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A LEBESGUE TYPE DIFFERENTIATION
THEOREM FOR BEST APPROXIMATIONS

BY CONSTANTS IN ORLICZ SPACES

Abstract

The best approximation operator by constants is extended from an
Orlicz space Lϕ(Rm) to the space Lϕ′

(Rm), and some properties of this
extended operator are established. Let fε(x) be any best approxima-

tion of f ∈ Lϕ′
(Rm) on a suitable set Bε(x) ⊂ Rm. Weak and strong

inequalities are proved for the maximal function associated with the
family {fε(x)} which are used in the study of pointwise convergence of
fε(x) to f(x).

1 Introduction and Results.

Let Φ be the set of all non negative convex functions ϕ ∈ C1[0,∞) such that
ϕ(0) = 0 and ϕ 6≡ 0. Let Ω be a bounded measurable set in Rm and as usual,
we denote by Lϕ(Ω) the class of all Lebesgue measurable functions defined on
Rm such that the integral

∫
Ω
ϕ(λ|f(x)|) dx is finite for some λ > 0, where

dx is Lebesgue measure on Rm. We write |E| for the Lebesgue measure of a
measurable set E in Rm.

The space Lϕ′
(Ω) is analogously defined, where ϕ′ is the derivative of the

function ϕ. Observe that for ϕ ∈ Φ, we have ϕ(x) ≤ xϕ′(x) ≤ ϕ(2x), x ≥ 0.
Therefore Lϕ(Ω) ⊆ Lϕ′

(Ω) for any bounded set Ω.
Given a function f ∈ Lϕ(Ω) we denote by µϕ(f) the set of all real constants

c which minimizes the integral
∫
Ω
ϕ(|f(x) − c|) dx. It is easy to prove that

µϕ(f) 6= ∅ for f ∈ Lϕ(Ω). The mapping which assigns to each f ∈ Lϕ(Ω) the
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set µϕ(f) is monotone; that is, if f1 ≤ f2 pointwise, c1 ∈ µϕ(f1) and c2 ∈
µϕ(f2), then min(c1, c2) ∈ µϕ(f1) and max(c1, c2) ∈ µϕ(f2), (see [4]). Since
the set µϕ(f) of the best approximations of the function f is a closed bounded
interval, we can restate the above definition of monotonicity as follows. If
f ≤ g, then minµϕ(f) ≤ minµϕ(g) and maxµϕ(f) ≤ maxµϕ(f). We will use
this characterization of monotony.

A function ϕ satisfies the ∆2 condition if there exists k > 0 such that
ϕ(2t) ≤ kϕ(t), for all t > 0, and in this case we write ϕ ∈ ∆2. It is straight-
forward to prove that µϕ(f) 6= ∅, if ϕ ∈ Φ ∩∆2.

Let Φ∗ be the set of all functions ϕ ∈ Φ such that ϕ′(x + 1) ≤ cϕ′(x) for
x ≥ 1 and some fixed c > 0.

Let ϕ ∈ Φ. We will write L̃ϕ(Ω) for the set of all measurable functions f
such that

∫
Ω
ϕ(|f |) dx <∞. Similarly we define L̃ϕ′

(Ω).
The next characterization of µϕ(f) is well known when ϕ(t) = tp, p ≥ 1.

Lemma 1. Let ϕ ∈ Φ∗. Then for each f ∈ L̃ϕ(Ω) the following are equivalent:

1. c ∈ µϕ(f).

2. |
∫
{f 6=c}∩Ω

ϕ′(|f − c|) sgn(f − c) dx| ≤ ϕ′(0) |{f = c} ∩ Ω|.

We denoted by ϕ′(0) the right derivative of ϕ at 0. Here we have used, for
example, the notation |{f = c} ∩Ω| to emphasizes the set Ω, since sometimes
the function f will be defined on a larger set than Ω.

