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ITERATED REDUCED CLUSTER
FUNCTIONS

Abstract

Given a multifunction F' between topological spaces X and Y, the re-
duced cluster function C"(F;-) : X — 2 of F is defined by C"(F;z) =
N cl(F(U \ {z})), U running through the neighborhood system of x.
By transfinite recursion, one defines iterated reduced cluster functions
C™*(F;-) for all ordinals a > 0.

We characterize multifunctions F' that are invariant in the sense of
C"(F;-) = F. For every countable ordinal «, we describe the family of
all iterated reduced cluster functions C™(F’;-) of arbitrary multifunc-
tions F : X — 2Y and the family of all iterated reduced cluster functions
C™(f;-) of arbitrary functions f : X — Y, provided that X and Y are
metrizable spaces and Y is separable.

1 Definitions and Basic Properties.

Let F : X — 2¥ be a multifunction mapping a topological space X into the
subsets of a topological space Y. The empty set is allowed to be a value of F'.
The cluster set C'(F;xo) and the reduced cluster set C"(F; zg) of F at a point
xo € X are defined by

C(F;20) = Nueu(ay) UFU))

and
C"(F;20) = Nuew(ay) UEF U\ {z0})),

respectively, where cl(-) is the closure operator, U(xo) the family of all open
neighborhoods of x¢, and F(U) the union F(U) = |J, ¢ F(z). Obviously,

C(F;x0) = C"(F;x0) Ucl(F(xo)). (1)

Key Words: Cluster set, reduced cluster set, reduced cluster function of order .
Mathematical Reviews subject classification: Primary 54C50, 54C60; Secondary 54C08.
Received by the editors July 22, 2003
Communicated by: Clifford E. Weil
*This research was supported by DFG Grant RI 1087/2.

43



44 CHRISTIAN RICHTER

In the context of single-valued functions f : X — R these concepts can be
found in [4], p. 184, [5], pp. 188, 196, [1], pp. 140-141 (see also [11]). The
application of the original definitions to set-valued maps follows the approach
of [6], [7].

The sets C(F; o) and C"(F; o) describe the local accumulation behavior
of F in the entourage of zy. Following the interpretation of [4], we consider
C(F;-) and C"(F;-) as multifunctions associated to F. We speak of the cluster
function C(F;-) and the reduced cluster function C"(F};-) of F.

The cluster function C(F};-) has the following simple meaning,.

Proposition 1. Let X and Y be topological spaces and let F : X — 2Y be a
multifunction. Then the graph of C(F';-) is the closure of the graph of F with
respect to the product topology on X X Y.

PROOF. Let G be the multifunction whose graph is the closure of that of F'.
Then

graph(G) = {(z,y) € X x Y : YU € U(z) (y € cI(F(V))) }.
Hence, for all z € X,

G(z)={yeY VU elU(z) (y € I(F)))} = Nveue) HFU)) = C(F;x)E.]

A basic consequence of Proposition 1 is
C(C(F;-);7) = C(Fy)

for all F: X — 2Y. Accordingly, an iteration of the cluster function C(F;-)
is not useful. However, we shall see that the behavior of the reduced cluster
function C"(F;-) is quite different, though its definition is very close to that
of C(F;-).

Proposition 2. Let X be a Ty-space, Y an arbitrary topological space, and
F: X —2Y a multifunction. Then

(a) C"(F;-)=C"(C(F;-);+) and
(b) C"(F;-)=C(C"(F;-);-), that is, the graph of C"(F};-) is closed.
PrOOF. (a) The inclusion C"(F;-) C C"(C(F};-);-) is obvious, because F' C
C(F;-). The converse can be obtained as follows.
CT(C(F; )i 20) = Nueu(ay) HUCE U\ {zo}))
=Nvetteo) L (Usern oo} NMveu) UEF(V)))
S Nveteo) < (Usern ooy UEU \ {z0})))
=Nueuey) ME U\ {z0})) = C"(F; 20).
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The inclusion “ C” is based on the T property of X.
(b) Clearly, C™(F;-) C C(C"(F};-);-). On the other hand,

