
Publ. Mat. 53 (2009), 489–514

COHOMOLOGICAL CHARACTERIZATION OF

RELATIVE HYPERBOLICITY AND COMBINATION

THEOREM

François Gautero and Michael Heusener

Abstract
We give a cohomological characterization of Gromov relative hy-
perbolicity. As an application we prove a converse to the com-
bination theorem for graphs of relatively hyperbolic groups given
in [9]. We build upon and follow the ideas of the work of S. M. Ger-
sten [11] about the same topics in the classical Gromov hyperbolic
setting.

Introduction

The celebrated Gromov hyperbolic groups [13] form a central class
of groups in Geometric Group Theory. In [11], Gersten gives a coho-
mological characterization of the Gromov hyperbolicity which was up to
then a purely geometrical notion. As an application, Gersten proved the
converse of the Bestvina-Feighn combination theorem [3] for graphs of
hyperbolic groups. More precisely, given a finite graph G of hyperbolic
groups and assuming the quasi convexity of the edge groups in the vertex
groups, he proved the necessity of the so-called annular flare condition
for the fundamental group of G being hyperbolic.

Since then, relative hyperbolicity has appeared in Geometric Group
Theory, and is the object of a lot of interest nowadays. Although already
present in [13], it really grew with Farb’s formulation [8]. Among all the
definitions which now coexist [5], [17], two are not equivalent [19], [6].
We will call them weak and strong: Gromov relative hyperbolicity is the
strong one [19] and, of course, implies weak relative hyperbolicity [6].
In order to give an illustration of these two notions, let us just recall two
classical examples:
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• The fundamental group of a hyperbolic, finite volume manifold
with cusps is strongly hyperbolic relatively to the family of pe-
ripheral subgroups. On the other hand, in dimension n ≥ 3 such
a fundamental group is not Gromov hyperbolic (in the absolute
sense).

• The group Z ⊕ Z is hyperbolic relatively to any of the Z-factors
in the weak sense but not in the strong sense. In the same line
of idea, the mapping-class groups of compact surfaces are weakly
relatively hyperbolic [15] but not strongly relatively hyperbolic in
a non-trivial way (as soon as the surfaces have sufficiently high
complexity) [2].

We refer the reader to Section 1 for the definitions about relative
hyperbolicity. A general combination theorem for graphs of relatively
hyperbolic groups, similar to the Bestvina-Feighn theorem for graphs of
hyperbolic groups, has been proven in [9]. For previous results in this
direction, see [7], [1].

The purpose of this note is to adapt and extend the above cited results
of [11] to the setting of the strong relative hyperbolicity. Our first step
is to get a well-suited notion of the ℓ∞-cohomology of a group G relative
to a family of subgroups H. In order to define the relative cohomology
of a pair (G, H), we follow the classical approach [4]. Our first result is
stated as follows:

Theorem 1. The second relative ℓ∞-cohomology of a group G relative
to a family of subgroups H, denoted by H2

(∞)(G, H), is well-defined as

soon as G admits a finite presentation relative to H. If G is strongly
hyperbolic relative to H, then H2

(∞)(G, H) strongly vanishes.

For strong vanishing, see Definition 3.6. This theorem is false in the
setting of weak relative hyperbolicity, see Example 3.1.

The strong vanishing is necessary to get the announced application
about the combination theorem. The application we give below con-
cerns only semi-direct products of strongly relatively hyperbolic groups
with a free group. The reason is that the parabolic subgroups, i.e. the
subgroups which are up to conjugacy in the relative part, of the funda-
mental group of an arbitrary graph of relatively hyperbolic groups are
somewhat tedious to describe. This would lead to a heavy formulation,
without introducing new interesting phenomena, which all appear in the
semi-direct product case. This semi-direct product case is in some sense
a “generic” non-acylindrical case, and the most sophisticated one which
might appear as the fundamental group of a graph of groups. If one
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wishes to treat semi-direct products with groups which are not free, one
is led to work on 2-complexes of groups.

The uniform free groups of relatively hyperbolic automorphisms which
appear below were defined in [9]. Definitions are recalled in Section 5.

Theorem 2. Let G be a group which is strongly hyperbolic relative to
a finite collection of finitely generated subgroups, denoted by H. Let
Aut(G, H) be the group of relative automorphisms of (G, H). Let α : Fn →
Aut(G, H) be a monomorphism from the rank n free group into Aut(G, H).
Then the following properties are equivalent:

(a) G⋊αFn is strongly hyperbolic relative to a Fn-extension of H (which
we denote by Hα),

(b) H2
(∞)(G ⋊α Fn, Hα) strongly vanishes,

(c) Fn is a uniform free group of relatively hyperbolic automorphisms
of (G, H).

We refer the reader to Remark 6.5 for a discussion about the various
assumptions of finiteness (finiteness of the family H, finite generation
of the subgroups in H) which appear in Theorem 2. In particular, the
implication (c) ⇒ (a) is where we really need the finite generation of the
parabolic subgroups, but this implication is the object of [9], not of the
present paper.

Among many other topics, Groves and Manning [14] are also inter-
ested in homological characterizations of the strong relative hyperbolicity
and generalize some results from [11]. However, their approach is differ-
ent than our’s in the sense that Groves and Manning consider absolute
cycles with compact support (instead of relative cycles with non-compact
support). In an other paper [16] Mineyev and Yaman are dealing with
a similar subject. They consider both usual and bounded cohomology.

1. Relative hyperbolicity

In [11] the proof of the vanishing theorem for the ℓ∞-cohomology
for hyperbolic groups uses in a crucial way the existence of a linear
isoperimetric inequality. This designates Osin approach (see [17]) of
relative hyperbolicity as the ideal candidate for our purpose.

We recall some basic definitions from [17, Chapter 2]: let G be a
group, H = (Hλ)λ∈Λ a family of subgroups of G and X ⊂ G. We
say that X is a relative generating set of G with respect to H if G is
generated by

(
∪λ∈ΛHλ

)
∪ X . In the sequel we will always assume that

X is symmetric. In this situation G is a quotient of the free product

F =
(
∗λ∈ΛH̃λ

)
∗ F (X)
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where the groups H̃λ are isomorphic copies of Hλ and F (X) is the free
group with the basis X . Let us denote by H the disjoint union

H =
⊔

λ∈Λ

H̃λ r {1}

and by (H∪X)∗ the free monoid generated by H∪X . For every λ ∈ Λ, we

denote by Sλ the set of all words over the alphabet H̃λ r {1} that repre-

sent the identity in F . The isomorphism H̃λ → Hλ and the identity map
on X can be uniquely extended to a surjective homomorphism ǫ : F → G.
We say that G has the relative presentation

(1) 〈X,H | S = 1, S ∈ S = ⊔λ∈ΛSλ, R = 1, R ∈ R〉

with respect to H, where R ⊂ (H ∪ X)∗, if Ker(ǫ) is the normal closure
of R in F . In the sequel we will write G = 〈X, Hλ, λ ∈ Λ | R = 1, R ∈ R〉
or G = 〈X,H | S,R〉 for short.

The relative presentation (1) is called finite if both sets X and R are
finite. We say that G is finitely presented relative to H if there is a finite
relative presentation of G with respect to H.

Remark 1.1. Assume that G admits a finite relative presentation with
respect to a finite family of finitely generated subgroups. Then G is
finitely generated.

We denote by lH∪X(γ) the H-relative length of γ ∈ G, defined as the
word-length of γ with respect to the system of generators X ∪ H (that
is the minimal number of elements in X ∪ H needed to write γ ∈ G).
This is nothing else than the length of a geodesic from the identity to γ
in the Cayley graph Γ(G, X ∪H) of G with respect to X ∪H.

