors observe that if I = X = [0,1] and A C [0,1] is a non-
measurable subset in the Lebesgue sense (without Baire property), then the

function
1 fz=tandaxzecd
fla,t) = : 2
0 otherwise on [0, 1]

is Lebesgue measurable and has the Baire property, but the function v(x) =
V(fz,I) is not measurable in the Lebesgue sense (does not have the Baire
property). In connection with these examples we present some constructions.

Let (Z,Tz) be a topological space. Recall (e.g., in [4]) that a function
g : Z — R is said to be quasicontinuous at a point z € Z if for each real r > 0
and each Tz-open neighborhood U C Z of z there is an Tz-open nonempty
subset V' C U such that g(V) C (g(z) — 7, g(2) + 7).

Theorem 1. There is a Lebesgue measurable function f : [0,1]2 — [0,1]
having Darbouz Baire 1 quasicontinuous sections f'(z) = f(x,t), z,t € [0,1],
such that the function v(z) = V(fs,[0,1]), € [0,1], is not measurable in the
sense of Lebesgue.

PRrROOF. Let C' C (0,1) be a Cantor set of positive Lebesgue measure and let
(I,,) be a sequence of all open intervals with rational endpoints. Then the
set A =C\U{(I.NC); u(l,NC) = 0} is a nowhere dense perfect set of
positive Lebesgue measure such that for each open interval J with J N A # ()
the intersection J N A is of positive Lebesgue measure. Enumerate the set of
all components of the set [0,1] \ A in a sequence (J,) such that J, # J,, for
n # m. Let a, and b, be the endpoints of J,, with a,, < b,. In the interiors
int(J,) of J, find nondegenerate closed intervals K,, = [cn,dy] C int(Jy,).
Define

1 for re K, n>1
g(z) = 0 if reA
linear on the intervals [an,c,] and [d,,b,] n > 1.

There is a Lebesgue nonmeasurable set B C A. For (z,t) € [0,1]? let

Fat) = 1 if re€B, and z =1t
= g(z) otherwise on [0, 1]2.

Then, evidently, the function f is Lebesgue measurable and the sections f?,
t € [0, 1], are quasicontinuous functions of Baire class 1 that have the Darboux
property. Moreover

v(z) =0 for z €[0,1]\ B, and v(z) =2 for = € B,

so the variation v : [0,1] — [0, c0] is a function nonmeasurable in the sense of
Lebesgue. O
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The function f from the last theorem has the Baire property (it is quasi-
continuous even) and the corresponding function v has also the Baire property
(it vanishes on the set [0,1] \ B).

Theorem 2. Assume the Continuum Hypothesis CH. Then there exists a
function f :[0,1]% — [0,1] with the Baire property such that the sections f?,
t € [0, 1], have the Darbouz property and the corresponding variation function
v(x) = V(fs,[0,1]) does not have the Baire property.

PROOF. Let A C [0,1] be a Gs-set of Lebesgue measure zero containing all
rationals from [0,1]. Then the set A is residual in [0,1] and for each open
interval I C [0, 1] the equality wu(I) = p(I\ A) is true. There is a set B C A
without the Baire property. Moreover, there is a family {A,;a < w1} (w1
denotes the first ordinal of the continuum cardinality) of pairwise disjoint
subsets c-dense in [0, 1] such that [0,1]\ A=, ., A

Indeed, let Ago C [0,1] \ A be a countable set dense in [0,1]. Let & > 0
be a countable ordinal and assume that we have defined pairwise disjoint
countable dense in [0, 1] sets A, C [0,1] \ A, where 3,7 < . Observe that
E = U <aAp~ is countable set. Then let Ay, C ([0,1]\ A) \ E be a
countable set dense in [0, 1] and for 5 < « let

Apa C (0NN E)N U 4ra

v<pB

be a countable set dense in [0, 1]. Moreover, for § < « let

A < (N ANEN U 4ra) \ U Aan

y<o 7<B

be a countable set dense in [0, 1]. Next, for 1 < a < wy let A, = UB<W1 Anp
and let Ao = ([0,1] \ A) \ U, <o, Aa- Observe that

