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DERIVATIVE

Abstract

We characterize ordinary differentiability in terms on the harmonic
derivative and a local Lipschitz type condition and apply the result to
Ck,1−functions.

1 Introduction.

We study the connection between ordinary differentiability and some weaker
types of pointwise differentiability for functions f on Rn. A function f : Rn →
R is ordinary differentiable of order m at a point x = a if there is a polynomial
P (x) =

∑
|α|≤m

cα · xα such that

Rm(x, a) = f(x)− P (x− a) = o(|x− a|m),

as x → a. It was proved by the author in [4] that ordinary differentiability is
equivalent to Lp−differentiability (or approximative differentiability) together
with a certain local Lipschitz type condition. It is the purpose of this note to
prove the analogous result for the harmonic derivative as defined in Stein [5],
Ch VIII. Put u(x, y) = Py ?f(x), where Py(x) is the Poisson kernel. Then f is
said to have a harmonic derivative Dα

hf at x = a if Dαu has a non–tangential
limit at (a, 0). We prove that f is ordinary differentiable of order m at x = a
if and only if f has harmonic derivatives at x = a of all orders up to m and
satisfies the condition Bm, see definition below (Theorems 3.1 and 3.2).

We apply these results to Ck,1−functions in the following way. Assume
that f ∈ Cm−1,1(Ω), m ≥ 1 (see the definition in Section 2). Then f has

Key Words: Taylor polynomial, harmonic derivative, approximative derivative, Lips-
chitz condition.

Mathematical Reviews subject classification: 26B05, 26B35, 31B05
Received by the editors April 1, 2003
Communicated by: B. S. Thomson

11



12 Tord Sjödin

an ordinary differential of order m a.e. in Ω by the Rademacher–Stepanov
theorem. Theorem 3.3 gives a characterization of the points in Ω where such
a differential exists in terms of harmonic derivatives. A somewhat different
approach to these problems is found in [3]. The paper [4] also contains appli-
cations to Bessel potentials. Compare also Stocke [6].

Section 2 contains our notation and definitions and our results are stated
in Section 3. Section 4 prepares for the proofs in Section 5. In Section 6 we
describe the relations between the various derivatives considered in this paper.
In particular, we show that the harmonic derivative and the approximative
derivative are not related.

2 Notation and Definitions.

We let Rn denote the Euclidean space with points x = (x1, x2, . . . , xn) and
let Rn+1

+ = {(x, y);x ∈ Rn, y > 0} denote the upper half space. Measure
and integration is with respect to Lebesgue measure and is denoted by |E|
and

∫
E

f(x) dx respectively. The Lebesgue spaces Lp(Rn) with norm ||f ||p,

1 ≤ p < ∞, are defined in the usual way. Let f ∈ L1(Rn). Then we define
u(x, y) = Py ? f(x), (x, y) ∈ Rn+1

+ , where

Py(x) = cn · y · (|x|2 + y2)−(n+1)/2, (x, y) ∈ Rn+1
+ ,

is the Poisson kernel for an appropriate constant cn [5], Ch. III. Then u(x, y) is
harmonic in the upper half space Rn+1

+ and has non–tangential trace f almost
everywhere on the boundary. A function g(x, y) defined on Rn+1

+ has non–
tangential limit A at (a, 0) if g(x, y) → A as (x, y) → (a, 0) and (x, y) ∈ Vs, for
every cone Vs = {(x, y); |x− a| < s · y}, where s > 0. Differentiation of u with
respect to the x-variable is written Dαu(x, y), where α = (α1, α2, · · · , αn)
is a multi-index of length |α| = |α1| + |α2| + · · · + |αn|. We also put α! =
α1! · α2! · · · · · αn!.

First order harmonic derivatives were defined in [5], Ch. VIII and the
general case is found in [7], p. 93.

Definition 2.1. Let m be a positive integer and let f be locally integrable
at x = a. Let f1 be the restriction of f to a neighborhood U of a such that
f1 ∈ L1(U). We say that f has a harmonic derivative Dα

hf(a) = dα at x = a of
if Dαu(x, y) has non–tangential limit α!·dα at (a, 0), where u(x, y) = Py?f1(x).
If f has harmonic derivatives Dα

hf(a) of all orders |α| ≤ m we say that f has
a harmonic derivative at x = a of order m and we call

P (x− a) =
∑
|α|≤m

dα · (x− a)α
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the harmonic differential of f at a of order m.