Let c be a cycle in Γ(G, X ∪ H), where we call cycle a loop in a
graph. Consider a filling ∆ for c, with respect to a finite relative pre-
sentation (1). That is ∂∆ corresponds to c and decomposes in subcells
whose boundary either corresponds to a relator from Sλ for some λ ∈ Λ
or to a relator from R. The R-relative area of ∆ is the number of R-cells
that it contains. We denote by AreaR(c) the R-relative area of c which
is the minimal R-relative area of a filling with boundary c.

Two functions f, g : N → N are asymptotically equivalent if there exist
constants C, K, L, C0, K0, L0 such that f(n) ≤ g(Cn + K) + Ln and
g(n) ≤ f(C0n + K0) + L0n.

Definition 1.2 ([17]). Let G be a group which admits a finite relative
presentation G = 〈X,H | S,R〉 with respect to H.
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A relative isoperimetric function for this presentation is a function
f : N → N such that, for any n ∈ N, for any cycle c ∈ Γ(G, X ∪H) with

length less or equal to n, AreaR(c) ≤ f(n).
The relative Dehn function for the presentation G = 〈X,H | S,R〉 is

the smallest relative isoperimetric function for this presentation.
The group G is strongly hyperbolic relative to H if G is finitely pre-

sented with respect to H and the relative Dehn-function of G for a finite
relative presentation is linear.

Parabolic subgroups are subgroups conjugate to subgroups in H.

Remark 1.3. Note that two relative Dehn-functions (as defined above) of
two finite relative presentations of G with respect to H are asymptotically
equivalent. Note also that in general not every finite presentation (1)
admits a finite relative Dehn function.

Remark 1.4. Let G be a group which is strongly hyperbolic relative to
a family H. Substituting any subgroup in H by a conjugate yields a new
family with respect to which G is still strongly relatively hyperbolic.

2. Relative ℓ∞-cohomology

Let (X, Y ) be a CW-pair i.e. X is a CW-complex and Y ⊂ X is a
subcomplex. We denote by Xk the k-skeleton of X . Note that Y k =
Xk∩Y . We shall write (X, Y )k for the relative k-skeleton i.e. (X, Y )k =
Xk ∪ Y .

The cellular chain complex (C∗(X, Y ), ∂) is defined in the usual way
(see [20]). Here and in the sequel we will work with integer coefficients.
The chain group Ck(X, Y ) = Ck(X)/Ck(Y ) is usually thought of as the
Z-module generated by the k-cells of XrY . We denote by Ck

(∞)(X, Y ) ⊂

Ck(X, Y ) the subgroup of bounded relative k-cochains. These cochains
correspond exactly to the k-cochains h : Ck(X) → Z which vanish on
the k-cells of Y and which admit an uniform upper-bound Mh over all
k-cells ek from Xk, i.e. h(ek) = 0 for all ek ∈ Y k and |h(ek)| ≤ Mh holds
for all ek ∈ Xk. We denote by ||h||∞ the supremum of h on the k-cells.

The pair (X, Y ) has bounded geometry in dimension n if for all k ≤ n
there is a bound Mk on the ℓ1-norms of the chains ∂ek, where ek is a
k-cell of X r Y . Consider a CW-pair (X, Y ) with bounded geometry

in dimension n. It is easy to see that δ(Ck−1
(∞) (X, Y )) ⊂ Ck

(∞)(X, Y ) for

k ≤ n and hence we can form Hk
(∞)(X, Y ) = Zk

(∞)/Bk
(∞) if k ≤ n.

We are mainly interested in the following situation: let (K, L) be a
CW-pair such that K is connected and K r L has only finitely many

k-cells in dimension k ≤ n. We denote by π : K̃ → K the universal
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covering. In this situation the relative complex (K̃, L), L := π−1(L),

has bounded geometry in dimension n and the groups Hk
(∞)(K̃, L) are

well defined for k ≤ n.
Let K ′ denote an other CW-complex such that L ⊂ K ′. Suppose

that K ′ collapses to K relative to L by an elementary collapse i.e. K ′ =
K ∪ ek−1 ∪ ek where the cells ek−1 and ek are not in K. As in [10, §10]
it is easy to see that there is a canonical isomorphism

H l
(∞)(K̃

′, L) ∼= H l
(∞)(K̃, L)

for all l ≤ n. It is important to observe that an elementary collapse
never identifies two distinct points in L (in particular it does not change
the number of connected components of L). This is indeed implied by
the requirement that L be embedded in both K and K ′. Of course a
simple homotopy equivalence with support contained in L neither affects
the cohomology.

3. Relative ℓ∞-cohomology of (G, H)

Let G be a group, let H = (Hλ)λ∈Λ be a family of subgroups of G and
P = 〈X,H | S,R〉 a finite relative presentation of G. We will construct
a relative CW-complex KP associated to the presentation P .

For each λ ∈ Λ let Lλ be an aspherical CW-complex with one 0-cell e0
λ

such that π1(Lλ, e0
λ) = H̃λ.

Remark 3.1. The condition that the Lλ’s are aspherical is not really
essential. What we need is that for two different choices Lλ and L′

λ the
isomorphism of the fundamental groups is induced by a cellular map.
So we might choose the Lλ’s to be 2-dimensional complexes (see [18,
Lemma 1.5]).

We let L denote the disjoint union L = ⊔λ∈ΛLλ. Associated to the
presentation P and L there is a canonical CW-pair (KP , L) constructed
from L as follows:

0-cells: add one 0-cell e0;

1-cells: add two types of 1-cells: {e1
λ | λ ∈ Λ} and {e1

x | x ∈ X}. The
1-cell e1

λ is attached to e0 and e0
λ. The 1-cells e1

x are attached to
the 0-cell e0. We shall orient the cells e1

λ such that ∂e1
λ = e0

λ − e0;

2-cells: add one 2-cell e2
R for each relation R ∈ R. The attaching

map for a 2-cell is given by the corresponding relation, after the
following modification: each maximal subword w of the relation

which consists of letters from H̃λ is substituted by the word e1
λwe1

λ

(e1
λ designates the edge e1

λ with the opposite orientation).
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Note that for each λ ∈ Λ the subspace Lλ ⊂ KP is a subcomplex.

By the construction we have π1(KP , e0) = G and π1(Lλ, e0
λ) = H̃λ.

Note also that K1
P∪L⊂KP is a connected subcomplex and that π1(K

1
P∪

L, e0) = F (the free product
(
∗λ∈ΛH̃λ

)
∗ F (X)).

Remark 3.2. The notation π1(Lλ, e0
λ) = H̃λ really means that the funda-

mental group π1(Lλ, e0
λ) →֒ π1(KP , e0) is conjugate to the subgroup Hλ

of G. The conjugacy class depends on the chosen path from e0 to e0
λ.

Since the parabolic subgroups in H can be substituted by any of their con-
jugates when dealing with relative hyperbolicity, this ambiguity causes
no harm for our purpose.

Let K be an aspherical CW-complex such that K2 = KP . Such a K
can be obtained from KP by attaching k-cells, k ≥ 3, in order to kill the
higher homotopy groups. Hence we obtain a triple L ⊂ KP ⊂ K. We

consider the universal covering π : K̃ → K. Note that π−1(KP) is con-
nected and is hence the universal covering of KP . Define Lλ = π−1(Lλ)
and L = π−1(L) = ⊔λ∈ΛLλ.

Now, let (L′
λ)λ∈Λ be a second family as above. Then for each λ ∈ Λ

there exists a cellular map fλ : Lλ → L′
λ which induces an isomor-

phism between the fundamental groups. Note that we do not require
that fλ is a homotopy equivalence. Starting from the relative presen-
tation P we obtain CW-complexes K ′

P and K ′ by the construction de-
scribed above. It is obvious that there exists a cellular map f : K →
K ′ extending fλ, λ ∈ Λ, which is a homeomorphism on each k-cell

ek ∈ K r L, k = 0, 1, 2. The lift f̃ : K̃ → K̃ ′ induces an isomorphism

f̃∗ : Ck(K̃, L) → Ck(K̃ ′, L′), k = 0, 1, 2. More precisely, for k = 0, 1, 2

the image of each k-cell of K̃ r L is a k-cell of K̃ ′ r L′. Hence f̃ in-

duces an isomorphism f̃∗ : Ck
(∞)(K̃

′, L′) → Ck
(∞)(K̃, L) for k = 0, 1, 2.