A= A0 (01NN | Aas):

B<wi a,B<wi

Then the sets A,, a < wp, are pairwise disjoint and for each a < w; and
each open interval I C [0, 1] the intersection A, NI is uncountable; i.e., A, is
¢-dense in [0, 1]. Moreover, [0,1]\ A =, Aa-

Now, fix @ < w, and enumerate all open subintervals of [0, 1] with rational
endpoints in a sequence (I,,). By induction for each positive integer n there
is a nowhere dense nonempty perfect set B, o C (I N Aa) \ Ug<y, Br,a- For
n > 1 define a function g, o : Bn,o — [0, 1] such that ¢, o(Bn,a) = [0, 1]. Let
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gna(r) fx€Bya n>1
ga(2) = .
0 otherwise on [0, 1].

Now enumerate all elements of the set B in a transfinite sequence b,,, where
a < w, such that b, # bg for a # 3. For (z,t) € [0,1] put

1 ifr=teB
flz,t) =< goa(z) fz#£t=0by a<uw,.
0 otherwise on [0, 1]%.

Since v(xz) = 0 for z € A\ B and v(z) = 2 for z € B, the restricted function
v/A does not have the Baire property. But the set A is residual in [0, 1], so
v :[0,1] — [0, 00] is without the Baire property.

We will prove that the sections f%, t € [0, 1], have the Darboux property.
Ifte A\Borte|0,1]\A, then f(x) =0 for z € [0,1], and consequently the
section f* has the Darboux property. If ¢t € B, then there is an ordinal o < wy
with ¢ = b,. So fi(z) = ga(z) for x # t and f'(t) = 1. Since go(J) = [0,1]
for each open interval J C [0, 1], the section f has the Darboux property. [

For the next theorems we recall the following definitions and prove some
lemmas.

We will say that a family of functions g5 : Z — R, where s € S and S is a
set of indices, is quasi-equicontinuous at a point z € Z if for each positive real
r and each set U € Tz containing x there is a nonempty set V C U belonging
to Tz such that g4(V) C (gs(x) — r, gs(z) + r) for all indices s € S.

Observe that the sections f*, ¢ € [0,1], of the function f constructed in
the proof of Theorem 1 are quasi-equicontinuous at each point x € [0, 1].

A function g : Z — [—00,00] is said to be lower (resp. upper) semi-
quasicontinuous at a point z € Z if for each real a with g(z) > a (resp.
g(z) < a) and each set U € Ty containing x there is a nonempty set V. C U
belonging to Tz such that g(u) > a (resp. g(u) < a) for all points u € V.

Lemma 1. If a function g : Z — [—00,00] is lower (resp. upper) semi-
quasicontinuous at each point x € Z, then g has the Baire property.

PrROOF. Fix a real a and observe that the set A, = {z € Z; f(z) > a} is the
union of its interior int(4,) and of a set contained in the frontier fr(int(A4,))
of the int(A,), which is nowhere dense. So the set A, has the Baire property
and the proof is completed. O

Lemma 2. If ® is a family of lower semi-quasicontinuous functions gs :
Z — R, where s € S and S is a set of indices, then the pointwise supremum
h(z) = sup{gs(z); s € S} is lower semi-quasicontinuous at each point x € X.
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PRrOOF. Evidently h(xz) > —oo for each point @ € Z. Fix a positive real r, a
point x € Z and a set U € Tz containing x. First we suppose that h(x) < oco.
Since h(z) = sup{gs(x);s € S}, there is an index s; € S such that gg, (z) >
h(z) — r. But the function g, is lower semi-quasicontinuous at x, so there is
a nonempty set V' C U belonging to Tz such that gs, (V) C (h(x) —r,00). For
each point u € V we have h(u) > gs, (u) > h(x) — 7.