C(C"(F;-);20) = ﬂUeu(xU) cl(C™(F;U))
= mUGL{(xg) cl (UzGU ﬂVGZ/{(m) cl(F(V\ {x})))
< mUeZ/l(xo) cl (UmEU (F(U\ {$0})))
=Nveu(z) AEF U\ {zo})) = C"(F; xo).
This completes the proof. O

The following example justifies the restriction to Ti-spaces X in Proposi-
tion 2. Let X = R be equipped with the system of open sets {§}, R} U{(z, c0) :
x € R}. Then X is a Ty-space. We consider

[0, z#0,
f(x)_{ 1, z=0.
This yields

Cr(f;w)Z{ 0.1}, @ <0, C(Cr(f;-);w)={ 0.1}, =<0,

{0}7 z >0, {0}, x>0,
. — {0’ 1}’ €T S 07 ™ . . — {07 1}7 € S 07
Cfie) = { {0}, x>0, Ol )ie) = { {0}, =z>o.

In particular, C"(f;0) # C"(C(f; ); 0) and C"(f;0) # C(C"(f;);0).

Part (a) of Proposition 2 shows that all reduced cluster functions can be
obtained as reduced cluster functions of multifunctions with closed graph.
Moreover, since C"(F';-) C C(F};-), we obtain

CT(C"(F;-);-) S CT(C(F;-);-) = CT(F ).

The function f : R — R defined by

R

1—uz,

illustrates that the inclusion C™(C"(F};-);-
eral. Indeed,

C"(f;x) = { {é?h’ ii 8’ and  C"(C"(f;-);2) = {0}

This justifies the definition of iterated reduced cluster functions.
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Let F : X — 2Y be a multifunction between topological spaces X and Y
and let a > 0 be an ordinal number. We define the reduced cluster function
C™*(F;-) of F of order «a by

C"(F;x) if a=1,
Cr*(F;x) =< CT(C™P(F;);2) if a=B+1,08>0,
Np<a C™B(F;x) if ais a limit ordinal.

Proposition 2 shows that (C™*(F’;-))a>0 is a decreasing transfinite sequence
of multifunctions with closed graphs, provided that X is a T;-space.

The reduced cluster function C"(F;-) and its iterations C™*(F;-) of a
multifunction F' with closed graph can be considered as a particular derivative
within the system of all closed subsets of X x Y and as its iterations in the
sense of [8], p. 270: One considers closed subsets of X x Y as graphs of
multifunctions.

2 A Continuity Property of Invariant Multifunctions.

For every F : X — 2V, there exists a smallest ordinal ag = a(F) such that
Croo(F;-) = Cmeotl(F; ) or, equivalently, C™0(F;.) = C™(F;-) for all
a > ag. The multifunction C™*°(F;-) shows a pleasant behavior in so far
as it remains invariant under formation of its reduced cluster function. The
ordinal o indicates in some sense the distance between F' and its “invariant
derivative” C™(F;-). In the present section we study properties of invariant
multifunctions.

The following local reformulation of the invariance C"(F';-) = F'is a simple
consequence of (1), since C"(F'; xg) is a closed set.

Proposition 3. Let X and Y be topological spaces, F : X — 2Y a set-valued
function, and xy € X. Then C"(F;x9) = F(xo) if and only if C(F;x0) =
F(xg) and F(xg) C C"(F;xp).

The inclusion F'(z¢) € C"(F;xo) can be considered as a local continuity
property of F' at the point zq. In fact, in [10] the inclusion f(zg) € C"(f;x0) in
the case of a single-valued function f : R — R defines so-called S,.-continuity
of f at xg, the reduced cluster set C"(f;x) coinciding with Thomson’s Se-
cluster set (Soo)-A(f, o) (see pp. 3, 4, 70).

Proposition 4. Let X and Y be topological spaces, F : X — 2Y a set-valued
function, and xo € X. Then the following are equivalent.

(i) F(zo) C C"(F;x).
(ii) C7(F; o) = C(F;20).



ITERATED REDUCED CLUSTER FUNCTIONS 47

(#ii) There is no open subset Vo C'Y such that xq is an isolated point of the
set F=(Vo)={z e X : F(z)NVy #0}.

PRrROOF. The equivalence (i) < (ii) follows from (1).