Other characterizations of the best approximations may be found in [5],
for the case of ϕ(t) = tp, p > 1, and a rather exhaustive set of characteri-
zations has recently appeared in [6], for the case p = 1. In both papers the
approximation class is a σ lattice of functions. We state the next theorem for
the particular case when the approximation class is the set of real constants.

Theorem 2. Let ϕ ∈ Φ∗ and f ∈ L̃ϕ(Ω). Then any of the following three
statements are equivalent to c ∈ µϕ(f) :

(1) (a)
∫
{f>c}∩Ω

ϕ′(|f − c|) dx ≤
∫
{f≤c}∩Ω

ϕ′(|f − c|) dx.

(b)
∫
{f<c}∩Ω

ϕ′(|f − c|) dx ≤
∫
{f≥c}∩Ω

ϕ′(|f − c|) dx.

(2) (a)
∫
Ω
ϕ′(|f − c|) dx ≤ 2

∫
{f≤c}∩Ω

ϕ′(|f − c|) dx.

(b)
∫
Ω
ϕ′(|f − c|) dx ≤ 2

∫
{f≥c}∩Ω

ϕ′(|f − c|) dx.

(3) (a) For any α > c we have
∫
Ω
ϕ′(|f − c|) dx ≤ 2

∫
{f<α}∩Ω

ϕ′(|f − c|) dx.

(b) For any α < c we have
∫
Ω
ϕ′(|f − c|) dx ≤ 2

∫
{f>α}∩Ω

ϕ′(|f − c|) dx.
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From the proof of Theorem 2 it is easy to see the next remark.

Remark. The conditions (1), (2) and (3) of Theorem 2 are equivalent even
for f ∈ L̃ϕ′

(Ω), when ϕ ∈ Φ∗.

Note that Φ ∩ ∆2 ( Φ∗. For example ϕ(x) = e
√

x+1 −
√
x+ 1 − e + 1

is a function in Φ∗ which is not a ∆2 function. For the remain results we
will not analyze spaces generated by functions in Φ∗ −∆2. Also observe that
L̃ϕ(Ω) = Lϕ(Ω) if ϕ ∈ ∆2.

Definition 1. Let ϕ ∈ Φ∩∆2. We say that a constant c is a best approxima-
tion of f for f ∈ Lϕ′

(Ω) if the real number c satisfies any of the three conditions
in Theorem 2, and we denote by µϕ′(f) the set of the best approximations of
f.

Given ϕ ∈ Φ and assume ϕ′ be a strictly increasing function. Then the set
µϕ(f) has only one element. If ϕ ∈ Φ∩∆2 and ϕ′(0) = 0 the characterization
of µϕ(f) is particularly simple, in this case a constant c is a best approximation
of the function f ∈ Lϕ(Ω) if and only if∫

Ω

ϕ′(|f − c|)sgn(f − c) dx = 0. (1.1)

Definition 2. Let Φ0 be the set of all functions ϕ ∈ Φ∩∆2 such that ϕ′(0) = 0.

In order to get sharper estimates for the best approximation operator which
is originally defined in some function space it is suitable to extend the operator
to a wider space. For example in [5] the authors extend the best approxima-
tion operator from Lp to Lp−1 when p > 1 and the approximation class is a σ
lattice of functions. In [6] it is considered an extension from L1 to the set of all
measurable functions which are finite almost everywhere and the approxima-
tion class is again a σ lattice of functions. The same authors in [7] extend the
best approximation operator by constants from Lp to Lp−1, for p ≥ 1, where
L0 means the set of measurable functions which are finite a. e..

Now for a function f ∈ Lϕ′
(Ω), ϕ ∈ Φ0 it is easy to see that there exists an

unique solution for (1.1), provided ϕ′ is a strictly increasing function, which
will be called the best approximation of f. For the case ϕ ∈ Φ ∩ ∆2 and
f ∈ Lϕ′

(Ω) to show that µϕ′(f) 6= ∅ requires more work; see Lemma 10.
For f locally in Lϕ′

(Rm) we write f ∈ Lϕ′

loc(Rm) and for any x ∈ Rm we
consider a family {Bε(x)} of bounded measurable sets with 0 < |Bε(x)|. Also
we set µε

ϕ′(f) for the set µϕ′(f) of the best approximations of f by constants
on the set Bε(x).