By the symmetry of the construction we obtain in the same way a cel-

lular map g : K ′ → K and its lift g̃ : K̃ ′ → K̃ can be chosen such that

(f̃∗)
−1 = g̃∗ : Ck(K̃ ′, L′) → Ck(K̃, L) for k = 0, 1, 2. A direct calcula-

tion gives that f̃∗ : Hk
(∞)(K̃

′, L′) → Hk
(∞)(K̃, L) is an isomorphism for

k = 0, 1, 2. All which precedes motivates calling an aspherical pair (K, L)
as above a canonical CW-pair for the finite relative presentation P.

Remark 3.3. From Section 2, if (K, L) is a canonical CW-pair, collapsing
an edge e1

λ yields a new (non-canonical) CW-pair (K ′, L′) such that

Hk
(∞)(K̃, L) = Hk

(∞)(K̃
′, L′), k = 0, 1, 2. Beware however that it is not

possible to consecutively collapse two of the edges e1
λ since they form an

edge-path with both endpoints in L.
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Lemma 3.4. Let G be a group which admits two finite presentations
P = 〈X,H | S,R〉 and P ′ = 〈X ′,H | S,R′〉 relative to a family of
subgroups H. Let (K, L) (resp. (K ′, L′)) be a canonical CW-pair for P

(resp. for P ′) as defined above. Then H2
(∞)(K̃, L) = H2

(∞)(K̃
′, L′).

Proof: As in [17, Chapter 2], the two relative presentations are related
by a finite sequence of Tietze transformations. As in [10], a Tietze
transformation is geometrically realized by an elementary expansion or
an elementary collapse. On the other hand, one can prove that the

group H2
(∞)(K̃, L) does not change under such an elementary operation:

this is proven in [10, Theorem 10.1] for absolute l∞-cohomology and this
still holds here in the relative case because the transformations involved
do not affect neither the complex L nor the edges e1

λ (see Section 2).

Lemma 3.4 justifies the following definition:

Definition 3.5. Let G be a group which admits a finite presentation
〈X,H | S,R〉 relative to a family of subgroups H. The second ℓ∞-co-
homology group of G relative to H, denoted by H2

(∞)(G, H), is equal to

H2
(∞)(K̃, L), where (K, L) is a canonical CW-pair for P as defined above.

Definition 3.6. Let G be a group which admits a finite presentation
〈X,H | S,R〉 relative to a family of subgroups H. The second ℓ∞-co-
homology group of G relative to H strongly vanishes if, for some (and
hence any) associated canonical CW-pair (K, L), the sequence

0 → H1
(∞)(K̃, L) → C1

(∞)(K̃, L)/B1
(∞)(K̃, L)

δ
→ Z2

(∞)(K̃, L) → 0

is a short exact-sequence and there is a bounded section σ : Z2
(∞)(K̃, L)→

C1
(∞)(K̃, L) of δ i.e. δ ◦ σ = id and there exists C such that ‖σ(z)‖∞ ≤

C‖z‖∞.

3.1. Example. We give an easy example of a weakly relatively hyper-
bolic group for which the ℓ∞-cohomology does not vanish. Recall that
a group G is weakly hyperbolic relative to H if and only if the Cayley
graph Γ(G, X ∪H) is a hyperbolic metric space (see Section 1).

Let G = Z = 〈h1, h2 | h1h2 = 1〉 be a finite presentation of the
group Z. Set Λ = {1, 2}, Hi = 〈hi〉, i = 1, 2. As in Section 1, let H be

the disjoint union of H̃1 \ {1} with H̃2 \ {1}. Obviously, Z is weakly
hyperbolic relative to H = (Hλ)λ∈Λ since Γ(G,H) is a bounded metric
space. The presentation P = 〈H1, H2 | h1h2 = 1〉 is a finite presentation
of Z relative to H: X is empty and R is just h1h2 = 1. We construct
the 2-complex KP as above. The complex Li is homeomorphic to the
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circle S1 with one 0-cell e0
i and one 1-cell e1

hi
. There is no 1-cell e1

x

since X is empty so that KP is a cylinder: the attaching map of the

single 2-cell e2 = e2
h1h2

is given by the edge path e1
1e

1
h1

e1
1e

1
2e

1
h2

e1
2. Here

and in the sequel e1
j denotes the 1-cell e1

j with its opposite orientation.

The subcomplex L consists of two disjoint loops and K is aspherical (see
Figure 1).
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Figure 1. The complex K.

The universal covering π : K̃ → K is homeomorphic to the strip R×
[1, 2] with two boundary componens Li = R×{i}, i = 1, 2. We fix a lift
of each cell of K such that ẽ0 ∈ π−1(e0), ẽ0

i ∈ π−1(e0
i ), ẽ1

hi
∈ π−1(e1

hi
),

i = 1, 2, and ẽ2 ∈ π−1(e2) such that

∂ẽ1
i = ẽ0

i − ẽ0, ∂ẽ1
h1

= h1ẽ
0
1 − ẽ0

1, ∂ẽ1
h2

= ẽ0
2 − h1ẽ

0
2,

and
∂ẽ2 = ẽ1

1 + ẽ1
h1

− h1ẽ
1
1 + h1ẽ

1
2 + ẽ1

h2
− ẽ1

2.

We define a bounded relative 2-cocycle f by setting f(hk
1 ẽ

2) = 1 for
each k ∈ Z. Assume now f = δm for some relative 1-cochain m. The
equalities 〈f, hk

1 ẽ2〉 = 〈m, hk
1∂ẽ2〉 and m(hk

1 ẽ1
hi

) = 0 give

1 = m(hk
1 ẽ1

1) − m(hk+1
1 ẽ1

1) + m(hk+1
1 ẽ1

2) − m(hk
1 ẽ

1
2) for each k ∈ Z.

By summing from k = 0 to k = n − 1, we get: n = m(ẽ1
1) − m(hn

1 ẽ1
1) +

m(hn
1 ẽ1

2)− m(ẽ1
2). This implies that the difference |m(hn

1 ẽ1
2) − m(hn

1 ẽ1
1)|
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tends toward infinity with n → +∞. Thus m is not bounded, so that
f is not a bounded coboundary. Therefore H2

(∞)(Z, H) does not vanish.

4. Strong vanishing of H2
(∞)(G, H) for strongly relatively

hyperbolic groups

Let G be a group which is strongly hyperbolic relative to a family
of subgroups H = (Hλ)λ∈Λ. As in the previous section we consider a
canonical pair (K, L) associated to a finite presentation 〈X,H | S,R〉
of G relative to H. We suppose that Lλ is the canonical K(Hλ, 1) i.e.
Lλ has one 0-cell, one 1-cell e1

h for each h ∈ Hλ \ {1} and one 2-cell e2
S

for each relation S ∈ Sλ.
Let π : K̃ → K be the universal covering as above. We equip K̃(1)

with the following pseudo-metric, termed the L-relative metric: each
1-cell of L has length zero, each 1-cell in π−1(e1

λ), λ ∈ Λ, has length 1/2,
each 1-cell in π−1(e1

x), x ∈ X , has length 1.
With the notations above:

Definition 4.1. The length of an edge-path p in K̃1 with respect to the
L-relative metric is termed relative length and is denoted by lrel(p).

Each cycle c in K̃1 can be filled by a singular disc diagram D → K̃2.
The relative area Arel(D) of D is the number of 2-cells in the domain in
D which correspond to 2-cells e2

R, R ∈ R. The relative area Arel(c) of a

cycle c in K̃1 is the minimal relative area of all diagrams D filling c.
An immediate consequence of the definition of strong relative hyper-

bolicity is:

Lemma 4.2. Suppose that G is strongly hyperbolic relative to H. Then

there exists a constant C ≥ 1 such that, for any cycle c in K̃1, Arel(c) ≤
C lrel(c) holds.