—(i) = ~(iil). If F(zg) € C"(F;xp), we can fix yg € F(xg) \ C"(F;xo).
Since yo £ CT(F;xo), there exists a neighborhood Uy € U(zp) such that
yo £ A(F(Up\ {z0})). We put Vo = ¥\ dl(F(Us \ {o})). Then (Uo\ {zo}) N
F~(Vh) = 0. On the other hand, xy € F~(Vp), for yo € F(xg) N Vy. Hence
Up N F~(Vy) = {z0}, which shows that z is an isolated point of F~(V}).

—(iil) = —(i). Now we assume that z( is an isolated point of F~(V}) for
some open Vo C Y. Then there exists a neighborhood Uy € U(xg) such that
UpNF~ (V) = {zo}, that is, F'(Up\ {zo}) NVo = 0 and F(xo) NV, # 0. Since
Vo is open, we obtain cl(F(Up\{zo})NVy = 0 and therefore C" (F; xo)NVy = 0.
Thus

F(wo) \ C"(F;m0) 2 (F(x0) Vo) \ (C"(F30) N V0) # 0,

which proves that F(zq) € C"(F; xp). O

Propositions 1, 3, and 4 yield the following characterization of invariant
multifunctions.

Theorem 1. A multifunction F : X — 2Y between topological spaces X and
Y is invariant in the sense of C"(F';-) = F if and only if F' has a closed graph
and, for every open subset V.CY, the set F~(V)={z e X : F(z)NV # 0}
has no wsolated points.

Application to the particular open set V' =Y shows that, for an invariant
multifunction F = C"(F;-), the set {x € X : F(x) # 0} does not contain
isolated points, that is, {x € X : F(z) # 0} is a perfect subset of X.

We close this section with the remarkable observation that every multifunc-
tion F : X — 2¥ between a metrizable space X and a separable metrizable
space Y fails the continuity property F(z) C C"(F;z) only on a “small” set
of points € X. A subset A C X is called locally finite if every point xg € X
possesses a neighborhood Uy C U(xg) whose intersection with A is finite. The
following proposition generalizes a theorem from [2].

Proposition 5. Let X be a metrizable space, Y a separable metrizable space,
and F : X — 2Y a multifunction. Then the set

M={zeX:F(z) L C"(F;x)}

is a countable union of locally finite subsets of X.
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ProoF. We suppose that X and Y are equipped with corresponding metrics
dx and dy. For all z € M, we choose a value f(z) € F(x)\ C"(F;z). We
define

M(k) = {z € M: for every & € M\{z}, dx(z,%) > + or dy(f(z), (%)) > +}

for integers k > 1. Then M = |J,~, M (k), for otherwise there would exist a
point zo € M and a sequence (xy)r>1 € M \ {zo} such that limy_,.c 2 = 7o
and limg_ o f(zr) = f(x0). However, since f(zy) € F(zy), this would yield
f(xo) € C"(F;xz¢) contrary to the choice of f(xo).

Let (y;);>1 be a dense sequence in Y and

M(k,1) = {x e M(k): f(z) € B(yl;i)},

B(yl; le) denoting the closed ball of radius 2—116 centered at y;. Accordingly,

M =Uysy M(k) = Uy 51 M(k,1). The sets M (k, () are locally finite. Indeed,
any two distinct points zg, 1 € M(k,1) satisfy

dy (f (o), f(z1)) < dy (f(xo),m) + dy (yi, f(21)) < 55 + 55 =

and in turn dx (zo,21) > 1, since 2o, z1 € M (k). O

=

Proposition 5 requires several comments.

1. A countable union of locally finite subsets of a metric space (X, dx)
is a countable union of topologically discrete subsets of X and vice versa.
Obviously, every locally finite set is discrete. Conversely, every discrete set
A C X is the countable union A = |J,.~.; A of the locally finite sets

Ay ={z€A:dx(z,@) > ¢ forallz € A\ {z}}.

If X is separable, then every locally finite set is countable. Thus in this
case a countable union of locally finite subsets is a countable subset of X.

2. Application of Proposition 5 to the multifunction C"(F};-) shows that
{reX:C"(F;z) #C"(C"(F; - );2)} ={x e X : C"(F;2) £ C"(C"(F;-);x)}
is a countable union of locally finite sets. By transfinite induction, all sets
{rx e X : C"(F;x) # C™*(F;x)}, o > 0 being a countable ordinal, have a
representation of the same kind.