Theorem 3. Let ϕ ∈ Φ0, f ∈ Lϕ′
(Rm), ε > 0 and fε(x) ∈ µε

ϕ′(f). Then we
have the following estimates.
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1. ϕ′(|fε(x)|) ≤ 3k2

2 |Bε(x)|−1
∫

Bε(x)
ϕ′(|f(y)|) dy.

2. ϕ′(|fε(x)− f(x)|) ≤ 3k2

2 |Bε(x)|−1
∫

Bε(x)
ϕ′(|f(y)− f(x)|) dy,

where the constant k is the one given by the ∆2 condition on ϕ.

We say that a family {Bε(x)} differentiates Lϕ′
(Rm) if for every

f ∈ Lϕ′

loc(Rm),

lim
ε→0

1
|Bε(x)|

∫
Bε(x)

ϕ′(|f(y)− f(x)|) dy = 0,

for almost every x ∈ Rm. Many families can be found in the literature which
differentiate specific examples of Lϕ′

. The classical example among others is
the family of balls centered at x and radius ε or cubes containing x with side ε
and where the space of functions is L1

loc(Rm), (see [1]). It is wort noting that
in our set up sometimes the family {Bε(x)} is asked to differentiate a bigger
space than L1

loc(Rm). As a corollary of (2) in Theorem 3 we obtain the next
result.

Theorem 4. Let φ ∈ Φ0 with ϕ′(t) > 0, t > 0 and {Bε(x)} be a family that
differentiates Lϕ′

(Rm). Then for every f ∈ Lϕ′

loc(Rm) and for almost every
x ∈ Rm we have

lim
ε→0

(sup{|fε(x)− f(x)| : fε(x) ∈ µε
ϕ′(f)}) = 0.

Given a function f ∈ L1
loc(Rm) we denote by MH(f) the Hardy-Littlewood

maximal function supε>0
1

|Bε(x)|
∫

Bε(x)
|f(y)| dy, and for f ∈ Lϕ′

loc(Rm) set

Mf(x) = sup
ε>0

{|fε(x)| : fε(x) ∈ µε
ϕ′(f)}.

The next theorem is a direct consequence of part 1 in Theorem 3.

Theorem 5. Let ϕ ∈ Φ0 and f ∈ Lϕ′

loc(Rm). Then we have

ϕ′(Mf(x)) ≤ 3k2

2
MH(ϕ′ ◦ f)(x),

where the constant k corresponds to the ∆2 condition on ϕ.

According to [3] we say that a function ϕ satisfies the ∇2 condition, and
we write ϕ ∈ ∇2, if there exists a constant r > 1 such that ϕ(t) < 1

2rϕ(rt), for
all t ≥ 0. From now on the family {Bε(x)}, ε > 0, x ∈ Rm should be more
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specific, for example we will take the standard balls centered at x with radius
ε, however other different families of sets can be used.

Let Ψ denote the set of all increasing functions ψ from [0,∞) into itself
such that ψ(0+) = 0, limt→∞ ψ(t) = ∞. The following result is proved in
[2]. Given ψ ∈ Ψ. Then the ∇2 condition on ψ is equivalent to the strong
inequality ∫

Rm

ψ(MH(f)(x)) dx ≤ C

∫
Rm

ψ(Cf(x)) dx,

for all f ∈ L1
loc(R), and where the constant C depends only on ψ. The next

theorem is consequence of the above result and Theorem 5.