Proof: Note that Γ(G, X ∪H) is obtained from K̃1 by contracting each

edge from π−1(e1
λ), λ ∈ Λ. Let κ : K̃1 → Γ(G, X ∪ H) denote the

corresponding surjection.

Now by the very definition we have for each cycle c in K̃1:

lrel(c) = lX∪H(κ(c)) and Arel(c) = AreaR(κ(c)).

The lemma follows from the existence of a linear relative Dehn-func-
tion.

Let z ∈ Z2
(∞)(K̃, L) be a ℓ∞-relative 2-cocycle. Let m ∈ C1(K̃, L)

be a relative 1-cochain with z = δm. Note that H2(K̃, L) = 0 since
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H2(K̃) = 0 and H1(L) = 0. From now on, z and m are fixed. We want

to prove the existence of k ∈ C
(1)
(∞)(K̃, L) such that z = δk.

Let P, P ′ ∈ K̃0. Following [11], we define a maximizing path w(P, P ′)
to be a path from P to P ′ which maximizes the integer valued func-
tion ν(γ) = 〈m, γ〉 − C||z||∞lrel(γ). Here the maximum is taken among
all paths γ from P to P ′. The existence of a maximizing path follows as
in [11, Section 5]:

Lemma 4.3 ([11]). The function ν always attains its maximum, i.e.
this maximum is finite and maximizing paths always exist.

Proof: Let w, γ be two paths in K̃1 from P to P ′ and let D be a minimal
filling disk of γ−1w. Then

〈z, D〉 = 〈δm, D〉 = 〈m, w〉 − 〈m, γ〉

and

〈z, D〉 ≤ ‖z‖∞Arel(D) ≤ C‖z‖∞
(
lrel(w) + lrel(γ)

)

which implies: ν(w)=〈m, w〉−C||z||∞lrel(w)≤〈m, γ〉+C‖z‖∞lrel(γ).

In the sequel we fix some cells in K̃0 as follows: Let ẽ0 ∈ π−1(e0),
ẽ0

λ ∈ π−1(e0
λ), ẽ1

λ ∈ π−1(e1
λ), λ ∈ Λ, ẽ1

h ∈ π−1(e1
h), h ∈ H, and ẽ1

x ∈
π−1(e1

x), x ∈ X , such that

∂ẽ1
λ = ẽ0

λ − ẽ0, ∂ẽ1
x = xẽ0 − ẽ0 and ∂ẽ1

h = hẽ0
λ − ẽ0

λ, if h ∈ H̃λ r {1}.

Let P ∈ K̃0. We denote by w(P ) a maximizing path w(ẽ0, P ) in K̃1

with initial point ẽ0 and terminal endpoint P .
From now on we fix for each λ∈Λ a system of representatives {gλ

i }i∈Iλ
,

of G/Hλ. For a given g ∈ G, we set gλ := gλ
i if gHλ = gλ

i Hλ. Hence we
have g1

λ = g2
λ if and only if g−1

1 g2 ∈ Hλ.

Lemma 4.4. Let d : C0(X̃) → Z be the 0-cochain defined by d(gẽ0) =

ν(w(gẽ0)) and d(gẽ0
λ) = ν(w(gλẽ0

λ)). Then δd ∈ C1(K̃1, L).

Proof: We check that δd vanishes on C1(L). Let h ∈ H̃λ r {1} then

(δd)(gẽ1
h) = d(g∂ẽ1

h) = d(ghẽ0
λ) − d(gẽ0

λ) = 0

because gh
λ

= gλ if h ∈ Hλ.

Proposition 4.5. Set k = −m + δd. Then k ∈ C1
(∞)(K̃, L).
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Proof: Let w and w′ be two edge-paths in K̃1. If the terminal vertex
of w coincides with the initial vertex of w′ we will simply denote by ww′

the composition of the two paths. The inverse of an edge gẽ1 will be
denoted by gẽ1.

For all x ∈ X and all g ∈ G there exist constants H1, H2 ≥ 0 such
that: {

ν(w(gẽ0)gẽ1
x) + H1 = ν(w(gxẽ0))

ν(w(gxẽ0)gẽ1
x) + H2 = ν(w(gẽ0)).

This is equivalent to:
{

ν(w(gẽ0)) + 〈m, gẽ1
x〉 − C‖z‖∞ + H1 = ν(w(gxẽ0))

ν(w(gxẽ0)) − 〈m, gẽ1
x〉 − C‖z‖∞ + H2 = ν(w(gẽ0))

and hence H1 + H2 = 2C‖z‖∞ and

0 ≤ ν(w(gxẽ0)) − ν(w(gẽ0)gẽ1
x)

= ν(w(gxẽ0)) − ν(w(gẽ0)) − 〈m, gẽ1
x〉 + C‖z‖∞

= H1 ≤ H1 + H2 = 2C‖z‖∞.

This implies:

0 ≤ k(gẽ1
x) + C‖z‖∞ = ν(w(gxẽ0)) − ν(w(gẽ0)) − ν(gẽ1

x)

= ν(w(gxẽ0)) − ν(w(gẽ0)gẽ1
x) ≤ 2C‖z‖∞

and therefore |k(gẽ1
x)| ≤ C‖z‖∞.

Note that w(gλẽ0
λ) is an edge-path from ẽ0 to gλẽ0

λ and gẽ1
λ is an edge

from gẽ0 to gẽ0
λ. Moreover, h = (gλ)−1g ∈ Hλ and that gλẽ1

h is an edge

from gλẽ0
λ to gẽ0

λ. With this notation we obtain that w(gλẽ0
λ)(gλẽ1

h)(gẽ1
λ)

is a path from ẽ0 to gẽ0 and w(gẽ0)(gẽ1
λ)(gλẽ1

h) is a path from ẽ0 to gλẽ0
λ.

Therefore there exist constants H3, H4 ≥ 0 such that:
{

ν(w(gẽ0)) = H3 + ν(w(gλẽ0
λ)(gλẽ1

h)(gẽ1
λ))

ν(w(gλẽ0
λ)) = H4 + ν(w(gẽ0)(gẽ1

λ)(gλẽ1
h)).

This is equivalent to:
{

ν(w(gẽ0)) = H3 + ν(w(gλẽ0
λ)) − 〈m, gẽ1

λ〉 − 2C‖z‖∞

ν(w(gλẽ0
λ)) = H4 + ν(w(gẽ0)) + 〈m, gẽ1

λ〉 − 2C‖z‖∞.

As above we obtain

0 ≤ ν(w(gλẽ0
λ)) − ν(w(gλẽ0

λ)(gλẽ1
h)(gẽ1

λ)) = H3 ≤ H3 + H4 ≤ 4C‖z‖∞
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and therefore

k(gẽ1
λ) + 2C‖Z‖∞ = ν(w(gλẽ0

λ)) − ν(w(gλẽ0
λ)(gλẽ1

h)(gẽ1
λ)) ≤ 4C‖z‖∞.

Here we have used that 〈m, gẽ1
h〉 = 0 for all g ∈ G and all h ∈ H.

Proof of Theorem 1: By definition, H2
(∞)(G, H) = H2

(∞)(K̃, L). Let z

be a bounded relative 2-cocycle of (K̃, L). Since H2(K̃, L) = 0, z is a
relative 2-coboundary, z = δm. From Proposition 4.5, k = −m + δd is
a bounded relative 1-cochain. But δ(−k) = δm = z. Therefore z is a
bounded relative 2-coboundary. Whence the vanishing of H2

(∞)(G, H).

For the strong vanishing, just defining σ(z) = −k yields the announced
section since ‖σ(z)‖∞ = ‖k‖∞ ≤ 4C‖z‖∞.