Consequently, for every countable o > 0, {z € X : F(z) € C"*(F;x)} is
a countable union of locally finite sets, too.

Since {x € X : C(F;z) # C"(F;2)} = {z € X : F(z) € C"(F;x)} by
Proposition 4, the sets {x € X : C(F;x) # C™*(F;z)} are countable unions
of locally finite sets as well for all countable ordinals v > 0.

3. In [2] Collingwood proves the claim of Proposition 5 for single-valued
functions f mapping the plane unit disc D into the two-dimensional Euclidean
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sphere S, then the exceptional set {x € D : f(z) £ C"(f;x)} describing as a
countable set. He claims that this statement would be true for maps f into
any complete metric space Y. This is not the case as the following example
illustrates.

Let X =Y = D be the plane unit disc equipped with the Euclidean metric
dx and with the discrete metric dy defined by dy (z1,22) = 1 for 21 # o,
respectively. Then the identity f: X — Y, f(z) = =, yields C"(f;x) = 0 for
all z € X and thus {z € X : f(z) £ C"(f;2)} = X is not countable.

3 Characteristic Properties of Iterated Reduced Cluster
Functions.

In this section we ask for multifunctions G : X — 2Y that can appear as
reduced cluster functions G = C™%(F';-) of fixed order o > 0. We shall give
a corresponding characterization if X is a metrizable space, Y a separable
metrizable space, and a a countable ordinal.

The sequence (C™*(F';-)) >0 associated to a set-valued function F' between
second countable spaces X and Y stabilizes already for some countable ordinal
ap. Indeed, (C™(F’;-))a>0 can be seen as a decreasing transfinite sequence of
closed graphs in the second countable space X x Y which, by Theorem 6.9 of
8], satisfies C™0(F;.) = C™*TL(F;.) for some countable ag. Consequently,
in the case of second countable spaces X and Y the study of countable ordinals
« is not a restriction, but in fact covers arbitrary ordinals c.

The theorems to be presented make use of the concept of the iterated
Cantor-Bendixson derivatives X* of a topological space X (see Definition 6.10
of [8]). The first Cantor-Bendixson derivative X’ is defined by

X' ={z € X : z is not isolated in X}.

The iterated Cantor-Bendixson derivatives for arbitrary ordinals « are

X if =0,
X = (X%)" if a=F+1,6>0,
ﬂﬁ<a X8 if «is a limit ordinal.

The derivatives X* can easily be described by the aid of iterated reduced
cluster functions. Given two topological spaces X and Y, we consider the
multifunction

Y, x€A,
IA(JJ){ @, x;éA
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as an indicator function of a subset A C X. Obviously, C"(Ix; ) = Ix.
Transfinite induction then yields

Cro(Ix; ) = Iyo

for all ordinals a > 0.

Now we characterize the variety of iterated reduced cluster functions of a
fixed countable order « attainable from arbitrary multifunctions (Theorem 2)
and from single-valued functions (Theorem 3). These are the central results
of the present paper. The proofs will be given in Sections 4 and 5.

Theorem 2. Let X be a metrizable space, Y a separable metrizable space,
a > 0 a countable ordinal, and G : X — 2Y¥ a multifunction. Then the
following are equivalent.

(i) There exists F : X — {{y}:y € Y} U {0} such that C™*(F;-) = G.
(i) There exists F : X — 2Y such that C"*(F;-) = G.
(i11) C(G;-) = G and G(z) =0 for allz € X \ X*.

It is remarkable that multifunctions F' whose values are restricted to single-
tons and the empty set give rise to the same iterated reduced cluster functions
as arbitrary multifunctions do.

Theorem 3. Let X be a metrizable space, Y a separable metrizable space,
a > 0 a countable ordinal, and G : X — 2 a multifunction. Then the
following are equivalent.