The definition of the harmonic differential is independent of the choice of
U . Next we define a property called Bl which will be used in the statements
of our theorems in Section 3.

Definition 2.2 (Sjödin [4]). Let m − 1 < l ≤ m, where m is a positive
integer. We say that f has property Bl at x = a if there is a polynomial
Q(x) =

∑
1≤|α|≤m−1

cα · xα without constant term and of degree at most m− 1,

Q(x) ≡ 0 for 0 < l ≤ 1, such that if fm(x) = f(x)−Q(x), then for every ε > 0
there are positive numbers t and δ, 0 < t < min(ε, 1), such that

0 < |x− a| < δ and |z − x| ≤ t · |x− a| imply |fm(z)− fm(x)| ≤ ε · |x− a|l.

Remark. We note that the polynomial Q in Definition 2.2 is unique and if
0 < l ≤ 1, then m = 1, Q ≡ 0 and f1(z) = f(z).

A function f : Ω → R, defined on an open subset Ω of Rn, satisfies a
Lipschitz condition on Ω if there is a number M such that |f(x)−f(y)| ≤ |x−y|,
for all x, y ∈ Ω. We say f satisfies a local Lipschitz condition on Ω if every
x ∈ Ω has a neighborhood U and a number MU such that |f(y) − f(z)| ≤
MU · |y − z|, for all y, z ∈ U .

Let k be a nonnegative integer and let Ck,1(Ω) denote the class of functions
f : Ω → R which have continuous derivatives of order up to k such that Dαf ,
|α| = k, satisfy a local Lipschitz condition on Ω. Note that C0,1(Ω) is the
standard class of locally Lipschitz continuous functions on Ω.

3 Main Results.

Our main result is contained in the following theorems.

Theorem 3.1. Let m be a positive integer and f a function defined in a
neighborhood of x = a in Rn. Then f is differentiable at x = a of order m if
and only if

f has a harmonic derivative of order m at x = a (1)

and
f has property Bm at x = a. (2)

Theorem 3.1 follows easily from the following slightly more general result.

Theorem 3.2. Theorem 3.1 remains true if condition (1) is replaced by the
condition that

Dα
hf(a) exist for all |α| = m. (3)
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Remark. The function u(x, y) in Theorems 3.1 and 3.2 is well defined since
property Bm implies that f is bounded in a neighborhood of x = a.

We give the following application of Theorem 3.1 to Ck-functions.

Theorem 3.3. Let m be a positive integer and let f ∈ Cm−1,1(Ω). Then f
is ordinary differentiable of order m at a point a ∈ Ω if and only if f has
harmonic derivatives Dα

hf(a) for all |α| = m.

4 Some Lemmas.

We start with some properties of the Poisson kernel which will be frequently
used in the rest of this paper.

|DαPy(x)| ≤ c(α, n) · y−n−|α|, (x, y) ∈ Rn+1
+ , (4)∫

|x|>r

|DαPy(x)| · |x|k dx ≤ c(α, k, n) · y · rk−|α|−1,

for r ≥ y > 0, k < |α|+ 1, (5)∫
|DαPy(x)| dx ≤ c(α, n) · y−|α|, y > 0 (6)∫

Py(x) dx = 1, y > 0,

where as usual Dα denotes differentiation with respect to x. The proofs are
straight forward consequences of the formula Py(x) = y−n · P1(x/y) and are
left to the reader. We now give three lemmas used in the proofs in Section 5
and begin with a lemma on functions having property Bl.

Lemma 4.1. (a) If 0 < lo < l1, then property Bl1 implies property Bl0 ,

(b) If f has property Bl at x = a, then the limit lim
x→a

f(x) = c0 exists,

(c) If f has property Bl at x = a there are numbers δ0 > 0 and M such that

|f(x)− c0 −Q(x− a)| ≤ M · |x− a|l,

for 0 < |x− a| < δ0.

Proof. The statement (a) is obvious from the definition, while (b) and (c)
follow from [4], Lemma 5.3.
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Lemma 4.2. Let α and β be multi-indices, |α| ≤ |β|. Then the integral∫
DβPy(x− z) · zα dz

converges and equals zero unless α = β. In that case it equals (−1)α · α!.

The proof is through integration by parts, where we pass the derivatives
Dβ from Py(x− z) to zα, see [5], p. 247.

Lemma 4.3. Let m be an integer, m ≥ 2, and let f be a function with compact
support having property Bm at x = a, with polynomial Q(x) =

∑
1≤|α|≤m−1

cα ·

xα. Define u(x, y) = Py ? f(x). If Dβu(x, y) has a non–tangential limit β! · dβ

at (a,0) for some β with 1 ≤ |β| ≤ m− 1, then dβ = cβ.