Theorem 6. Let ϕ ∈ Φ0, f ∈ Lϕ′

loc(Rm). Then for any ψ ∈ Ψ ∩∇2 we have∫
Rm

ψ(ϕ′(Mf(x))) dx ≤ C

∫
Rm

ψ(Cϕ′(f(x))) dx,

where the constant C depends on ϕ and ψ.

Corollary 7. For ϕ ∈ Φ0 ∩∇2 and ϕ(t)/t→∞, as t→∞, let f ∈ Lϕ(Rm).
Then ∫

Rm

ϕ(Mf(x)) dx ≤ C

∫
Rm

ϕ(f(x)) dx,

where C is independent of f.

Note that the statements of Theorem 6 and Corollary 7 have a meaning
even if the maximal function Mf is not measurable. It is easy to prove that
if ϕ ∈ Φ0 and ϕ′ is a strictly increasing function, then there exists an unique
constant satisfying (1.1); i. e., µε

ϕ′(f) is a singleton. Besides, given a sequence
xn tending to x it follows that the sequence fε(xn) is bounded. By the unique-
ness of the set µε

ϕ′(f), a standard argument shows that fε(xn) → fε(x). Thus
fε(x) is a continuous function of x and therefore Mf is a measurable function.
The measurability of Mf for ϕ ∈ Φ is an open problem.

Given f ∈ Lϕ(Rm) we have

ϕ(|f(x)− fε(x)|)|Bε(x)| =
∫

Bε(x)

ϕ(|f(x)− f(y) + f(y)− fε(x)|) dy.

Since fε(x) is a best constant approximation to f and taking into account the
∆2 condition on ϕ, we obtain

ϕ(|f(x)− fε(x)|) ≤ 2C
1

|Bε(x)|

∫
Bε(x)

ϕ(|f(y)− f(x)|) dy.



34 Sergio Favier and Felipe Zó

Thus fε(x) → f(x), as ε→ 0, for a. e. x. By Corollary 7 we also have fε → f
in the norm of Lϕ(Rm).

In the next theorem |E|∗ will denote the outer Lebesgue measure of a set
E ⊆ Rm.

Theorem 8. Let ϕ ∈ Φ ∩ ∆2 and ϕ′(0) > 0. Then there exists C > 0 such
that

|{x ∈ Rm : Mf(x) > t}|∗ ≤ C

ϕ′(0)

∫
{|f |>t}

ϕ′(|f(y)|) dy,

for every f ∈ Lϕ′
(Rm) and t > 0.

Theorem 9. Let φ ∈ Φ ∩ ∆2 with ϕ′(0) > 0, and {Bε(x)} be the family of
balls centered at x with radius ε. Then for every f ∈ Lϕ′

loc(Rm) we have

lim
ε→0

(sup{|fε(x)− f(x)| : fε(x) ∈ µε
ϕ′(f)}) = 0,

almost everywhere x ∈ Rm.

2 Proof of the Results.

For completeness reasons we will sketch a proof of Lemma 1.

Proof of Lemma 1. Set h(t) =
∫
Ω
ϕ(|f(x) − t|) dx. Since h is a convex

function, it has a minimum at c if and only if h′(c+) ≥ 0 and h′(c−) ≤ 0. Now
a direct calculation gives

0 ≤ h′(c+) = ϕ′(0)|{f = c} ∩ Ω| −
∫
{f 6=c}∩Ω

ϕ′(|f(x)− c|) sgn(f(x)− c) dx,

and

0 ≥ h′(c−) = −ϕ′(0)|{f = c} ∩ Ω| −
∫
{f 6=c}∩Ω

ϕ′(|f(x)− c|) sgn(f(x)− c) dx.

Thus the above inequalities give part 2.

Theorem 2 is known for the case that ϕ(t) = t and its proof is quite involved
when the approximant class of the real constants is replaced by a σ-lattice of
functions, as it is done in [6]. In our case the proof is simpler.