5. A converse to the combination theorem

5.1. Definitions and statement of theorem. Let G be a group and
let H = (Hλ)λ∈Λ be a family of subgroups of G.

Assumption 5.1. We shall suppose in the sequel that Hλ and Hλ′ are
not conjugated for λ 6= λ′. Moreover the Hλ’s are infinite subgroups.

Definition 5.2. A relative automorphism of (G, H) is an automor-
phism α of G which preserves H up to conjugacy. More precisely, there
is a permutation σ ∈ Sym(Λ) such that for any λ ∈ Λ there is gλ ∈ G
such that α(Hλ) = g−1

λ Hσ(λ)gλ i.e. we have igλ
◦ α(Hλ) = Hσ(λ) where

igλ
is an inner automorphism of G. We call σ the permutation associ-

ated to α. If σ is the identity we will say that α fixes H up to conjugacy.
The group of relative automorphisms will be denoted by Aut(G, H) and
the subgroup of relative automorphisms which fix H up to conjugacy
by Aut0(G, H).

Let A = {a1, . . . , an} be a finite set and let Fn = 〈A〉 be the free group
with basis A. All the free groups considered are finitely generated free
groups. We will denote by |w|Fn

or |w|A the word-length of an element
of Fn, depending on whether the basis A has been specified or not. Our
convention is that the distance between g and h in the free group is given
by |g−1h|Fn

.
We suppose that there is an injective homomorphism

α : Fn → Aut(G, H). We will denote αi := α(ai) ∈ Aut(G, H) and more
generally αa := α(a) i.e. for all a, a′ ∈ Fn we have αaa′ = αa ◦ αa′ .

We will define a new pair (GA, HA) in the following way: we let GA

denote the semidirect product GA = G ⋊α Fn i.e. ga · g′a′ = gαa(g′) aa′.
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For each λ ∈ Λ we denote

Hλ := {ga ∈ GA | αa(Hλ) = g−1Hλg}.

It is easy to see that Hλ ⊂ GA is a subgroup and that Hλ < Hλ.

Remark 5.3. If G is strongly hyperbolic relative to H, then G ∩ Hλ =
Hλ. Indeed, by definition, if g ∈ Hλ then Hλ = g−1Hλg, which is
forbidden by the strong relative hyperbolicity (parabolic subgroups are
almost malnormal) if g /∈ Hλ.

Remark 5.4. If there exists gbb ∈ GA such that αb(Hλ) = g−1
b Hσ(λ)gb

then the subgroups Hλ and Hσ(λ) are conjugate.

In order to obtain a family of non conjugated subgroups HA of GA

we are proceeding as follows:

Definition 5.5 (Fn-extension of H). For each i = 1, . . . , n, we let
σi ∈ Sym(Λ) denote the permutation associated to αi and we let U =
〈σ1, . . . , σn〉 < Sym(Λ) denote the subgroup generated by the σi. Let
L ⊂ Λ be a system of orbit representatives i.e.

Λ =
⊔

λ∈L

U · λ.

We now define a Fn-extension HA by HA = (Hλ)λ∈L.

Note that the groups Hλ, λ ∈ L, are uniquely defined up to conjugacy
in the group GA.

Let us now recall the definition of a “uniform free group of relatively
hyperbolic automorphisms”:

Definition 5.6 ([9]). Let P = 〈X,H;S,R〉 be a finite relative pre-
sentation of a group G. A uniform free group of relatively hyperbolic
automorphisms of (G, H) is a free group Fn together with a monomor-
phism α : Fn → Aut(G, H) for which there exists λ > 1, N, M ≥ 1 such
that, for any g ∈ G with lX∪H(g) ≥ M , any pair of a, b ∈ Fn with
|a|Fn

= |b|Fn
= N and |a−1b|Fn

= 2N satisfies:

λlX∪H(g) ≤ max(lX∪H(αa(g)), lX∪H(αb(g))).

With these definitions in mind, the reader can now go back to The-
orem 2, which is the theorem we are going to prove. We will however
adopt the following:

Assumption 5.7. We will assume for the moment that α :Fn→Aut0(G, H).
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As we shall see, the general case is a straightforward implication of
this particular case.

As in Theorem 2, we will assume that G is a group which is strongly
hyperbolic relative to a finite family H of finitely generated subgroups

(Hi)
k
i=1. Under the finiteness hypothesis of H, the automorphisms con-

sidered induce quasi isometries on the group G equipped with the relative
metric.

Assume that a finite relative presentation P = 〈X,H;S,R〉 has been
chosen. Let (K, L) be a canonical CW-pair for P where each connected
component Lλ of L is a K(Hλ, 1), and such that the 1-cells in L are in
bijection with the generators of the subgroups in H. For each automor-
phism αi we choose a cellular map fi : (K, L) → (K, L) with (fi)# = αi

which fixes the base-point e0 and such that fi(Lλ) ⊂ Lλ for each con-
nected component Lλ of L. Let K(GA) be the graph of spaces defined
as follows:

• The associated combinatorial graph Γ is the rose with n petals i.e.
the one point union ∨n

i=1S
1 labelled by the ai’s.

• The edge and vertex spaces are copies of the complex K.
Let us recall that, over each open edge of Γ, G is homeomorphic

to K × (0, 1).
• The space K × {0} (resp. K × {1}) associated to the edge with

label ai is glued along the vertex space K by the map fi (resp. by
the identity-map).

It is easily checked that Lλ ⊂ K gives rise to a subcomplex Lλ(GA)
and hence a CW-pair, denoted by (K(GA), L(GA)). Observe in par-
ticular that, by construction, each connected component Lλ(GA) is a
K(Hλ, 1).

Since G is strongly hyperbolic relative to H, G admits a finite pre-
sentation relative to H. Let 〈X,H | R,S〉 be such a finite relative pre-
sentation. By the assumption α(Fn) ⊂ Aut0(G, H), for each ai ∈ A,
for each Hλ ∈ H, there is gi,λ ∈ G such that αi(Hλ) = g−1

i,λHλgi,λ. We

denote by Si,λ such a relation. Let S′ be the union of the relations in S
with the relations Si,λ. Let R′ be the union of the relations in R with

the relations αi(xj) = aixja
−1
i . Then GA admits 〈X,A, HA | R′,S′〉 as

finite relative presentation.

Remark 5.8. Constructing a finite relative presentation for (GA, HA)
as above is not so hard when α(Fn) ⊂ Aut0(G, H). However, if the
automorphisms αi only preserve H up to conjugacy, such a finite relative
presentation does not come so easily without the finite generation of G
(or of the Hλ’s).
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Assumption 5.9. In what follows, the CW-pairs (K, L) and
(K(GA), L(GA)) are graph of spaces as detailed above.

With this assumption, (K, L) is canonically embedded in
(K(GA), L(GA)) since Γ has a unique vertex. We denote by j : (K, L) →
(K(GA), L(GA)) this embedding. As suggested by the notation, it sat-
isfies j(L) ⊂ L(GA) (j is the embedding which induces the canonical
injection of G in GA). The situation is similar for the universal cov-

erings, which we denote by π : K̃ → K and πA : K̃(GA) → K(GA)

(π−1
A (j(K)) consists of an infinite number of copies of K̃ = π−1(K)).

Definition 5.10. A horizontal edge-path in K̃(GA) is an edge-path γ
between two lifts of the base-point e0 which is contained in a connected

component K̃ of π−1
A (j(K)) (the lift, under πA, of the complex K canon-

ically embedded in K(GA)).
A horizontal geodesic is a horizontal edge-path which defines a geo-

desic of K̃ equipped with the L-relative metric.
If g ∈ G is given and ẽ0 is a lift of the base-point e0, a corri-

dor Cg in K̃(GA) is a union of horizontal geodesics which contains, for
each a ∈ Fn, exactly one horizontal geodesic, denoted by γg(a), from aẽ0

to aαa−1(g)ẽ0.