(i) There exists f: X —'Y such that C™(f;-) = G.
(ii) There exists F : X — 2Y \ {0} such that C™*(F;-) = G.
If Y is compact then (i) and (ii) are equivalent to
(iii) C(G;-) =G and {z € X : G(z) =0} = X \ X
If'Y is not compact then (i) and (i) are equivalent to
(iii) C(G;+) =G, G(x) =0 forallz € X\ X, and {x € X : G(z) =0} is a
countable union of locally finite subsets of X.

Let us point out once more that multifunctions with arbitrary non-empty
values do not give rise to a larger class of iterated reduced cluster functions
than single-valued functions do.

In contrast with that, the class of multifunctions G that can be obtained
as cluster functions G = C(F;-) of multifunctions F : X — 2Y\ {0} in general
is strictly larger than the family of cluster functions of single-valued functions
f: X — Y. Proposition 1 shows that every multifunction G : X — 2¥ with
closed graph appears as the cluster function of some F' : X — 2Y. Indeed, we
can put F' = G. Set-valued functions G that can be obtained as the cluster
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function G = C(f;-) of a single-valued function f : X — Y, however, are more
restrictive. Clearly, f must be a selection of G = C(f;-), so that necessarily
G(z) # 0 for all z € X. We cite the following characterization from the
forthcoming paper [9]. Therein card(-) denotes the cardinality of a set.

Theorem 4. Let X be a completely metrizable space, Y a Polish space, and
G a multifunction mapping X into the non-empty subsets of Y. Then G is
the cluster function of a function f: X — Y if and only if

C"(G;x) C G(x) and card(G(x) \ C"(G;z)) <1
forallx € X.

For example, the multifunction G : R — 2%\ {0},

_ {O}a z 7& 0,
G(z) = { {-1,0,1}, 2 =0,

clearly has a closed graph, but G is not the cluster function G = C(f;-) of a
function f: R — R, because card(G(0) \ C"(G;0)) = 2.

4 Proof of Theorem 2.

The implication (i) =(ii) is trivial.

If (ii) is satisfied, then, by Proposition 2 (b) and by the inductive definition
of C™%(;+), G = C™*(F;-) has a closed graph. Proposition 1 yields C(G;-) =
G. The claim G(z) = C™*(F;z) = for all z € X \ X follows inductively
from the simple fact that C"(F;z) = @ for x € X \ X’. This way we obtain
(i) = (ii).

The implication (iii) = (i), however, requires more efforts.

Lemma 1. Let (X,dx) be a metric space and let € > 0. Then there exists a
disjoint family {H (i,7) : i,5 € {1,2,3,...}} of locally finite sets H(i,j) C X
such that, for every xo € X' and all i,5 > 1, there is x1 € H(i,j) such that
dx(xo,xl) S %

PRroOF. For (i1, 1), (i2,72) € {(i,7) : i,5 > 1}, we say that (i1,71) < (i2,72)
if either 4 +j1 <ig+ g2 0r i+ 51 =12+ Jo and i; < 5. The sets H(’L,j) are
going to be defined by induction with respect to the order <. Let ig,j9 > 1 be
fixed and assume that H (7, j) is already defined for all (¢,5) < (40, jo). Since
X is paracompact (see [3], p. 300), there exists a locally finite cover C of X
by open subsets C' of diameter diam(C) < . Let

¢ ={Cec:CnX #0}
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We can fix a point zc € C'\ U jy<iy.50) H (4 J) for every C € €', because C
contains a non-isolated point and the set U(i,j)<(i0,j0) H(i,7) is locally finite.
Then we put H (i, jo) = {zc : C € C'}.

By definition, H (i, jo) is locally finite and disjoint with all sets H (3, j),
(1,7) < (i0,J0)- If mp € X', then there is C € C’ such that zg € C.
The corresponding point 1 = x¢ € H (ig,jo) satisfies the required estimate
dx (o, 1) < diam(C) < . O

K2

Lemma 2. Let (X,dx) be a metric space, (Y,dy) a separable metric space,
G : X — 2Y a multifunction such that C(G;-) = G and G(z) = 0 for all
x € X\ X', and let ¢ > 0. Then there exists F : X — {{y} :y € Y} U {0}
such that F(x) C G(B(z;¢)) for allz € X and C"(F;-) = G.