Proof of Theorem 2. Observe that the inequalities in (1) are a restate-
ment of those in Lemma 1. Moreover the statement (2) is clearly equivalent
to (1). Since (2) implies (3), we will prove that (2) is a consequence of (3).
In fact set α = c+ 1/n in (3) (a), and a straightforward limit procedure gives
(2) (a). By setting α = c− 1/n in (3) (b) we obtain (2) (b), and the proof is
completed.
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The next lemma allows us to extend the best approximation operator from
Lϕ to Lϕ′

.

Lemma 10. Let ϕ ∈ Φ ∩∆2 and f ∈ Lϕ′
(Ω). Then there exits a constant c

which satisfies (3) of Theorem 2.

Proof. Let f be in Lϕ′
(Ω) and set fmn = min(max(f,−m), n). Since fmn is

bounded, by Theorem 2 (2) (b),∫
Ω

ϕ′(|fmn − cmn|) dx ≤ 2
∫
{fmn≥cmn}∩Ω

ϕ′(|fmn − cmn|) dx, (2.1)

where cmn ∈ µϕ(fmn) are selected in such a way that the sequence (cmn)n is
increasing, for example take cmn = minµϕ(fmn).

For a fix m we have fmn ↗ fm = max(f,−m), as n → ∞ and set cm =
limn→∞ cmn. We will first proof that cm is finite. From (2.1) and the fact that
ϕ′ is monotone we have∫

Ω

ϕ′(|fmn − cmn|) dx ≤ 2
∫
{fmn>α}∩Ω

ϕ′(|fmn − α|) dx,

for every α < cmn. Now, using the Fatou’s Lemma on the left hand side of the
above inequality and the Lebesgue Theorem on the right hand side we get∫

Ω

ϕ′(|fm − cm|) dx ≤ 2
∫
{fm>α}∩Ω

ϕ′(|fm − α|) dx. (2.2)

Therefore cm ∈ R.
Since Theorem 2 (3) (b) holds for the pair fmn and cmn, by taking n

tending to infinity we have∫
Ω

ϕ′(|fm − cm|) dx ≤ 2
∫
{fm>α}∩Ω

ϕ′(|fm − cm|) dx, (2.3)

for any α < cm. Now, since (cmn)m is a decreasing sequence, the sequence
(cm)m is also decreasing. Let c = limm→∞ cm and taking the limit in (2.2) we
get that c ∈ R. Given α < c choose an integer k such that α < α + 1/k < c,
and since cm ≥ c, by (2.3) we have that∫

Ω

ϕ′(|fm − cm|) dx ≤ 2
∫
{fm>α+1/k}∩Ω

ϕ′(|fm − cm|) dx.

Then, if Bk = ∩∞m=1{fm > α+ 1/k}, we have∫
Ω

ϕ′(|f − c|) dx ≤ 2
∫

Bk∩Ω

ϕ′(|f − c|) dx. (2.4)
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Since {f > α + 1/k} ⊆ Bk ⊆ {f ≥ α + 1/k}, by taking k tending to infinity
in (2.4) we get ∫

Ω

ϕ′(|f − c|) dx ≤ 2
∫
{f>α}∩Ω

ϕ′(|f − c|) dx;

that is, we have proved condition (3) (b) of Theorem 2 for the pair f and c. It
remains to prove condition (3) (a) for f and c. For the function fmn and its
best approximant cmn we know that∫

Ω

ϕ′(|fmn − cmn|) dx ≤ 2
∫
{fmn<α}∩Ω

ϕ′(|fmn − cmn|) dx, (2.5)

for any α > cmn.
Given α > cm take an integer k such that α − 1/k > cm ≥ cmn and by

(2.5) we have∫
Ω

ϕ′(|fmn − cmn|) dx ≤ 2
∫
{fmn<α−1/k}∩Ω

ϕ′(|fmn − cmn|) dx. (2.6)