Remark 5.11. Let us briefly describe the action of GA on K̃(GA). Any
element in GA is uniquely written as ga with g ∈ G ⊳ GA and a ∈ Fn <

GA. The action on K̃(GA) is a left-action by translation, the image of

x ∈ K̃(GA) is noted gax. An element g ∈ G preserves the maximal
horizontal sets, in the sense that the image gx of x belongs to the same
maximal horizontal subset containing x, i.e. there is a horizontal geo-

desic from x to gx. There is projection of K̃(GA) onto Γ(Fn,A) (the
Cayley graph of Fn with respect to A). These maximal horizontal sub-
sets correspond to the pre-images of the vertices under this projection.
Observe that the action induced by g ∈ G on the points projecting to
a ∈ Γ(A) is twisted by αa−1 . An element a ∈ Fn translates the maximal
horizontal sets: it sends the point x = ga′ẽ0 to the point αa(g)aa′ẽ0.

A horizontal edge-path in K̃(GA) projects under πA to a closed path
representing an element in a conjugate of G < GA.

A horizontal geodesic is not necessarily (and most often won’t be) a

geodesic for (K̃(GA), L(GA)) equipped with the L(GA)-relative metric.

The fibers K̃ in π−1
A (j(K)) are indeed distorted (from a geometrical point

of view) in the total space.
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Definition 5.12. A corridor Cg is (λ, N, M)-separated, with λ > 1,
N, M ≥ 1, if for any horizontal geodesic γg(w) ∈ Cg with lrel(γg(w)) ≥
M , any pair of elements u, v ∈ Fn with |w−1u|Fn

= |w−1v|Fn
= N and

|u−1v|Fn
= 2N satisfies:

λlrel(γg(w)) ≤ max(lrel(γg(wu)), lrel(γg(wv))),

where lrel(.) refers here to the horizontal metric, i.e. the L-relative metric.

Remark 5.13. If there exist λ > 1, M, N ≥ 1 such that all corridors

of (K̃(GA), L(GA)) are (λ, M, N)-separated then Fn is a uniform free
group of relative automorphisms of G.

The theorem we want to prove is:

Theorem 5.14. Let G be a group which is strongly hyperbolic relative to
a finite family H of finitely generated subgroups. Let α : Fn → Aut0(G, H)
be a monomorphism, and let A be a basis of Fn. If H2

(∞)(GA, HA)

strongly vanishes, then there exists λ > 1, N, M ≥ 1 such that the

corridors of (K̃(GA), L(GA)) are (λ, N, M)-separated.

Remark 5.15. The strong exponential separation property of [9] involves
another condition, which is the exponential separation of any two vertices
representing elements in distinct right H-classes, even if the (relative)
distance between these vertices is smaller than the constant M . This
condition is obviously necessary, this is most easily seen with Farb’s
approach [8]: not satisfying this property contradicts the BCP, and has
nothing to do with ℓ∞-cohomology. This is why we do not evoke it in
Theorem 5.14 above.

5.2. From Theorem 5.14 to Theorem 2. The full statement of The-
orem 2, i.e. when α(Fn) is not necessarily contained in Aut0(G, H), is
deduced from Theorem 5.14 thanks to the following four lemmas. In or-
der to proceed, we fix a monomorphism α : Fn → Aut(G, H). We denote
by α0 the restriction of α to F0 := α−1(Aut0(G, H)). We set A and A0

two basis respectively of Fn and F0.

Lemma 5.16. With the above notations: the subgroup F0 is a finitely
generated subgroup of Fn and its natural embedding in Fn defines a quasi
isometry between F0 and Fn.

Proof: Since the family H is finite, F0 is of finite index in Fn. [12,
Proposition 3.19] gives the lemma.
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Lemma 5.17. Let Γ be a finitely generated group which admits a finite
presentation relative to a finite family of finitely generated infinite sub-
groups, denoted by H = (Hj)

k
j=1. Let Γ0 < Γ be a subgroup of finite

index p ∈ N.
We fix a finite system {gij | j = 1, . . . , k, i = 1, . . . , pj} of representa-

tives for the double cosets Γ0/Γ\Hj and we define a finite family of sub-

groups of Γ0 by Hij := (gijHjg
−1
ij )∩Γ0. Let H0 be the family (Hij)

pj ,k

i,j=1.

Then H2
(∞)(Γ0, H0) strongly vanishes if and only if H2

(∞)(Γ, H) strongly

vanishes.

Proof: We consider a canonical CW-pair (K, L) for (Γ, H). Since Γ0 <
Γ is of finite index, a finite covering of (K, L) gives a (not necessarily
canonical) CW-pair (K0, L0) for (Γ0, H0) (see [18, 3.12, 3.13]). Since the
covering is finite, one can pass from (K0, L0) to a canonical pair (K ′

0, L
′
0)

for (Γ0, H0) by a finite sequence of elementary expansions and collapses.
Moreover one can choose such a finite sequence so that:

(a) one collapses a maximal tree in each connected component Lλ ⊂ L0

and we let denote L′
λ ⊂ L′

0 the resulting subcomplex with base
vertex e′λ,

(b) one expands at each e′λ to get an edge e1
λ and we let denote K ′ the

resulting complex, L′
0 ⊂ K ′ and e1

λ ∈ K ′
r L′

0,

(c) one collapses to a 0-cell denoted by e0 a maximal tree in the comple-
ment of L′

0∪ (∪λ∈Λ{e
1
λ}). We let denote K ′

0 the resulting complex.

Let X0 be the closed complement of L0 in K0. Let X ′
0 be the image

of X0 in K ′
0 under the above collapses. Then the relative 1-skeleton

of K ′
0 (that is the 1-skeleton outside L′

0) consists of the 1-skeleton of X ′
0,

the 0-cell e0 and the finitely many 1-cells {e1
λ} (see an example just after

this proof).
By following the procedure described above one ensures that the as-

sociated elementary expansions and collapses from K0 to K ′
0 do not

modify the second relative l∞-cohomology group, that is H2
∞(Γ0, H0) =

H2
∞(K̃0, L0) (see Section 2). Moreover, since (K0, L0) is a covering

of (K, L), the pairs (K, L) and (K0, L0) have same universal covering

(K̃, L) = (K̃0, L0) thus in particular H2
∞(K̃0, L0) strongly vanishes if

and only if H2
∞(K̃, L) = H2

∞(G, H) does. The lemma follows.

Example. Let (K, L) be a graph which is a canonical pair for the rank 3
free group Γ with the finite relative presentation Γ = 〈X, H1, H2〉 (no
relations) where Hi = 〈hi〉. Let p : E → Z/2Z be the epimorphism
defined by p(X) = 0 and p(hi) = 1 and let Γ0 = Ker(p). The figure
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below illustrates what happens when taking the finite covering (K0, L0)
of (K, L) associated to Γ0, and then applying the elemantary collapses
and expansions described in the proof of Lemma 5.17 to get a canonical
pair (K ′

0, L
′
0) for Γ0. The associated finite relative presentation is Γ0 =

〈X0
1 , X0

2 , X0
3 , H0

1 , H0
2 〉 where p(X0

1 ) = X , p(X0
2 ) = h1Xh−1

1 , p(X0
3 ) =

h1h2 and H0
i := Γ0 ∩ Hi = 〈h2

i 〉.

(K,L) (K0,L0)

L1 L2
p

←−

L
′

1 L
′

2

e
′

1
e
′

2

(K ′,L′

0
)

e
1

1
e
1

2

(K ′

0
,L′

0
)

e
1

1
e
1

2e
0

L
′

1
L
′

2

Figure 2

We define GA := G ⋊α Fn and GA0
:= G ⋊α0

F0. As in Definition 5.5
let HA be the Fn-extension of H and let HA0

be the F0-extension of H

i.e.
HA = (Hλ)λ∈L and HA0

= (H0
λ)λ∈Λ

where H0
λ = {ga ∈ GA0

| αa(Hλ) = g−1Hλg}.