PROOF. Let i > 1 be an integer. Since Y is separable and paracompact (see
[3], p. 300), there exists a locally finite countable open cover C; = {C; ; : j > 1}
of Y such that diam(C; ;) < < forall C; ; € C;. We reduce the sets H (i, j) € X
from Lemma 1 by putting

H'(i,j) = {z € H(i,j) : G(B(2;£)) N C;; # 0}.
For every x € H'(i, j), we choose a value
f(@) e G(B(z:%)) NG ;. (2)
Then we define

{f(@)} if zel; ;s H'(4]),
F() :{ 0 i xeX\LJlleH’(i,j).

The definition immediately implies F'(x) C G(B(z;¢)) for all z € X.

For the proof of C"(F;-) = G let g € X be fixed. First we suppose
Yo € G(xg) for showing that G(zg) C C"(F;x). For every i > 1, there exists
Ji > 1 such that yo € C; j,, since C; covers Y. We obtain zq € X', because
G(z0) 2 {yo} # 0. Therefore, by Lemma 1, we find z; € H(i,j;) such that
dx (xo,7;) < 5. In fact, z; € H'(4, j;), because

G(B(zi;%)) N Cij, 2 G(wo) N Ciyj, 2 {yo} # 0.

Ci,jw and diam(C’i,ji) <

The sequence (x;);>1 satisfies lim; . x; = =z and lim;,_. f(x;) = yo.
The points z;, ¢ > 1, are mutually distinct, for the sets H (3, j;) are pairwise
disjoint by Lemma 1. This yields yo € C"(F;zp) and in turn proves the
inclusion G(zg) C C"(F; xp).

Moreover, dy (yo, f(z;)) < £, since yo € C;j,, f(z;) € G(B(z;%)) NCy , C
£,
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For the proof of the converse we consider yo € C"(F;xp). There exists a
sequence of distinct points (zx)k>1 € U; ;5 H'(4, j) such that
lim zp = z¢ and lim f(x) = yo. (3)
k—oo k—o0
We determine integers i(k),j(k) > 1 by x € H'(i(k),j(k)). Next we infer
limyg o0 i(k) = o0.
Let us suppose the contrary, that is, there exists a subsequence (z, );>1 of
(xk)k>1 such that
sup{i(k;) : 1 > 1} = ip < o0.

The cover Co =C1 U...UC;, ={C;; : 1 <i<ip,j > 1} is locally finite being
a finite union of locally finite covers. Thus there exists a neighborhood V C Y
of yo that intersects only finitely many sets from Cy, that is, there is jo > 0
such that

VﬂC’m:®fora111§i§i0,j>j0. (4)

Since lim;_eo f(zr,) = Yo, we obtain (f(zk,))i>, € V for suitable Iy > 1.
Equation (2) then shows that f(zx,) € V N Ciyy ik for 1 > ly. Now (4)
yields j(k;) < jo for I > ly. This gives

@izt € Ui<i<ioi<j<jo H(E9)-

However, (zy,);>1, contains infinitely many points in every neighborhood of
the limit zo, whereas J;<;<;, 1<;<j, F1(4,J) is a locally finite set. This con-
tradiction shows that limg_. . i(k) = oo.

Using (3), the property f(zx) € G(B(mk;ﬁ)) coming from (2), and
limg_, o0 i(k) = 00, we conclude yg € C(G;x9) = G(xp). This completes the
proof of the claim C"(F;x¢) C G(xp). O

Lemma 3. Let (X,dx) be a metric space, (Y,dy) a separable metric space,
a > 0 a countable ordinal, G : X — 2¥ a multifunction such that C(G;-) = G
and G(z) = 0 for all z € X \ X°, and let ¢ > 0. Then there exists F :
X — {{y}:y e Y U{D} such that F(z) C cl(G(B(z;¢))) for all z € X and
Cr(F;-) =G.

PROOF. We proceed by induction on . Lemma 2 gives the claim for o = 1.
We suppose that the claim is true for all ordinals § with 0 < 8 < «.