Now set Amk = ∩∞n=1{fmn < α−1/k}. Then {fm < α−1/k} ⊆ Amk ⊆ {fm ≤
α − 1/k}. Thus Amk → {fm < α}, and taking n → ∞ in (2.6) and further
letting k →∞ we get∫

Ω

ϕ′(|fm − cm|) dx ≤ 2
∫
{fm<α}∩Ω

ϕ′(|fm − cm|) dx, (2.7)

for α > cm. Now if α > c and recalling that fm is a decreasing sequence, by
taking limit in (2.7) we get∫

Ω

ϕ′(|f − c|) dx ≤ 2
∫
{f<α}∩Ω

ϕ′(|f − c|) dx.

Lemma 11. Let ϕ ∈ Φ∩∆2 and f ∈ Lϕ′
(Ω). Then the set µϕ′(f) is a closed

bounded interval.

Proof. Given f ∈ Lϕ′
(Ω) we will see that if a constant c1 satisfies (1) (a) of

Theorem (2), so does any constant c ≥ c1. In fact∫
{f>c}

ϕ′(|f − c|) dx ≤
∫
{f>c1}

ϕ′(|f − c1|) dx ≤
∫
{f≤c1}

ϕ′(|f − c1|) dx

≤
∫
{f≤c}

ϕ′(|f − c|) dx
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Similarly if a constant c2 satisfies (1) (b) of Theorem 2 so does any constant
c ≤ c2. Thus µϕ′(f) is an interval, and using (3) of Theorem 2 we see that it
is closed. To see that it is bounded from above we use (2) (b) of Theorem 2
and we have, for any α < c, c ∈ µϕ′(f),∫

Ω

ϕ′(|f − c|) dx ≤ 2
∫
{f≥c}∩Ω

ϕ′(|f − c|) dx.

Thus ∫
Ω

ϕ′(|f − c|) dx ≤ 2
∫
{f≥α}∩Ω

ϕ′(|f − α|) dx,

which shows that the set µϕ′(f) has an upper bound.
Similarly condition (2) (a) implies that the set µϕ′(f) is bounded from

below.

Now we prove that the best approximation operator extended to the space
Lϕ′

(Ω) is a monotone operator.

Lemma 12. If ϕ ∈ Φ∩∆2, then the multivalued operator µϕ′(f) is monotone
on Lϕ′

(Ω).

Proof. Let c1 ∈ µϕ(f1), c2 ∈ µϕ(f2) and be f1 ≤ f2. We will assume that
min(c1, c2) = c2. Then∫

{f1>c2}∩Ω

ϕ′(|f1 − c2|) dx ≤
∫
{f2>c2}∩Ω

ϕ′(|f2 − c2|) dx

≤
∫
{f2≤c2}∩Ω

ϕ′(|f2 − c2|) dx

≤
∫
{f1≤c2}∩Ω

ϕ′(|f1 − c2|) dx.

Thus ∫
{f1>min(c1,c2)}∩Ω

ϕ′(|f1 −min(c1, c2)|) dx

≤
∫
{f1≤min(c1,c2)}∩Ω

ϕ′(|f1 −min(c1, c2)|) dx.

Therefore we have proved condition (1) (a) of Theorem 2, for the constant
min(c1, c2). Similarly it follows (1) (b) for min(c1, c2) which implies min(c1, c2)
belongs to µϕ′(f1). It is shown analogously that max(c1, c2) ∈ µϕ′(f2).
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Lemma 13. Let ϕ ∈ Φ such that ϕ(2t) ≤ kϕ(t), t > 0. Then ϕ′(a + b) ≤
k2

2 (ϕ′(a) + ϕ′(b)), a, b > 0.

