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l Introduction. In his memoir [l] On the Walsh functions, N. J. Fine util-

ized the algebraic character of the Walsh functions by interpreting them as the

group characters of the group of all infinite sequences of O's and l 's, the group

operation being addition mod 2 of corresponding elements. In this note, we in-

vestigate some properties of real orthogonal systems which are multiplicatively

closed. We show that any infinite system of the stated type is isomorphic with

the group of the Walsh functions. Furthermore, under hypotheses stated in Theo-

rem 3, there is a measurable transformation of the interval 0 ^ x < 1 into

itself, which carries the Walsh functions into the given system of functions.

As is well known, the Walsh functions are linear combinations of the Haar

functions. B. R. Gelbaum [2] gave a characterization of the latter functions in

which the norm of certain projection operators and the linear closure in L of

the set of functions played an essential role. Although the characteristic fea-

tures of the Walsh functions are, aside from orthogonality, totally distinct from

those for the Haar functions, there is some similarity of proof technique in

establishing the characterization.

For the sake of completeness, we define the Rademacher functions {φn{x)\

as follows:

(1.1) φo(x)
1 (0 < x < 1/2)

φo(χ + 1) = φo(χ).
-1 (1/2 < x < 1)

(1.2) φn(x) = φo(2"n) (n = 1, 2, . . . ) .

The Walsh functions, as ordered by Paley [3], are then given by

(1.3) φo(x) = 1,

and

(1.4) if n = 2Uχ + 2n<2 + + 2Uk (nγ < n2 < < τ% ) , then
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Throughout we denote the Lebesgue measure of a set E by μ(E). Equalities

of functions are in the sense of almost everywhere equalities, and considerations

of sets should be interpreted "modulo sets of measure zero".

2. Algebraic correspondence. Let us consider any sequence {An(x)} of

functions satisfying the following conditions:

(2.1) λn{x) is measurable, real valued, and

λn(x + 1) = λnU) in = 0, 1, ••• ),

(2.2) jΓ l λn(x)λm(x) dx= S™.

(2.3) The sequence \λn(x)} is closed under multiplication.

THEOREM 1. Any system of functions satisfying (2.1)-(2.3) is a commuta-
tive multiplicative group.

Proof. Associativity and commutativity are immediate. Let if j be given

nonnegative integers, and let k9 m, and n be defined by the formulas

λj(*) λ/(*) = \k(x), λ?(*) = λ m ( * ) , λj{x) = λB(ίc) .

Then

1= jf1 λ\(x)dx- fo

l λm(x) \n(x) dx .

Hence m = n, and by a renumbering we have λ?(x) = λo(x), for all i. In par-

ticular, λ^(x) = λo(x), and for almost every x either λo(*O = O or λ o ( * ) = l .

Since

y* λ*(x) dx = 1, we have λ o (^) = 1 almost everywhere.

Thus the set \λn(x)\ possesses a multiplicative unit; and since A?(%) = 1

for all i, the set iβ a group.

THEOREM 2. The multiplicative group A with elements λn(x) is isomorphic
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with the multiplicative group Ψ with elements the Walsh functions, ψn(x)

Proof. We first reorder the sequence \λn{x)} Let v0 (x) = λ o ( % ) a n d

ι/ί (x) = λ ^ x ) . For k - 1, 2, , define v2k (x) a s the first se t in the sequence

lλn(x)] which follows v2k-\(x) in that sequence, and which is not a product

of elements of the sequence \λn(x)\ which preceed it in that sequence. For

n = 2 * ι + . . + 2* Γ , kx < k2 < - . . < kΓ9 let vn(x) = Π v kj(x).

By virtue of (2.3), each vn(x) is a λj{x) Also each λj(x) is a vn(x), by

the method of construction, and the representation is easily seen to be unique.

Thus the sequence \vn{x)\ is a rearrangement of the sequence \\n(x)\ The

isomorphism between the groups Λ and Ψ is now evident upon pairing vn(x) and

We have incidentally established the result that any denumerable group all

of whose elements satisfy a2 = 1 is isomorphic to Ψ.

3. Analytic transformation. We introduce the terminology that the subscripts

ht hf *•' * h a r e unrelated if no λιk(x) is a product of the remaining λj (%).

In the proof of Theorem 1, we incidentally established the result that λn(x)

takes on only the values + 1. Let

(3.1) Pk = ix: λk(χ) = 1 ; 0 < x < l } ,

(3.2) Nk = {x: λk{x) = - 1 ; 0 < Λ < U A = 1, 2, ••• .

It is convenient to adopt the convention that Ek and Fk represent some ordering

of the pair P^ and Λ^

LEMMA 1. lfi\f 12, ••• , ir a r e unrelated, then

Proof. Let

r

g(x) = 2 ~r

where
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δ ; = 1 if Ei. = Pi},

and

δ ; = - l if Ei. = Nir

Then g(x) is the characteristic function of ΓK E{.. Hence

( i + δ, λίy iχ))dx

2- / ' 1 + Σ 8/ λl;. + Σ δj δj* λij(x) λ i y , ( * ) + • dx = 2"

since the integral of any product of λ's with unrelated indices is zero.

COROLLARY. Any infinite product of sets E(, without repetitions, has

measure zero.

Proof. Of the subscripts involved in the infinite product, an infinite number

must be unrelated. The product set is thus a subset of a set of measure 2""Γ for

each r.

In the remainder of the discussion it is convenient to revise the notation

so that P&, Nfc, Ek are associated with v2k(x) rather than with λ& (x)

THEOREM 3. If any system of functions satisfy (2.1)-(2.3) and for almost

every choice of E^ as Pjς or Nfc, the set Π^= £& consists of a single point, then

there is a transformation T, defined almost everywhere, of the interval 0 _£ x < 1

into itself with the following properties:

( i ) T, where defined, is one-to-one except possibly over a denumerable

set over which it is two-to-one;

( i i ) vk(x) = ψk(Tx);

(i i i ) T is a measurable transformation;

(iv) For any measurable set E, μ(T~ι E) - μ ( £ ) .

Proof. The hypothesis of the theorem implies that almost every x, 0 <̂  x < 1,

is in exactly one set Π^=o E^m To any such x, x ^L Π~=o Λ ,̂ associate the

number Tx according to the following scheme. Let the Ath position of the dyadic

expansion of Tx be 0 if Ejc-ι = Pk-\ and 1 if £&-i = Nk-ι ^ e thus obtain a

transformation, defined almost everywhere, of the interval 0 <̂  x < 1 into itself.
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Whenever defined, the transformation is one-to-one except possibly on the in-

verse image set of the nonzero dyadic rationale where it is exactly two-to-one.

By virtue of Theorem 2, all we need do to establish ( i i) is to show that

v k {x) = ψ k ( Tx) (k = 0, 1, ). For x C Pk, Tx has the (k + 1 )th place

of its dyadic expansion 0. Hence

Similarly, if x C N^, then

= - 1

In the interval 0 _̂ x < 1, any dyadic interval consists of numbers whose

dyadic expansions have their first r digits α t ar and the remaining digits

arbitrary. The inverse image of such an interval is the set ΠΓ~j£y, where Ej = Py

if αy+i = 0 and Ej = /Vy if αy + i = 1. Lemma 1 shows that the measure of the in-

verse image is 2~Γ. Hence for dyadic intervals, the inverse image is a measur-

able set of the same measure. Since any open set is the union of disjoint dyadic

intervals, the same statement can be made for any open set, and similarly for

any closed, Fσ, or Gg set. A classical argument then shows the statement to be

valid for any measurable set £•
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