Lemma 5.18. H2
(∞)(GA, HA) strongly vanishes if and only if

H2
(∞)(GA0

, HA0
) does.
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Proof: Since the parabolic subgroups in H are finitely generated and in
finite number, and since G admits a finite presentation relative to H,
G is finitely generated. Therefore GA is also finitely generated. Since
F0 is a finite index subgroup of Fn, GA0

is a finite index subgroup of GA.
Moreover we have for every λ ∈ L that H0

λ = Hλ ∩ GA0
. If µ ∈ Λ r L

then there exist λ ∈ L and ga ∈ GA such that gaHλa−1g−1 = Hµ (see
Remark 5.4). Hence

gaHλa−1g−1 ∩ GA0
= Hµ ∩ GA0

= H0
µ.

The family HA0
= (H0

λ)λ∈Λ is clearly a maximal family of non conjugated
subgroups, i.e. is a family as defined in Lemma 5.17. We can thus apply
this lemma, which gives the announced conclusion.

Lemma 5.19. Assume that F0 is a uniform free group of relatively
hyperbolic automorphisms. Then Fn is a uniform free group of relatively
hyperbolic automorphisms.

Proof: We begin by the following:

Claim 1. Assume that Fn is not a uniform free group of relatively hy-
perbolic automorphisms. Then for any sufficiently large M > 0 and
N ≥ 1, for any λ > 1, there exist three elements g, αw0

(g), αw1
(g) in G

satisfying the following properties:

(a) wi ∈ F0, |wi|F0
≥ N , |w−1

1 w2|F0
= |w1|F0

+ |w2|F0
,

(b) lrel(g) ≥ M and lrel(αwi
(g)) < λlrel(g).

Proof: If Fn is not a uniform free group of relatively hyperbolic au-
tomorphisms then: For any M > 0, N ≥ 1 and λ > 1, there exist
three elements g, αw0

(g), αw1
(g) in G, with lrel(g) ≥ M , |wi|A = N ,

|w−1
1 w2|A = 2N and lrel(αwi

(g)) < λlrel(g).
By Lemma 5.16, F0 is quasi-isometrically embedded in Fn. Thus for

every finite basis A0 of F0 there exists µ ≥ 1 such that, for any w ∈ F0:

1

µ
|w|A ≤ |w|A0

.

Still by Lemma 5.16, there is C > 0 such that each wi is C-close, for
some positive constant C, to an element w′

i ∈ F0. If N is strictly greater

than C, we can assume |w′
0
−1

w′
1|A0

= |w′
0|A0

+ |w′
1|A0

.
From the above two observations, we get µ ≥ 1, C ≥ 0 and two

elements w′
i ∈ F0 with |w′

0
−1w′

1|A0
= |w′

0|A0
+ |w′

1|A0
such that:

1

µ
|w|A − C ≤ |w′

i|A0
.
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The automorphisms act by quasi isometry on G equipped with the
H-relative metric (the length-metric defined by the H-relative length de-
fined earlier). Since the distance in Fn from w′

i to wi is bounded above
by C, we get a constant D ≥ 1 such that

lrel(αw′

i
(g)) ≤ Dlrel(αwi

(g)).

The proof of the claim readily follows from the above observations.

As an easy consequence of the definition of a uniform free group of
relatively hyperbolic automorphisms (and using the fact that automor-
phisms act by quasi isometries —this is needed for the existence of C
below) we have:

Claim 2. Assume that F0 is a uniform free group of relatively hyperbolic
automorphisms. Then there are M, N ≥ 1, λ > 1, C > 0 such that, for
any g ∈ G with lrel(g) ≥ M , for any integer j ≥ 1, for any u, v ∈ F0 with
|u|F0

≥ jN , |v|F0
≥ jN and |u−1v|F0

= |u|F0
+ |v|F0

,

Cλj lrel(g) ≤ max(lrel(αu(g)), lrel(αv(g))).

Claims 1 and 2 are obviously in contradiction. We so get the lem-
ma.

Proof of Theorem 2 assuming Theorem 5.14: The implication (a) ⇒ (b)
comes from Theorem 1. Assume now that H2

(∞)(GA, HA) strongly van-

ishes. By Lemma 5.18, H2
(∞)(GA0

, HA0
) strongly vanishes. By Theo-

rem 5.14 and Remark 5.13, F0 = 〈A0〉 is a uniform free group of relatively
hyperbolic automorphisms. By Lemma 5.19, Fn = 〈A〉 is a uniform free
group of relatively hyperbolic automorphisms. We so proved (b) ⇒ (c).
The implication (c) ⇒ (a) is the content of [9].

Remark 5.20. The essential difference between the general case of The-
orem 2 and the particular case where the automorphisms fix each sub-
group of H up to conjugacy lies in the fact that in the first case G,
equipped with the “HA ∩ G-relative metric”, is not quasi isometrically
embedded in itself by the automorphisms of 〈A〉. This quasi isometric
embedding is used in a crucial way when working with corridors in the
next section.

6. Proof of Theorem 5.14

We follow the strategy of [11]. In Lemma 6.1 below, we give a key
inequality which was proven there for the usual hyperbolic setting and
whose generalization to the relative setting is straightforward:
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Lemma 6.1. Assume that G is strongly hyperbolic relative to H and let

(K, L) be a canonical CW-pair for (G, H). Let z = δh ∈ B2
(∞)(K̃, L). Let

D be a filling of a closed edge-path w in K̃1. Then 〈z, D〉 ≤ ||h||∞lrel(w).
In particular, in the case of strong vanishing of the bounded relative

2-cohomology, there exists C > 0 such that, for any filling D in K̃2,
〈z, D〉 ≤ Clrel(∂D).

Remark 6.2. By definition of a corridor C := Cg (g ∈ G is fixed)

in K̃(GA), a unique horizontal geodesic γg(a) in C is associated to each
element a ∈ Fn. Two geodesics γ := γg(a) and γ′ := γg(a

′) of C are called
consecutive if |a−1a′|A = 1. We suppose for the moment that a′ = aaǫ

i .
The horizontal path γ′′ = aǫ

i · γ has the same endpoints as the horizon-
tal geodesic γ′. Hence there is a horizontal filling D′ := D′

γ′,γ′′ of the

loop γ′(γ′′)−1. There is a loop given by aǫ
iγ

′′a−ǫ
i (γ′)−1. Let D′′ denote

a filling of this loop. A filling Dγ,γ′ of two consecutive geodesics γ, γ′

in C is defined by concatenating D′ and D′′. By concatenating the fill-
ings Dγ,γ′ so defined for each pair of consecutive horizontal geodesics
in C, we get a “filling” of C.

Since a corridor projects onto the Cayley graph Γ(Fn,A) of Fn, which
is a tree, there is a notion of “side” and of “betweenness” for the points
in the corridor which are naturally induced by the tree-structure: Two
points x, y in a corridor are on distinct sides of a third point z if the
projections of x and y in Γ(Fn,A) lie in distinct connected components
of the complement of the projection of z in Γ(Fn,A). We also say that
z lies between x and y. From this point, the reader should have in mind
these notions.

The following lemma is a straightforward generalization, to the rela-
tive setting, of [11, Proposition 3.1].

Lemma 6.3. Let C := Cg be a corridor in (K̃(GA), L(GA)). Let u, v be
two elements of Fn and let w1, . . . , wn, w1 = u, wn = v be the elements
of Fn in the geodesic, in Γ(Fn,A), from w1 to wn. Let Cu,v be the union
of the horizontal geodesics γi := γg(wi) in C.

There is a filling D of Cu,v and z ∈ Z2
(∞)(K̃(GA), L(GA)) such that

〈z, D〉 =

n−1∑

i=1

lrel(γi).

