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SEPARATELY CONTINUOUS FUNCTIONS
WITH CLOSED GRAPHS

Abstract

In this paper we prove that if f : R × R → R has a closed graph
and all of its x-sections are continuous, and at least one y-section is
continuous, then f is continuous. It was already proved by Piotrowski
and Wingler [PW] that if f : R × R → R has a closed graph and is
separately continuous, then f is continuous. Our result is stronger.

In this paper the focus is on the situation where f is a function defined on
the Cartesian product of two spaces: f : X × Y → Z. A global property of
such a function is one that treats the product X × Y as a whole and the
function is seen as f : S → Z. A sectionwise property is one that is expressed
in terms of the x-sections and y-sections. Usually a global property implies the
analogous sectionwise property. For example, joint continuity implies separate
continuity (sectionwise continuity), and the same goes for differentiability,
measurability, and closedness of the graph. There are examples that show that
a global property cannot be derived from the analogous sectionwise property.
For example, the function

f(x, y) =


xy

x2 + y2
if (x, y) ∈ R2 \ {(0, 0)},

0 if (x, y) = (0, 0),

is sectionwise continuous but discontinuous at (0, 0); also its sections have
closed graphs but the function does not.

The problem of deriving global properties from sectionwise properties is a
hard research problem. The classical theorem of this nature is the celebrated
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Baire-Lebesgue-Kuratowski-Montgomery theorem which says that if X and Y
are metric and if f : X × Y → R is continuous in x and is of class α in y, then
f is of class α + 1. ([Ku] Ch. II, Sec. 31, Th. 2, p. 378). This subject has a
rich bibliography. For other interesting results and further references see for
instance [LP], [PW], or [P1].

Let us focus on the question of joint versus separate continuity for functions
f : R × R → R. It is already known that the condition “separate continuity”
guarantees for such functions that they have a dense Gδ set of continuity points
([P1] sec. 3 and 5 and [MC] Th. 9.2). But, as our little example shows, if
one is to hope for deriving continuity everywhere, one must make additional
assumptions. One such result is by Piotrowski and Wingler [PW] where they
proved that if f : R×R → R has a closed graph and is separately continuous,
then f is continuous. Notice that “closed graph” is a global property.

In our paper we achieve a similar but stronger result. Our main theorem
says that if f : R × R → R has a closed graph and all of its x-sections are
continuous, and at least one y-section is continuous, then f is continuous. We
state and prove our theorem in the general topological setting. Our paper
is self-contained in the sense that the proofs start from scratch and can be
followed without external reference by anyone who is familiar with textbook
knowledge of elementary theory of topological spaces. In particular, we do
not use the result of Piotrowski and Wingler, and, in fact, our Corollary 6 is
a statement of their result.

We use only standard symbols and terminology, and we do not introduce
any definitions, but for the sake of clarity we recall the following definitions.
A Darboux function maps connected sets onto connected sets. The following
definitions refer to the situation f : X × Y → Z. When x0 ∈ X is fixed, then
the function Y 3 y 7→ f(x0, y) ∈ Z is called an x-section. When y0 ∈ Y
is fixed, then the function X 3 x 7→ f(x, y0) ∈ Z is called a y-section. A
separately continuous function f : X × Y → Z has all x-sections and all
y-sections continuous (separately continuous = sectionwise continuous).

The first three theorems are known folklore results which we include with
proofs for the sake of completeness.

Theorem 1. If X, Y are topological spaces, f : X → Y , Gr(f) is closed,
E ⊂ Y , and E is compact, then f−1(E) is closed.

Proof. Take any x0 ∈ f−1(E). We have a net (xt)t∈Π in f−1(E) which
converges to x0. Notice that (f(xt))t∈Π is a net in the compact set E. Hence
we get a subnet (f(xα(s)))s∈Π0 which converges to some y0 ∈ E. Notice that
(xα(s), f(xα(s))) → (x0, y0). Since Gr(f) is closed, f(x0) = y0. So f(x0) ∈ E,
and x0 ∈ f−1(E). We showed that f−1(E) ⊂ f−1(E), so f−1(E) is closed.
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Theorem 2. If X is a topological space, Y is a compact space, f : X → Y ,
and Gr(f) is closed, then f is continuous.

Proof. Take any closed set E ⊂ Y . Since Y is a compact space, E is compact.
By Theorem 1, f−1(E) is closed. We showed that f is continuous.

Theorem 3. If X is a topological space, Y is a locally compact space, f : X →
Y , and Gr(f) is closed, then W = {x ∈ X : f is continuous at x} is open.

Proof. Take any x0 ∈ W . Since Y is locally compact, we have an open set
U ⊂ Y such that f(x0) ∈ U and U is compact. Since f is continuous at
x0, we have an open G ⊂ X such that x0 ∈ G and f(G) ⊂ U . Notice that
f |G : G → U and Gr(f |G) is closed in G×U . By Theorem 2, f |G is continuous.
Since G is open, f is continuous on G. Hence G ⊂ W , and so x0 ∈ Int(W ).
We showed that W ⊂ Int(W ), so W is open.