Proof. It follows from Lemma 4.1 that there are numbers c0, M and δ0 > 0
such that

|f(x)−
∑

|α|≤m−1

cα · (x− a)α| ≤ M · |x− a|m, (7)

for |x − a| < δ0. It is no loss of generality to assume that f(x) = 0, for
|x−a| > δ0. Let 1 ≤ |β| = k ≤ m−1 and define fk(x) = f(x)−

∑
|α|≤k

cα·(x−a)α.

Let 0 < ε < 1 be arbitrary and define a cone V by V = {(x, t); t ≥ ε · |x− a|}.
We put y = ε · |x− a|. Then (x, y) ∈ V . Now consider the identity

I =
∫

DβPy(x−z)·fk(z) dz = Dβu(x, y)−
∑
|α|≤k

∫
DβPy(x−z)·cα ·(z−a)α dz.

The first term on the right hand side tends to β! · dβ as x → a by our assump-
tion, while the second term equals β! · cβ by Lemma 4.1. We finish the proof
of the lemma by showing that |I| tends to zero as x → a. We have

|I| ≤
∫
|DβPy(x− z)| · |fk(z)| dz =

∫
|z−x|≥|x−a|

+
∫

|z−x|≤|x−a|

= A1 + A2. (8)

It follows from (7) and the definition of fk that there is M1, independent of
x, such that |fk(x)| ≤ M1 ·min(|x− a|k, |x− a|k+1), for all x ∈ Rn. Then for
|x− a| ≤ 1

A1 ≤ M1 ·
∫

|z−x|≥|x−a|

|DβPy(x− z)| · |z − a|k dz ≤
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≤ 2k ·M1 ·
∫

|w|≥|x−a|

|DβPy(w)| · |w|k dw ≤ c(k, n) ·M1 · ε,

by (5) and the properties of fk. Further,

A2 ≤ M1 ·
∫

|z−x|≤|x−a|

|DβPy(z − x)| · |z − a|k+1 dz ≤

≤ 2k+1 ·M1 · |x− a|k+1

∫
|DβPy(w)| dw ≤ c(k, n) ·M1 · ε−k · |x− a|,

by (6). It follows that I tends to zero as x → a, which completes the proof of
Lemma 4.3.

5 Proofs of Theorems 3.2 and 3.3.

We start with the proof of Theorem 3.2. The necessity part is straight forward.
Assume that f is differentiable at x = a of order m. Then it is easy to see
that f has property Bm at x = a and f has a harmonic differential of order
m. See [5], p. 247 for the case m = 1. The general case is proved analogously.

Now we turn to the proof of the sufficiency part of Theorem 3.2. Assume
that (2) and (3) hold. Let 0 < ε < 1 be arbitrary and choose δ, t and the
polynomial Q(x) as in Definition 2.2, Q(x) ≡ 0 if m = 1. Without loss of
generality we assume that f is zero outside a suitable disc centered at x = a.
Then, as in the proof of Lemma 4.2, there is a unique number c0 and M1 > 0,
independent of x, such that

|f(x)−
∑

|α|≤m−1

cα · xα| ≤ M1 ·min(|x− a|m−1, |x− a|m), (9)

for all x ∈ Rn. Let α! · aα, |α| = m, be the non-tangential limit of Dαu(x, y)
at (a, 0) according to (3), where u(x, y) = Py ? f(x), and define P (x) =∑
|α|≤m

cα · xα. We are going to prove that f(x) − P (x − a) = o(|x − a|m),

as x → a, and start from the identity

f(x)−P (x− a) = (fm(x)− fm(z)) + (fm(z)− c0)−
∑
|α|=m

cα · (x− a)α, (10)

where as usual fm(w) = f(w) − Q(w − a). Multiplying (10) with Py(x − z)
and integrating with respect to z over |z − x| ≤ t · |x− a| gives

(f(x)− P (x− a)) ·
∫

|w|≤t·|x−a|

Py(w) dw = I1 + I2 + I3, (11)
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where I1, I2 and I3 correspond to the three terms in the right hand side of
(10). We define a cone V = {(x, y); y ≥ ε ·tm · |x−a|} and put y = ε ·tm · |x−a|.
Then (x, y) ∈ V and the integral in the left hand side of (11) is at least 1−c ·ε.
Hence it suffices to estimate Ik, k = 1, 2, 3. First, Definition 2.2 implies that
|I1| ≤ ε · |x− a|m, for |x− a| < δ. Next we split I2 as