Proof: We follow the proof of [11]. We denote by i(p) and t(p) the
initial and terminal points of an oriented edge-path p. We first define

a bounded relative 1-cocycle of (K̃, L) by setting, for any horizontal
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edge ẽ: f(ẽ) = drel(ẽ
0, t(ẽ))−drel(ẽ

0, i(ẽ)), where drel denotes the relative

distance in (K̃, L). Obviously, when applied to a geodesic horizontal

edge-path γ in K̃(GA), we get 〈f, γ〉 = lrel(γ) = drel(ẽ
0, t(γ)). We define

a 2-cochain z by:

• 〈z, c〉 = 1 if the bottom (this notion refers to the natural orien-
tation of the geodesic from u to v in Γ(Fn,A)) of c is a 1-cell ẽ1

x

in Cu,v, where the ẽ1
x are the lifts, under πA, of the 1-cells e1

x in j(K)
(the image of K in K(GA) under its canonical embedding), i.e. the
1-cells associated to the finite set X in the finite relative presenta-
tion of G;

• 〈z, c〉 = 0 if the bottom of c is a 1-cell in Cu,v ∩ π−1
A (j(L)), i.e. the

lift of a 1-cell coming from the relative part of G;

• 〈z, c〉 = 1
2 if the bottom of c is a 1-cell ẽ1

λ in Cu,v, i.e. the lift
under πA of a 1-cell between the base point of the complex and
the base point of some Lλ;

• 〈z, c〉 = 0 if c is any other 2-cell, in particular if c is a horizontal
2-cell.

The key-observation is the following one: if h is a horizontal edge-
path, the value of z on the sum of 2-cells which have a 1-cell of h as

bottom is equal to the value of f on h. Since f is a 1-cocycle of (K̃, L),
the product-structure of K(GA) then implies that z vanishes on the

2-boundaries of (K̃(GA), L(GA)), i.e. z is a 2-cocycle. By construction,
z vanishes on L(GA), i.e. is a relative 2-cocycle. When applying the key-
observation above to the filling D between two consecutive geodesics γ, γ′

in Cu,v as described in Remark 6.2, we get 〈z, D〉 = 〈f, γ〉 = lrel(γ). We
so get the announced equality.

Given a corridor Cg and a horizontal geodesic γg(w) in Cg, we say
that two horizontal geodesics γg(w0) and γg(w1) in Cg are in a same side
of γg(w) if and only if the geodesic in Γ(Fn,A) from w0 to w1 does not
contain w. A side of γg(w) in Cg is then a maximal union of horizontal
geodesics in Cg which are all in a same side of γg(w).

Lemma 6.4. There exists λ+ > 1 and M ≥ 1 such that, if γ is a
horizontal geodesic in a corridor C with lrel(γ) ≥ M then there is at
least one side of γ in C such that any horizontal geodesic γ′ in this side
satisfies lrel(γ

′) ≥ 1
λ+

lrel(γ).

Proof: As was already observed, the finiteness of H implies that the
relative automorphisms αi associated to the ai’s generating Fn act by
quasi isometries on G equipped with the H-relative metric. Thus, there
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is µ > 1 such that, if γ0 is a horizontal geodesic in C consecutive to γ,
then lrel(γ0) ≥

1
µ
lrel(γ).

The strong vanishing of H2
(∞)(GA, HA) gives a positive constant C

such that 〈z, D〉 ≤ Clrel(∂D) (C is the supremum of ||σ(z)||∞ where σ is
the bounded section given by the strong vanishing).

Assume the existence, in C, of a horizontal geodesic γ such that there
exist two horizontal geodesics γ0 := γg(w0), γ1 := γg(w1) in two distinct
sides of γ in C, satisfying the following properties for some integer j ≥ 1
(we want to prove that j cannot be chosen arbitrarily large):

(a) lrel(γi) < 1
µj lrel(γ),

(b) no horizontal geodesic in C between γ and γi satisfies the above
inequality,

(c) 1
µj lrel(γ) ≥ 3C.

We consider a filling D of the subset of C between γ0 and γ1, and a

cocycle z ∈ Z2
(∞)(K̃(GA), L(GA)) as given by Lemma 6.3. We want to

find a minoration of 〈z,D〉
lrel(∂D) which tends toward infinity with j.

Claim 3. 〈z,D〉
lrel(∂D) is minimal when the |wi|A’s are minimal.

Proof: Let Amin and Lmin be equal to the values respectively of 〈z, D〉
and lrel(∂D) when the |wi|A’s are minimal. From (c) above, if lrel(∂D) =

Lmin + x, then 〈z, D〉 ≥ Amin + Cx. Thus 〈z,D〉
lrel(∂D) ≥ Amin

Lmin
if and only if

C ≥ Amin

Lmin
. As was observed before, this last assertion is true thanks to

the strong vanishing of H2
(∞)(GA, HA), which proves the claim.

From our starting observation, Item (a) implies |wi|A ≥ j +1. By the
claim, we can assume |wi| = j + 1. Then lrel(∂D) ≤ 4(j + 1) + 2

λj lrel(γ),

whereas 〈z, D〉 ≥ ( 2
λ

+ · · · + 2
λj−1 + 1

λj + 1)lrel(γ). It follows that the

quotient 〈z,D〉
lrel(∂D) always tends toward infinity with j. As was observed

before, this gives a contradiction with the strong vanishing of the second
relative ℓ∞-cohomology group and Lemma 6.4 follows.

Proof of Theorem 5.14: We argue by contradiction. By a translation
in GA, in order to simplify the notations we can take w = 1Fn

in Defini-
tion 5.12. Thus, we assume that, for any λ > 1, for any N, M ≥ 1, there
exist γ := γg(1Fn

), γ0 := γg(w0), γ1 := γg(w1) in a corridor C := Cg

such that lrel(γ) ≥ M , lrel(γi) < λlrel(γ), |w0|A = |w1|A = N and
|w−1

0 w1|A = 2N . From Lemma 6.4, we can assume that between γ0

and γ all horizontal geodesics of C have relative length at least 1
λ+

lrel(γ).



Characterization of Relative Hyperbolicity 513

We once again appeal to Lemma 6.3 for the subset of C between γ0

and γ. We get a bounded relative 2-cocycle z and a filling D with
〈z, D〉 ≥ N 1

λ+
lrel(γ). But lrel(∂D) ≤ 2N + (1 + λ)lrel(γ). As soon

as N , lrel(γ) are sufficiently large enough and λ > 1 sufficiently small
enough, we get a contradiction with the inequality 〈z, D〉 ≤ Clrel(∂D)
given by the strong vanishing of H2

(∞)(GA, HA), hence Theorem 5.14.

Remark 6.5. The finiteness of the family H is essential for Theorem 2.
However the condition of finite generation for the parabolic subgroups
is not necessary if one is only interested in the implication (a) ⇒ (c)
of Theorem 2. This hypothesis is only essential when appealing to [9]
because this last paper uses Farb’s approach to relative hyperbolicity
and so needs the finite generation of the group (which is here implied by
the finite generation of the parabolic subgroups).

For the implication (a) ⇒ (c), we could have required only the finite
generation of GA = G⋊αFn. Even this last assumption would have been
unnecessary if working with a slightly restricted kind of Fn-extensions,
namely those which fix (up to conjugacy) each subgroup of H.
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[1] E. Alibegović, A combination theorem for relatively hyperbolic
groups, Bull. London Math. Soc. 37(3) (2005), 459–466.

[2] J. W. Anderson, J. Aramayona, and K. J. Shackleton, An
obstruction to the strong relative hyperbolicity of a group, J. Group
Theory 10(6) (2007), 749–756.

[3] M. Bestvina and M. Feighn, A combination theorem for nega-
tively curved groups, J. Differential Geom. 35(1) (1992), 85–101.

[4] R. Bieri and B. Eckmann, Relative homology and Poincaré du-
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