The following two lemmas (Lemma 4, Lemma 5) are extensively used in
the proof of the main theorem (Theorem 7).

Lemma 4. If X is a topological space, Y is a locally compact space, f : X →
Y , Gr(f) is closed, A ⊂ X, x0 ∈ A, Π = {U ⊂ X : x0 ∈ U and U is open},
(1) P = {E ⊂ X : f(E) is connected},
(2) f |A is continuous at x0,
(3)∀U∈Π∃G∈Π∀y∈G∃E∈P y ∈ E ∧ E ⊂ U ∧ E ∩A 6= ∅
then f is continuous at x0.

Proof. Since Y is locally compact, we have an open set V0 ⊂ Y such that
f(x0) ∈ V0 and V0 is compact. Now we have two possibilities:

(a) ∃G∈Πf(G) ⊂ V0

(b) ∀G∈Πf(G) 6⊂ V0

If (a), then by Theorem 2, the function f |G : G → V0 is continuous. Since G
is open, f is continuous at x0, as desired.

We will show that (b) leads to a contradiction. We will show (∗).

(∗) ∀U∈Π∃y∈U∃E∈P∃a∈Uf(y) 6∈ V0 ∧ y ∈ E ∧ E ⊂ U ∧ a ∈ A ∩ E

Take any U ∈ Π. We can choose a set G ∈ Π as in (3). By (b), we have a y ∈ G
such that f(y) 6∈ V0. Considering how G was chosen, we have that G ⊂ U . So
y ∈ U and there exists an E ∈ P such that y ∈ E ∧ E ⊂ U ∧ E ∩ A 6= ∅. So
we showed (∗). By the Axiom of Choice, we get nets (yU )U∈Π, (aU )U∈Π, and
(EU )U∈Π such that

∀U∈ΠyU ∈ EU ⊂ U ∧ EU ∈ P ∧ f(yU ) 6∈ V0 ∧ aU ∈ A ∩ EU ⊂ U.
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Notice that aU → x0 (U ∈ Π). Since aU ∈ A, by (2) we have that f(aU ) →
f(x0). So we get a U0 ∈ Π such that f(aU ) ∈ V0 whenever U ∈ Π and U ⊂ U0.
Let Π0 = {U ∈ Π : U ⊂ U0}. We will construct a net (zU )U∈Π0 in X. Take
any U ∈ Π0. We have f(aU ) ∈ V0. We will show that f(EU ) ∩ (V0 \ V0) 6= ∅.

Suppose that f(EU ) ∩ (V0 \ V0) = ∅. Then f(EU ) ⊂ V0 ∪ (Y \ V0), and
f(EU )∩V0∩ (Y \V0) = ∅; f(aU ) ∈ f(EU )∩V0 6= ∅, and f(yU ) ∈ f(EU )∩ (Y \
V0) 6= ∅. Hence f(EU ) is not connected contrary to (1). So we can choose a
zU ∈ EU with f(zU ) ∈ V0\V0. We have a net (zU )U∈Π0 such that zU → x0 and
f(zU ) ∈ V0 \V0 for all U ∈ Π0. We have that zU ∈ f−1(V0 \V0) for all U ∈ Π0.
The set V0 \ V0 is compact. By Theorem 1, the set f−1(V0 \ V0) is closed. So
x0 ∈ f−1(V0 \ V0), and f(x0) ∈ V0 \ V0. But f(x0) ∈ V0. Contradiction. The
proof is complete.

Lemma 5. If X is a topological space, Y is a locally connected space, Z is a
locally compact space, f : X × Y → Z, Gr(f) is closed, y0 ∈ Y ,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is Darboux for all x ∈ X,
(2) the mapping X 3 x 7→ f(x, y0) ∈ Z is continuous,
then f is continuous at (x, y0) for all x ∈ X.

Proof. Take any x0 ∈ X. We are preparing to apply Lemma 4. Let Π =
{U ⊂ X × Y : (x0, y0) ∈ U and U is open}. Let P = {E ⊂ X × Y : f(E)
is connected}. Let A = X × {y0}. By (2), f |A is continuous at (x0, y0).
Take any U ∈ Π. We have a GX open in X and a GY open in Y with
(x0, y0) ∈ GX × GY ⊂ U . Since Y is locally connected, we have a connected
set K ⊂ GY such that y0 ∈ Int(K). Let G = GX × Int(K). Now, (x0, y0) ∈ G
and G is open in X × Y . Take any v = (x, y) ∈ G. Let E = {x} × K. By
(1), E ∈ P . Notice that v ∈ E and E ⊂ U . Notice that (x, y0) ∈ E and
(x, y0) ∈ A, so E ∩A 6= ∅. We showed that

∀U∈Π∃G∈Π∀v∈G∃E∈P v ∈ E ∧ E ⊂ U ∧ E ∩A 6= ∅.