First we assume that « = § + 1 for some 8 > 0. We consider the closed
subspace X? of X. The restriction G|ys : XP — 2Y obviously satisfies
Cxs(Glxs;+) = Glxs, Cxs(+;+) denoting the cluster function with respect
to the space X”, and G|xs(z) = 0 for all z € X5\ (Xﬁ)l. Thus Lemma 2
provides a multifunction Fy|ys : X? — 2¥ such that

Fy|xs(z) € G(B(x;£)) for all z € XP (5)
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and
Cxs(Folxs;-) = Glxs. (6)

We extend Fy|xs to Fy: X — 2Y by putting Fy(x) = 0 for all z € X \ XP.
Then we define Fy : X — 2Y by F} = C(Fp;-). We obtain

C(F1;')=F1 (7)
by Proposition 1,
Fi(z) =0 forall z € X \ XP, (8)
because Fy(z) =) for all z € X \ X? and X? is closed,
Fi(z) Cc(G(B(z;%))) forallz € X (9)
by (5), and
C'(F;) =G (10)

by (6) and (8) together with G(x) = () for all x € X \ XP.

Application of the induction hypothesis to (7) and (8) finally yields a mul-
tifunction F : X — {{y} : y € Y} U {0} such that F(z) C cl (F(B(z;%)))
for all z € X and C™P(F;-) = F,. Properties (9) and (10) immediately imply
the claims F(z) C cl(G(B(z;¢))) for all z € X and C™*(F;-) = G. This
completes the case a = 5+ 1.

Now let a be a limit ordinal, that is, @ = limg<, 3. We fix an enumeration
a = {Bi1,P2,3,...} of a. Since G(z) = 0 for all x € X \ X7, i > 1, the
induction hypothesis gives us multifunctions F; : X — 2,4 > 1, such that
Fi(z) C d(G(B(z;%))) for all z € X and C™Pi(F;;-) = G. We define
Fy: X —2Y by Fo(z) = U, Fi(z). Obviously,

Fy(z) Ccl(G(B(z;5))) for all z € X. (11)

Next we show that
C"*(Fp;-) = G. (12)

Indeed,
Cre(Fo;-) = mizl CmPi(Fp;-) 2 nizl CrPi(Fy;-) = G.

For the verification of the converse inclusion let j > 1 be fixed and let i; be
determined by ;; = max{fi,...,3;}. We obtain

Co(Fy; z0) € C™Fi (F; o)
=P (U1gi§j Fi(-)UlUis; Fi(); )
= UlSiSj o (Fi;@0) U el (Ui>j Ei(); 330)'
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For 1 < i < j, we have C"Pi; (Fy;m0) € C™Pi(Fy;0) = G(xg), since 3; < By,
Moreover, C"%is (Ui>j Fi(-);z0) C C(Ui>j Fi();z0) € I (G(B(zo; %))),
for Fi(z) C ¢l (G(B(z;£))). This yields
C™*(Fp;z9) € G(xg)Ucl (G(B(mo; %))) =cl (G(B(xo; %)))
for all j > 1. Consequently,
CT’(X(FQ;.’I?()) Q ﬂj21 Cl (G(B(SU(), %))) = C(G, SL’()) = G($0)7

which completes the verification of (12).

The multifunction Fy defined so far satisfies the required claims of Lemma 3
up to the restriction of its values to {{y} : y € Y} U {0}. Therefore we put
Go = C"(Fp;+). Then, by (11),

Go(z) C el (G(B(z;%))) for all z € X. (13)
Proposition 2 (b) yields
C(Go;+) = Go and Go(z) =0 for all z € X \ X'.
Thus, by Lemma 2, there exists F : X — {{y} : y € Y} U {0} such that
F(z) C Go(B(w;%)) for all z € X and C"(F;-) = Go.

The first property and (13) yield the claim F(z) C cl(G(B(x;¢))) for all
x € X. The second equation shows C"(F;-) = C"(Fp;-) and, by (12), in turn
C™(F;-) = G. This completes the proof. O

Lemma 3 clearly proves the implication (iii) =(i) of Theorem 2.

5 Proof of Theorem 3.

The implication (i) =(ii) is trivial.

Let us suppose that F is a set-valued function as in claim (ii). Theorem 2
shows that C(G;-) = G and G(z) =0 for all z € X \ X°.

