AN OPTIMUM PROBLEM IN THE WEINSTEIN METHOD
FOR EIGENVALUES

H. F. WEINBERGER

1. Introduction. The method of Weinstein [1] gives upper bounds for the
eigenvalues \{ > A5 > ... of the projection L’ into a space @ of a completely
continuous positive symmetric operator L in a Hilbert space § with eigenvalues
Ay > Ay, > +... These upper bounds are the eigenvalues )\Szm) of the projection

of L into a space of finite index m,
(1) gée{Ph”"Pm}a

where py, +++, Dy are any vectors in the space

(2) P =95086.

The chief part of the Weinstein method is the explicit determination of the

eigenvalues )\flm) in the space (1) in terms of the eigenvalues and eigenvectors

of L in §. These satisfy
( .
(3) Alm > .

The values )lem) will, of course, depend on the choice of the vectors (p;,
«++, Pp ). It is naturally desirable that the upper bound for a particular eigen-
value X7 should be as small as possible. This paper investigates how small it
can be made for given n and m by a proper choice of the constraint vectors

(Pu'”,Pm)-

Because of the minimax principle, )\flm) must satisfy
(m)
(4) AN eme

Our result is that the inequalities (3) and (4) are the only restrictions on the
smallness of )tfl’"). In other words, for given n and m, there exist vectors (py,

«++, pm) such that the weaker of the inequalities (3) and (4) becomes an equality.
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2. The case of a single constraint. We first prove our result for the case of
the first intermediate problem, that is, for m = 1.

THEOREM 1. For any given n, there is a vector p in the space

(5) P=D ¢

such that, if the projection of L into & @ {p} has eigenvalues

(1 >\ > ...
AV 2 A 2 e,

either

(6) AP =27
or

(7) AMD =)

. , .
according as X} or A . is larger.

Proof. If A7 =\, then (6) is satisfied for any p and there is nothing to
prove. Our theorem thus naturally splits into the two cases A, > A7 > A, and

A7 < A,,,» which we shall prove separately.

3. The case A, > A7 > A .. Let the eigenvector of L’ corresponding to

A; be u;. Its eigenvalue equation can be written in terms of the operator L as
4 ’ ,

(8) Lun—)\nun=p,
where p is some vector in . Let us assume for the moment that p is not a
null vector. Then (8) is an eigenvalue equation for the projection of L into @ but
not for L. Any eigenvector of L corresponding to the eigenvalue A’ must, be-
cause of (8), be orthogonal to p and hence must belong to O {p}. Thus, the
multiplicity of A’ as an eigenvalue of the projection of L into § @ {p} is one
greater than its multiplicity as an eigenvalue of L. Let the latter be r > 0. If
r=0, then A’ > A ., and A} must be AL by the minimax principle. If r > 1,

then A, > A, =-ce=A > A , and the minimax principle gives

n+r+i
1 ’ (1)
(9) Al(l")l 2 )‘n > An 2 )‘nﬂ > >‘n+r+1 2 )‘n+r+1’

Thus, since the multiplicity of A/ in & @ {p} is r+ 1, we must have
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(10) A =\,

so that the vector p in (8) has the property stated in our theorem.
4

B A=A,

means that the eigenvector of L’ corresponding to A’ is also an eigenvector of

but

, it is possible that the vector p in (8) is a null vector. This

L. Suppose that the same is also true of the eigenvalues A7 ,«cc, A7,

not of A7, . We then consider the projections L and L’ into
4
15 @{un, ceey, ur’z+s—1} and @ @{u,;, ceey ur'”s_l}

respectively, and call their eigenvalues Xi and X: Then L’ has the same eigen-
values as L’, except that the eigenvalues Aseees A are removed. The

4
__ n+s—1
same is true of L and L. Then

(11) A= M, <AL

n nts — °'n

If there is a vector p in 8 so that the n-th eigenvalue of L in
£ O {u;, gy p}

is at most )T;, then, because of (11), the n-th eigenvalue of L in § ® {p} is
A, and equation (6) in our theorem will be proved. Now if

(12) Moo= Mo 2 A,

n n

then, since by definition of s the eigenvector of L’ corresponding to A7, is
not an eigenvector of L, the existence of such a vector p follows from the first

part of this paragraph. If, on the other hand, we have

(13) A <A

n n+1?

the existence of this vector p will be assured by the results of the next para-
graph.