Now, by Lemma 4, f is continuous at (x0, y0). Since x0 ∈ X was arbitrary,
the proof is complete.

The following corollary is the previously known result by Piotrowski and
Wingler [PW].

Corollary 6. If X is a topological space, Y is a locally connected space, Z is
a locally compact space, f : X × Y → Z, Gr(f) is closed,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is Darboux for all x ∈ X,
(2) the mapping X 3 x 7→ f(x, y) ∈ Z is continuous for all y ∈ Y
then f is continuous.

The main theorem follows.
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Theorem 7. If X is a locally connected space, Y is a connected and locally
connected space, Z is a locally compact space, f : X×Y → Z, Gr(f) is closed,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is continuous for all x ∈ X,
(2) the mapping X 3 x 7→ f(x, y) ∈ Z is continuous for some y ∈ Y
then f is continuous.

Proof. Let W = {(x, y) ∈ X × Y : f is continuous at (x, y)}. By Theorem
3, W is open. Take any x0 ∈ X. Let D = {y ∈ Y : f is continuous at (x0, y)}.
Notice that D is open in Y because W is open in X×Y . We will show that D
is closed in Y . Take any y0 ∈ D.Let Π = {U ⊂ X × Y : (x0, y0) ∈ U and U is
open}. Let P = {E ⊂ X × Y : f(E) is connected}. Let A = {(x0, y) : y ∈ Y }.
Take any U ∈ Π. We have open sets GX ⊂ X, GY ⊂ Y such that (x0, y0) ∈
GX ×GY ⊂ U . Since Y is locally connected, we have a connected set K ⊂ GY

such that y0 ∈ Int(K). Since y0 ∈ D, we can choose a y′ ∈ Int(K) ∩D. Since
y′ ∈ D, (x0, y

′) ∈ W . Since W is open, we have an open set V ⊂ X × Y such
that (x0, y

′) ∈ V and f is continuous on V . Now, we have open sets VX ⊂ X,
VY ⊂ Y such that (x0, y

′) ∈ VX ×VY ⊂ V ∩ (GX × Int(K)). Since X is locally
connected, we have a connected set TX ⊂ VX such that x0 ∈ Int(TX). Since Y
is locally connected, we have a connected set TY ⊂ VY such that y′ ∈ Int(TY ).
Let G = Int(TX) × Int(K). G ∈ Π because x0 ∈ Int(TX) and y0 ∈ Int(K).
Take any g = (v, z) ∈ G. Let E = TX × TY ∪ {v} × K. We will show that
E ∈ P . Notice that TY ⊂ K and v ∈ TX . So TX × TY ∩ {v} ×K 6= ∅. Hence
f(TX × TY ) ∩ f({v} ×K) 6= ∅. Now, TX × TY is connected and contained in
V . Since f is continuous on V , f(TX × TY ) is connected. By (1), f({v} ×K)
is connected. Notice that f(E) = f(TX × TY ) ∪ f({v} × K). Hence f(E) is
connected. So E ∈ P . Notice that (v, z) ∈ E. Notice that E ⊂ U . We have
(x0, y

′) ∈ TX × TY ⊂ E and (x0, y
′) ∈ A. So E ∩A 6= ∅. We showed that

∀U∈Π∃G∈Π∀g∈G∃E∈P g ∈ E ∧ E ⊂ U ∧ E ∩A 6= ∅.

By (1), f |A is continuous at (x0, y0). By Lemma 4, f is continuous at (x0, y0).
So y0 ∈ D. We showed that D ⊂ D. So D is closed in Y . So D is open
and closed in Y . By (2), we have a y ∈ Y such that the mapping X 3 x 7→
f(x, y) ∈ Z is continuous. By Lemma 5, we conclude that f is continuous
at (x0, y). So y ∈ D and D 6= ∅. Since Y is connected, D = Y . Hence f
is continuous at (x0, y) for all y ∈ Y . But x0 ∈ X was arbitrary. Thus f is
continuous, and the proof is complete.

Piotrowski and Wingler in [PW] give an example (Example 2) which shows
that the condition “Z is locally compact” is not redundant. It can be shown
that every function f : R → R with a connected graph is Darboux. Then the
next assertion follows from Corollary 6.
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Theorem 8. If f : R → R has a closed and connected graph, then f is con-
tinuous.

Notice that the combination of “closed graph” and “connected graph” is a
characterization of continuity for functions f : R → R. For other such charac-
terizations see [GG].

We wonder if this one-dimensional result can be extended to the following.

Hypothesis 9. If f : R×R → R has a closed and connected graph, then f is
continuous.

There is a lot of charm in Hypothesis 9 because if it was true, the following
corollary could be proved without applying Theorem 7.

Corollary 10. If f : R×R → R has a closed graph, the graphs of all x-sections
are connected, and the graph of at least one y-section is connected, then f is
continuous.

Proof. By Theorem 8, the conditions of Theorem 7 are satisfied. So we
conclude that f is continuous, and the proof is finished.
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