If Y is compact, then C"(F;z) # () for every x € X', since

C7(F:2) = Nyeuge) AW \ {x}))

is an intersection of compact sets such that every finite intersection of them
is non-empty. By induction, we obtain G(x) = C™*(F;x) # 0 for all x € X<,
This yields (ii) =-(iii).
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Now assume Y not to be compact. For proving (ii) =-(iii)’ it remains to
show that {z € X : C"*(F;x) = 0} is a countable union of locally finite
sets for every F : X — 2Y \ {()}. This follows from the second remark after
Proposition 5 which says that even the larger set {x € X : F(x) € C™*(F;x)}
can be expressed as a countable union of locally finite sets.

The following lemma is the main tool for the proof of the remaining impli-
cations (iii) =(i) and (iii)’ = (i), respectively.

Lemma 4. Let (X,dx) be a metric space, (Y,dy) a separable metric space,
a > 0 a countable ordinal, and G : X — 2Y \ {0} a multifunction that satisfies
condition (i) of Theorem 3 if Y is compact or condition (i) of Theorem 3
if Y is not compact, respectively. Then there exists a function g : X — 'Y such

that C™%(g;x) C G(x) for allx € X.
Proor. It suffices to find g : X — Y such that

C"(g;z) C G(x) for all x € X, (14)

since then C™%(g;z) C C"(g;x) C G(z) for x € X and C"*(g;z) = 0 = G(x)
for x € X\ X°.

First we assume that Y is compact. Moreover, we assume that X* # (),
for otherwise claim (14) is trivially satisfied by any function g : X — Y. Since
X“ is closed and, by (iii), G(z) # 0 for all x € X“, we can choose a function
g such that

G(x) it ze X,
9(z) € { G(B(z;2dx(x; X%))) if = £ X2,

where dx (z; X%) = inf{dx(z,Z) : & € X°*}.

For the proof of (14) let g € X* and yo € C"(g;x0). Then there exists a
sequence (x;);>1 C X such that lim; .o z; = 2o and lim;_. g(z;) = yo. The
choice of g yields

g(x;) € G(B(x;;2dx (x4, 20))) C G(B(x0;3dx (24, 0)))
and hence

Y0 € Mjz1 cl(9(i))iz;) € Neso HG(B(zo;¢))) = C(G;20) = G(0),

which proves (14).

Now we assume that Y is not compact. Then there exists a sequence
(yk)k>1 of distinct points of Y such that every subset of (yx)r>1 is closed.
According to condition (iii)’ there exists a representation

{r€X:Gx) =0} = Uy M(k)
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with locally finite disjoint sets M (k) C X. We choose g such that

G(z) if v€ X \Upsy M(k),
9(x) € { (o} if e M(k).

Again we consider yo € C"(g;xo) for proving (14). We obtain a se-
quence (z;);>1 € X \ {xo} of distinct points such that lim; .., x; = z¢ and
lim; .o g(x;) = yo. Without loss of generality, either (z;);>1 € X\~ M (k)
or (z;)i>1 C Ug>q M (k). In the first case

Yo € C(G;9) = G(x0),

because g(x;) € G(z;). The latter case, however, does not appear. Indeed, if
(@i)i>1 € Upsq M(k), then (g(x;))i>1 would be a convergent subsequence of
(yk)k>1. The choice of (yx)r>1 then would imply yo = lim; oo g(@;) = Y, for
some ko > 1 and g(x;) = yx, for all ¢ > dy. Thus (x;)i>i, € M (ko). This is im-

possible, since (z;);>4, contains infinitely many points of every neighborhood
of xg, whereas M (ko) is locally finite. This completes the proof of (14). [

Now the implications (iii) = (i) and (iii)’ = (i) are easy to infer. According
to part (iii) =>(i) of Theorem 2 there exists F' : X — {{y} : y € Y} U {0}
such that C"%*(F';-) = G. Lemma 4 provides a function g : X — Y with
C"™*(g;-) € G. We define f : X — Y by

F(z) if F(z)#0,
{9(x)} it F(z)=0.

Then F(z) C {f(2)} € F(x) U{g(z)} and

san ={

G(z)=Cr*(F;z) CC™(f;z) CC*(F;2) UC"%(g;z) = G(x)

for all x € X. This yields C™*(f;-) = G and completes the proof of (iii) =(i)
and (iii)’ = (i), respectively.
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