I2 =
∫

|z−a|≤2|x−a|

−
∫

|z−a|≤2|x−a|,|z−x|>t|x−a|

= I ′2 + I ′′2 ,

where

|I ′′2 | ≤ M1 · 2m · |x− a|m ·
∫

|w|≥t|x−a|

Py(w) dw ≤ c(n, m) ·M1 · ε · |x− a|m,

by (5) and (9). We now use Taylor’s formula on the Poisson kernel to get

I ′2 =
∑

|α|≤m−1

1
α!
·

∫
|z−a|≤2·|x−a|

DαPy(a− z) · (x− a)α · (fm(z)− c0) dz+

+
∫

|z−a|≤2·|x−a|

Rm(x, z) · (fm(z)− c0) dz = A + B,

where

Rm(x, z) =
∑
|α|=m

1
α!
·

1∫
0

DαPy(a− z + s(x− a)) · (x− a)α ds

is the remainder. We claim that A and B + I3 are bounded by some constant
times ε · |x− a|m, as x → a.

We split A as

A =
∑ ∫

|z−a|≤r|x−a|

+
∑ ∫

r|x−a|<|z−a|≤2|x−a|

, (12)

where the summation is over |α| ≤ m − 1 and r = tm. The first sum in (12)
has terms bounded by

c(m) ·M1 · (r|x− a|)m · |x− a||α| ·
∫
|DαPy(w)| dw ≤

≤ c(m,n) ·M1 · rm · |x− a|m+|α| · y−|α| ≤ c(m,n) ·M1 · ε · |x− a|m.
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The terms in the second sum in (12) are bounded by

c(m) ·M1 · |x− a||α| ·
∫

r|x−a|<|z−a|≤2r|x−a|

|DαPy(a− z)| · |z − a|m dz ≤

≤ c(m) · |x− a|m ·
∫

|z−a|>r|x−a|

|DαPy(a− z)| · |z − a||α| ≤ c(m,n) · ε · |x− a|m.

In both cases we used (5), (9), y = ε · tm · |x− a| and r = tm. This proves our
claim for A.

We are now only left with (B + I3) and first note that

I3 = −
∑
|α|=m

cα · (x− a)α + I4,

where|I4| ≤ c ·
∑

|α|=m

|cα| · ε · |x− a|m by (5). We split B into two terms

B =
∫

Rn

−
∫

|z−a|>2|x−a|

= B1 + B2.

To prove our claim for (B + I3), and thereby complete the proof of Theorem
3.2, it suffices to show that |B2| ≤ c(m,n) ·M1 · ε · |x− a|m and

B1 −
∑
|α|=m

cα · (x− a)α = o(|x− a|m), (13)

as x → a. Estimating the remainder Rm(x, z) in Taylors formula gives that
|B2| is at most

∑
|α|=m

1
α!
·

∫
|u|>|x−a|

du

1∫
0

ds|DαPy(u)| · |x− a|m · |fm(a + s(x− a)− u)− a0| ≤

≤ c(m,n) ·M1 ·
∑
|α|=m

∫
|u|>|x−a|

du |DαPy(u)| · |x− a|m · (|u|m + |x− a|m) ≤

≤ c(m,n) ·M1 · ε · |x− a|m,

by a change of variables and using (5) and (9). This settles the estimate for
B2. For B1 we have the formula

B1 =
∑
|α|=m

1
α!
·

1∫
0

dsDαu(a + s(x− a), y) · (x− a)α (14)
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by Lemma 4.2. The point (a + s(x− a), y) belongs to the cone V . Hence the
integral in (14) tends to α! · cα as x → a, for all |α| = m, since the integrand
converges uniformly to α! · cα, 0 ≤ s ≤ 1. This proves (13) and completes the
proof of Theorem 3.2.

Proof of Theorem 3.3. We first show that f has property Bm everywhere
in Ω. This is obvious if m = 1 and the general case follows from Taylors
formula. Theorem 3.3 now follows from Theorem 3.2.