If h(z) = oo then for each real a there is an index s; € S such that
gs,(x) > a. The same as above we find a nonempty set V' C U belonging to
Ty such that gs,(V) C (a,00) and observe that h(V) C g, (V) C (a,00]. O

Theorem 3. Let (X,Tx) be a topological space and let f : X x I — R be
a function such that for each nonempty finite set S C I and for each point
x € X the family of the sections f', where t € S is quasi-equicontinuous
at . Then the corresponding total variation v(z) = V(fy,I) is lower semi-
quasicontinuous.

PROOF. Fix a partition m = {to,...,t,} of the interval I and observe that the
function

X>z— Z |f(x,ts) — f(x,tiz1)]
i=1

is quasicontinuous. Of course, for a fixed point v € X and a set U € Tx
containing u and a positive real r by the quasi-equicontinuity of functions f%,
where ¢ = 0,1,...,n, at u, there is a nonempty set V' C U belonging to Tx
and such that

(uv ti) +

fti(V)C(f(U,ti) ) fori=0,1,...,n.

Lt
on+2’ 2n+ 2

Consequently, for € V and each i € {0,1,...,n} we obtain

|f(z,ti) — f(z,tio1)]
<|f(@,ti) = fluta)| + [ f(u,ts) = flu, tic)| + | f(u, tizn) — fz,ti-1)]

r r
< ‘f(u’tl) - f(/uwtifl)‘ + m + m
r
= ‘f(uatz) - f(uati—l)‘ + —y 1

So, for z € V the inequality

Z [f (@, t:) = fla, tioa) = Z [f(us ti) = fu tia)]| <
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n

S0 ) = £t )] = L t) = Fn ti )] < 1)L =
i=1

is true and for each partition © = {tq,...,t,} the function
n
X3a— ) |fet)— flatio)|
i=1

is quasicontinuous on X. So, by Lemma 2 the total variation v is lower semi-
quasicontinuous, as the pointwise supremum of a family of quasicontinuous
functions. O

In particular we consider the case, where X = R and Tx is the density
topology. For this we recall some necessary notions.

Denote by p the Lebesgue measure in R and by p. the outer Lebesgue
measure in R. For a set A C R and a point & we define the upper (lower)
outer density D, (A, z) (D;(A,z)) of the set A at the point x as

i ug HelA N [ =+ 1)
h—0t 2h

(liminf pe(AN[r —h o+ h])

im in o respectively) .

A point x is said to be an outer density point (a density point) of a set
A if Dj(A,x) = 1 (if there is a Lebesgue measurable set B C A such that
Dy(B,x) =1).

The family T, of all sets A for which the implication

r € A = x is a density point of A

holds, is a topology called the density topology ([2, 6]). The sets A € T, are
measurable ([2]).

Let T, be the Euclidean topology in R. Continuity (quasicontinuity) of
functions ¢g : R — R treated as mappings from (R, Ty) to (R, T.) are said to be
approximate continuity (approximate quasicontinuity) (see, e.g., [2, 5] or [3]).

Since a set A C R has the Baire property with respect to the density topol-
ogy Ty if and only if it is Lebesgue measurable ([5]), as an obvious corollary
from the last theorem we obtain the following.

Theorem 4. If each finite family of sections ft of functions f : R x I — R
is quasi-equicontinuous with respect to Ty at every point x € R, then the
corresponding total variation v(xz) = V(fz, I) is Lebesque measurable.
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As an particular case of Theorem 3.2 from [1] we have:

Theorem 5. Let (X,dx) be a compact metric space and let [ : X X [a,b] — R
be a function. Assume that the sections ft, t € |a,b], are continuous and the
sections fr, © € X, are continuous of bounded variation on [a,b]. Then the
corresponding total variation v(x) = V(fy,|[a,b]) is continuous on X if and
only if the sequence (¢y,) of functions ¢, : X — R given by

-
m:;fb

is uniformly convergent on X.

b—a b—
on )—f(x,a+(k 1)—— on )'forxeX

Observe that the following theorem is true.