Proof. Since ϕ′ is an increasing function, we have ϕ(x) ≤ xϕ′(x) ≤ ϕ(2x).
Moreover from the convexity and the ∆2 condition on ϕ we have ϕ(a + b) ≤
k
2 (ϕ(a) + ϕ(b)). Now

(a+ b)ϕ′(a+ b) ≤ ϕ(2(a+ b)) ≤ kϕ(a+ b) ≤ k2

2
(ϕ(a) + ϕ(b))

≤ k2

2
(aϕ′(a) + bϕ′(b)) ≤ (a+ b)

k2

2
(ϕ′(a) + ϕ′(b)).

Proof of Theorem 3. Given fε(x) ∈ µε
ϕ′(f) we may assume fε(x) ≥ 0. In

fact, for a general fε(x) there exist best approximations 0 ≤ c1,ε ∈ µε
ϕ′(|f |),

and a non positive constant c2,ε ∈ µε
ϕ′(−|f |) such that c2,ε ≤ fε(x) ≤ c1,ε. Set

cε(|f |) = max(c1,ε,−c2,ε), and taking into account that c ∈ µϕ′(f) if and only
if − c ∈ µϕ′(−f), we have cε(|f |) ∈ µε

ϕ′(|f |) and |fε(x)| ≤ cε(|f |).
Now ϕ′(fε(x)) can be written as

1
|Bε(x)|

∫
Bε(x)

ϕ′(fε(x)) dy =
1

|Bε(x)|

∫
Bε(x)∩{fε(x)>f}

ϕ′((fε(x)− f(y)) + f(y)) dy

+
1

|Bε(x)|

∫
Bε(x)∩{fε(x)≤f}

ϕ′(fε(x)) dy,

and using Lemma 13 the above expression can be estimated by

k2

2
1

|Bε(x)|

∫
Bε(x)∩{fε(x)>f}

ϕ′(fε(x)− f(y)) dy

+
k2

2
1

|Bε(x)|

∫
Bε(x)∩{fε(x)>f}

ϕ′(f(y)) dy +
1

|Bε(x)|

∫
Bε(x)∩{fε(x)≤f}

ϕ′(fε(x)) dy.

(2.8)

By (1) (b) of Theorem 2 we have

1
|Bε(x)|

∫
Bε(x)∩{fε(x)>f}

ϕ′(fε(x)− f(y)) dy

≤ 1
|Bε(x)|

∫
Bε(x)∩{fε(x)≤f}

ϕ′(f(y)− fε(x)) dy.

Then we can estimate (2.8) by

k2 1
|Bε(x)|

∫
Bε(x)∩{fε(x)≤f}

ϕ′(f(y)) dy +
k2

2
1

|Bε(x)|

∫
Bε(x)

ϕ′(f(y)) dy ≤
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3k2

2
1

|Bε(x)|

∫
Bε(x)

ϕ′(f(y)) dy.

To prove part (2), observe that if fε(x) ∈ µε
ϕ′(f), then

fε(x)− f(x) ∈ µε
ϕ′(f − f(x)).

Thus applying part (1) to the function f − f(x), the proof is completed.

Given ϕ ∈ Ψ we set ϕ̃(s) = sup{st − ϕ(t); t > 0} for the complementary
function of ϕ. Observe that ϕ̃(0) = 0, and if ϕ(t)/t → ∞, as t → ∞ we have
ϕ̃ ∈ Ψ, see [1] or [8].

Proof of Corollary 7. For f ∈ Lϕ(Rm) we get∫
Rm

ϕ(Mf(x)) dx ≤
∫

Rm

Mf(x) ϕ′(Mf(x)) dx.

Now for 0 < ε < 1 and by the Young inequality the last integral is bounded
by

ε

∫
Rm

ϕ(Mf(x)) dx+
∫

Rm

ϕ̃
(1
ε
ϕ′(Mf(x))

)
dx.