6 Examples and Remarks.

We start with two definitions. A function f is Lp-differentiable of order l,
m ≤ l < m + 1, at x = a if there is a polynomial P (x− a) of order at most m
such that

(r−n ·
∫

|x−a|≤r

|f(x)− P (x− a)|p dx)1/p = o(rl), as r → 0,

and f is approximately differentiable of order l at x = a if

r−n · |{x; |f(x)− P (x− a)| > λ · |x− a|l and |x− a| < r}| → 0, as r → 0,

for every λ > 0. It is easy to see that Lp-differentiability implies approxima-
tive differentiability. That also Lp-differentiability implies the existence of a
harmonic differential is proved in [5], p. 247 for m = 1. The same proof applies
in the general case. In this section we show that the existence of a harmonic
differential is not related to approximative differentiability. Consequently, our
Theorems 3.1 and 3.2 do not follow from [4].

There are functions f that have approximate differentials of any order at
x = a but are not locally integrable there, c.f. [1], p. 150. Such functions
cannot have harmonic derivatives at x = a. In the rest of this section we
construct an example of a function f on R that has a harmonic differential
but is not approximately differentiable at the origin.

Example. Let I = [a, b] be an interval and k a positive integer. Define

gI,k(x) = (−1)j , if x ∈ [a + (j − 1)v, a + jv), 1 ≤ j ≤ 2k,

where v = (b − a)/2k. The oscillating function gI,k has a cancelling effect as
expressed in the following lemma.
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Lemma 6.1. Let h ∈ C1(I). Then∣∣∣ ∫
I

h(x) · gI,k(x) dx
∣∣∣ ≤ 1

4k
· sup

I
|h′(x)| · |I|2.

The proof of Lemma 6.1 is elementary and therefore omitted. Now let fi,
i = 1, 2, . . . , be the function gI,k with I = [2−i, 21−i], fi(x) = 0 outside I,
where k = ki will be defined later. Define

f(x) =
∞∑

i=1

2−i · fi(x), x > 0,

f(0) = 0 and f(−x) = f(x). Then f does not have a first order approximative
differential at x = 0. If such a differential exists it must equal zero, because
f is an even function. This is however impossible, since |f(x)| ≥ |x|/2 for
|x| ≤ 1. It remains to prove that f has a first order harmonic derivative at
x = 0 if the sequence {ki} increases fast enough.

Now we define u(x, y) = Py ? f(x). Then u is harmonic in the upper half
plane and u(x, y) → 0, as (x, y) → (0, 0) non–tangentially, since x = 0 is a
Lebesgue point of f and f(0) = 0 [5], Ch. VII, Theorem 1. Further,

∂u

∂x
=

∫
P ′

y(x− z) · f(z) dz,

since the differentiated integral converges uniformly on the entire real axis.
Let s > 0 and define a cone Vs = {(x, y); |x| < s · y and y > 0}. Let ε > 0 be
arbitrary, 0 < ε < min(1/s, 1), and let 0 < y < 1. Now assume that (x, y) ∈ Vs

and write

∂u

∂x
=

∫
P ′

y(x− z) · f(z) dz =
∫

|z|≥r

+

0∫
−r

+

r∫
0

= A + B + C,

where r = 2/(ε · √y). Then

|A| ≤
∫

|z−x|≥r/2

|P ′
y(x− z)| · |f(z)| dz ≤

∫
|w|≥r/2

|P ′
y(w)| dw ≤ c · ε,

by (5). Lemma 6.1 and the estimate |P ′′
y (w)| ≤ c · y−3 gives

|B| ≤
∞∑

I=1

2−I · |
0∫

−r

P ′
y(x− z dz| ≤

∞∑
N

2−3i · y−3 · k−1
i ,
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where N = N(ε, y) = [log2 1/r]. Choosing ki = 24i we get |B| ≤ c · ε−7 · √y
and hence lim

y→0
|B| = 0. We get an analogous estimate for the term C. It

follows that lim sup
y→0

|∂u
∂x | ≤ c · ε. Since ε and s are arbitrary we conclude that

∂u
∂x tends non–tangentially to zero at (0, 0). This proves that f has a first order
harmonic derivative at x = 0 and completes our example.

Remark. It is possible to choose the sequence {ki}∞1 such that ∂ju
∂xj tends to

zero non–tangentially, for all j = 1, 2, . . . , i.e. f has harmonic derivatives of
all orders equal to zero at x = 0. We simply choose ki = 22i

. Then for s > 0,
0 < ε < min(s−j−1, 1), 0 < y < 1 and (x, y) ∈ Vs we can proceed as above
with r = 2 · (y/ε)1/(j+1) to prove that ∂ju/∂xj tends to zero non–tangentially
at (0,0), for j = 1, 2, . . . .
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