Theorem 6. Assume that X is a nonempty set and ® is a linear space (over
R) of functions from X to R which is uniformly closed ( i.e., it is closed with
respect to uniform convergence). Moreover suppose that if f € ®, then also
|f| € ®. Let f: X X [a,b] — R be a function. Assume that the sections f* € ®
for t € [a,b] and the sections f,, © € X, are continuous of bounded variation
on [a,b]. If the sequence (¢y,) of functions ¢, : X — R given by

> (-
k=
is uniformly convergent on X, then the corresponding total variation v(x) =

V(fz,[a,b]) belongs to ®.

PRrROOF. We repeat the proof of Theorem 3.2 from [1]. Since for a fixed z € X
the section f, is continuous on [a,b], we obtain v(x) = lim,_,o ¢n(z). But
the sections f* € ® for ¢t € [a,b], so ¢, € ® for n > 1. From the uniform
convergence of the sequence (¢,,) follows that v € ®. O

=) =g (na (- 0%52)| e x,

As some examples of ® we can take the families of continuous real func-
tions on arbitrary topological spaces or the family of real cliquish functions on
topological spaces ([4]).

Theorem 7. There is a function f : [0,1]> — R such that the sections fs,
z € [0, 1] are continuous of bounded variation, the sections f*, t € [0,1] are ap-
proxzimately continuous, the corresponding total variation v(z) = V(fz,[0,1])
is approzimately continuous on [0,1] and the sequence (¢n,) of functions ¢, :
X — R given by

@Zif«

2na) —f (x,a—i— (k— 1)62—na>’ forxz €10,1],
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is not uniformly convergent on [0,1].

PrOOF. Find closed intervals I,, = [a,, b,] such that

0<bpyi1<ap<b,<lforn>1and lim a, =0,

n—oo

and
Du< U [ambn],o) = 0. (+)
n>1

In each interval I,,, n > 1, find a closed interval .J,, = [¢,, dy,] C (ap,by). Next,
for each n > 1 we choose a closed interval K,, = [uy,,v,], whose the center is
of the form 2’2%, where k,, € {1,...,2" — 1} and the length is less than 2,1%
Moreover, we assume that K, N K,, = 0 if n # m.

For n > 1 define the functions g, : [an,bs] — [0,1], hn : [un,v,] — [0,1]
and f,, : I, x K, — [0,1] by

0 if x € {an,bn}
gn(r) = 1 if z € J,,
linear on the intervals [ay,, ¢,] and [d, by],

and
0 if t € {un,vn}
hn(t) =<1 if ¢ = 4ndtn
linear on the intervals [u,, “25%] and [“25%= v,],
and

fulx,t) = gn(x)hn(t) for (z,t) € I, x K,.
Now for (z,t) € [0,1]? let

falz,t) if (z,t)el, x K,, n>1
flaegy= {00 T 0 :
0 otherwise on [0, 1]°.

Then evidently the sections f, and f*, z, t € [0, 1], are continuous, the sections
f= have bounded variation and by (*) the total variation v(z) = V (f,,[0,1])
is approximately continuous. Since v is discontinuous at 0 and the functions
¢, are continuous for n > 1, the convergence of (¢,) to v is not uniform. [

Problem 1.

Let (X,Tx) be a topological space and let f : X X [a,b] — R be a func-
tion. Assume that the sections f!, t € [a,b], are quasicontinuous. Must the
corresponding total variation v(z) = V(fz, [a,b]) have the Baire property?
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Problem 2.

Let (X, Tx) be a topological space and let f : X X [a,b] — R be a function.
Assume that the sections f*, t € [a,b], are quasicontinuous and the sections
fz, © € X, have bounded variation on [a,b]. Must the corresponding total
variation v(x) = V(fy, [a,b]) have the Baire property?

Problem 3.

Assume that the sections f, t € [a,b], of a function f : [a,b]?> — R are
derivatives. Must the corresponding total variation v(x) = V(f.,[a,b]) be
Lebesgue measurable?

Problem 4.

Assume that the sections f!, ¢t € [a,b], of a function f : [a,b]> — R
are bounded derivatives. Must the corresponding total variation v(z) =
V(fz,[a,b]) be Lebesgue measurable?
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