A final possibility® is that there is no integer s such that the eigenvector
up+s of L” is not also an eigenvector of L. In other words, all but the first
nt1? the

are the only eigenvectors of L’ which are not orthogonal

n -1 eigenvectors of L are also eigenvectors of L. Then, since A/ = A
’
1’ -1
to uy, Uy, *++ , Up. Therefore there is one linear combination p of up, -« , u,

vectors u’, see«, u;

which is orthogonal to all eigenvectors of L’ and hence belongs to . There can

*This possibility was pointed out by C. Arf in the course of an alternative proof of
the results here presented.
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be at most n ~ 1 eigenvectors of the projection of L into § © {p} which are
not orthogonal to u;, +++, up. Therefore, the n-th eigenvalue of this projection

isA,, = A7, and both equalities (6) and (7) hold.

4. The case A/ < A .. n+1
(7) can be made to hold. This will be done by induction. We first replace the

. We now show that if A7 < A then the equation
space B by a finite space. Since L is completely continuous it follows that
Am — 0 as m — w; therefore there is an integer m such that

(14) An+1 Z_)‘n+)\m+1'

It has been shown by the author [1, 2] that if we let p; be the projection in
P of u;, then the eigenvalues )\flm) of Lin® O {py,-++, pn} satisfy

(15) Alm <x v,
Combining this with (14), we obtain

(
(16) A <AL

Thus, it will suffice to show that if the inequality (16) holds where )\51'”) is
the n-th eigenvalue of L in a space § O {py, +++, pm }, then there is a linear
combination p of the vectors p,, «++ , py such that the n-th eigenvalue of L in
% © tplis A,,,. Our induction proof consists of showing that if (16) holds for
m > 1 then there is a linear combination p” of p _, and p, such that the n-th
eigenvalue of L in § @ {py, +++, p,-, p'lis atmost A, . If /\’(_‘m—l) S Ay
this is obviously true, for we must only take p”=p, _ . Thus, we need to ex-

amine only the case
- - (
(17) /\szm 2) > Aslm 1) s )\"“ > AnM)'

Since, by the minimax theorem,

> }t(m"Z)

nt1 — “n+t1 ?

(18) A

our induction step will be proved if we find p so that the n-th eigenvalue of L
in © O {p1s s Pp-y P’} is equal to either )\fzm) or )\5{1‘:2). In other words,
the induction step is just Theorem 1 in the special case in which § is a 2-
space.

Thus if )\5‘"‘) > AS‘";:Z) the induction is proved by the results of §3. Note

that in the case of a common eigenvector where one had to reduce the proof
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in $3 to the proof of this section, the reduction is to the case )\flm) < )\2’2:2),
which will now be treated.

If )\Slm) < )\Slm+:2), we must construct a linear combination p” of p,,_, and pp,
so that )\51"‘+:2) is the n-th eigenvalue of L in § @ tpy, +++, p,_, P’} Todo
this, we take for p” the linear combination of p, _, and p which is orthogonal
to the eigenvector corresponding to )\S{Z;z). Then A}7% is an eigenvalue of
Lin  @1ipys++ 5P,y P} By the minimax principle, the (n+1)-st eigen-
value in this space is at most )\Slm) < Aﬁ:fl—z). Therefore )\;",:2) must be the n-th
eigenvalue in this space, and p” has the desired property.

Thus, our induction step is proved and Theorem 1 has been shown to hold

in all possible cases.

5. The general intermediate problem. We are now in a position to prove the

more general result announced in the introduction.

THEOREM 2. For any fixed integers m and n, there are vectors py, *++ , Pp

in B which, if used as constraints in the n-th intermediate problem, yield either

(19) Alm =\
or

)
(20) Alm) =y

Proof. We first prove the possibility of the equality (20) when

(21) A

According to Theorem 1 with n + m — 1 substituted for n, there is a vector
p; such that

(22) AL )

ntm-1

n+m

We then apply Theorem 1 to the projection of L into § © tp;} to assert

the existence of a vector p, such that

(23) NE DY
This process is repeated until the equality (20) is obtained. Inequality (21)
assures us that the equality (7) of Theorem 1 will always be attainable.

IfA,,, < A, then there is an integer [ < m such that
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(24) Art S X0 < Aty

We shall show that there are [ vectors py, +++, p; for which

(25) PO
The equality (19) will then hold for any m — 1 vectors p;, , -+« , p, appended to
the first /.

Since A7, > ««+ > A7, |, we can proceed as in the proof of (20) to show
that there are [ ~ 1 vectors p;, -+« , p;_, for which

(26) )‘le::) = Apyye

We now apply Theorem 1 to L in § @ {py, +++, pj_, }. According to (24) and
(26) it is the equality (6) which can be made to hold by a constraint p;. We thus
obtain (25), and Theorem 2 is proved.
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