Recalling that ϕ̃ ∈ ∆2 if and only if ϕ ∈ ∇2 we get

(1− ε)
∫

Rm

ϕ(Mf(x)) dx ≤ C

∫
Rm

ϕ̃(ϕ′(Mf(x))) dx,

and applying Theorem 6 we get∫
Rm

ϕ(Mf(x)) dx ≤ C

∫
Rm

ϕ̃(Cϕ′(f(x))) dx ≤ C

∫
Rm

ϕ(f(x)) dx,

where the last inequality follows from ϕ̃(ϕ′(x)) ≤ Cϕ(x), with C > 1. In fact,
since ϕ ∈ ∆2 there exists α > 1 such that xϕ′(x) ≤ αϕ(x), (see Theorem
4.1, pg. 24 in [3]). Moreover we always have xϕ′(x) = ϕ(x) + ϕ̃(ϕ′(x)). Then
ϕ̃(ϕ′(x)) ≤ (α− 1)ϕ(x).

Lemma 14. Given ϕ ∈ Φ ∩∆2, ϕ
′(0) > 0 and a nonnegative f ∈ Lϕ′

(Rm).
Then every c ∈ µϕ′(f) is a nonnegative constant.

Proof. By (1) (a) of Theorem 2 for every c ∈ µϕ′(f),∫
{f>c}∩Ω

ϕ′(|f − c|) dx ≤
∫
{f≤c}∩Ω

ϕ′(|f − c|) dx.

Now if some c ∈ µϕ′(f) is less than 0, the inequality above gives us a contra-
diction.
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Proof of Theorem 8. By Lemma 14 and Lemma 12 |fε(x)| ≤ maxµε
ϕ′(|f |).

So we can assume f ≥ 0 and every fε(x) ≥ 0. Set E = {x ∈ Rm : Mf(x) > t}.
For x ∈ E choose fε(x) ∈ µε

ϕ′(f) such that fε(x) > t. Then, by (2) (b) of
Theorem 2 we have

|Bε(x)|ϕ′(0) ≤
∫

Bε(x)

ϕ′(|f − fε(x)|) dy ≤ 2
∫
{f≥fε}∩Bε(x)

ϕ′(|f − fε(x)|) dy

≤ 2
∫
{f>t}∩Bε(x)

ϕ′(f) dy.

Now by a standard covering lemma there exists a constant C, and a disjoint
family of balls {Bεn(xn)} such that

|E|∗ ≤ C
∑

|Bεn
(xn)|, (2.9)

and for every n we have

|Bεn
(xn)| ≤ 2

ϕ′(0)

∫
{f>t}∩Bεn (xn)

ϕ′(2f(y)) dy. (2.10)

Now from (2.9) and (2.10) we get the theorem.

Proof of Theorem 9. Let f ∈ Lϕ′
(Rm), fε(x) ∈ µε

ϕ′(f) and s be a step
function. Then, for almost every x, there exists an ε(x) such that for every
ε, 0 < ε < ε(x), we have fε(x) = (f − s)ε(x) + s(x). Here we have used that
for a constant c we have (f + c)ε(x) = fε(x) + c.

The remainder of the proof follows the same patterns as the proof of the
Lebesgue Differentiation Theorem using the Hardy-Littlewood maximal func-
tion. Set

Γf(x) = lim sup
ε→0

(sup{|fε(x)− f(x)| : fε(x) ∈ µε
ϕ′}).

Then clearly Γf(x) = Γ(f−s)(x), for a. e. x ∈ Rm and consequently Γf(x) ≤
M(f − s)(x) + |f(x)− s(x)|. Then we have

|{Γf > t}|∗ ≤ |{M(f − s) > t/2}|∗ + |{|f − s| > t/2}|.

By Theorem 8 and the Tchebyshev inequality we have

|{Γf > t}|∗ ≤ C

ϕ′(0)

∫
{|f−s|>t/2}

ϕ′(|f − s|) dy +
1

ϕ′(t/2)

∫
Rm

ϕ′(|f − s|) dy.

Since ϕ′ ∈ ∆2, the step functions are dense in Lϕ′
(Rm). Therefore Γf(x) = 0,

for a. e. x ∈ Rm.
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