THE BOUNDEDNESS OF THE SOLUTIONS OF A
DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN

CHOY-TAX Taawm

1. Introduction. Let Q(z) be an analytic function of the complex variable z

in a domain. In the following we shall be concerned with the differential equa-

tion
d?W

1) — +Q(z) W =0.
dz?

Only those solutions W (z) of (1) which are distinct from the trivial solution
(=0) shall be considered.
For a real-valued continuous solution y (x) # 0 of the differential equation
d2
(2) —y- + flx)y =0,
dx?
where f(x) is a real-valued piecewise continuous function of the real variable
x for 0 < x < @, N. Levinson [1] has shown that the rapidity with which y (x)
can grow, and the rapidity with which it can tend to zero, both depend on the

growth of ¢ (x ), where
(3) alx) = f* f(x) - a| dx,

and ¢ is a real positive constant. \lore precisely, he showed that

1
(4) y(x):O(exp [E a1/? O((x)]),

and that if a(x) = O(x) as x — o, then

1
(5) lim sup |y(x)| exp [E a '/? a(x)l > 0.

X — o<
If there exists a positive constant @ such that d(x) converges as x—» oo, then
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from (4) it follows that every solution y (x) of (2) is bounded as x—> . Levinson
also showed that (4) and (5) are the best possible results of their types.
Along any line of the z-plane, for instance the real axis, the differential

equation (1) has the form
d*w )
(6) el +Q(x) W =0,

where x is real. Along a line, the growth of the solutions ¥ (x) of (6) also
depends on the growth of a function similar to that in (3), and they also satisfy
two relations like (4) and (5). These relations will be established in $2. From

these results, we can obtain sufficient conditions for the boundedness of the
solutions of (1) on a line, or on certain regions of the z-plane.

In §3 we shall investigate the asymptotic behavior of the solutions of (6)
when they are bounded. In §6 we shall give a relation of the boundedness of
the solutions of a self-adjoint differential equation of the third order and a dif-

ferential equation of the second order.

2. Growth of the solutions along the real axis. We now consider equation (6)
where x is real. Let ¢, (x) and ¢, (x) be, respectively, the real and imaginary
parts of Q(x). If

(7) <;5(x)=‘/;x[la—ql(x)l+|q2(x)|]dx,

where a is a positive constant, then ¢(x) determines not only how large a
solution W (x ) of (6) can become, but also determines how small it can become.

These results are contained in the following two theorems.
THEOREM 1. [f

(a) W(x) is a solution of (6),
(b) ¢ (x)is defined as in (7),

then

1 , 1
(8) Wix) = ()(exp [; aV2 qﬁ(x)]), ¥ i(x) = O(exp[g a2 ¢>(x)])

An immediate consequence of this theorem is the following corollary.

CoroLLARY L.1. [very solution W (x) of the equation (6) and its derivative
4
W (x) are bounded as x — @ provided therc exists a positive constant a such

that ¢ (x) converges as x — .

In Theorem 1 we cunnot expect to replace ¢ (x) by a more symmetric form
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j(;x[la - ql(x)l + b - qz(x)|] dx,
where b # 0 and is real, and @ > 0. A counter-example is the differential equation

d*w
— +(1+)W=0,
dx?

which has solutions unbounded as x — .
THEOREM 2. If

(a) W(x) is a solution of (6),
(b) $(x) = 0(x) as x —> 0, where (x) is defined as in (7),

then

1
9) lim sup | W (x)]| exp Y a V% ¢(x)]| > 0.

x - 00

Clearly lim sup |[W(x)| > 0 as x—> o if 4 (x) is convergent.
That (8) and (9) are the best possible results follows from the fact that (4)

and (5) are the best possible results.
We shall now prove Theorem 1 and 2.

Proof of Theorem 1. Let the real and imaginary parts of a solution W (x) of
(6) be u(x) and v(x), respectively. Separating the real and imaginary part of

(6), we obtain
(10) u” + g (x)u~q,(x)v=0,
0.

I

an b g x) ut g, (%) v
Suppose a > 0, and let

(12) H(x) = | W (x)]? + a|W(x) |2 = u?(x) + v (%) + alu?(x) + v(x)].
Then using (10) and (11), we have

dH

X

(13) 2(uru + vvr) + 2aluu’ + vv*)

I

21a - ql(x)] (uu’ + vv?) + 2q2(x) (u’v — wv?).
Using the following inequalities,

2uu’ < a VY% (au? + u?), 2007 < a V% (av? + vr?),
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Z2urv <a V2 (w? 4+ av?), 2uvs < a V(v ? 4 au?),
and (13), we see that
dH

X

2

(14) <a V?la - q,(x)] + |q,(x)]] (u? + v7? + au? + av?)

@V (g = q(x)] 4 g () ]) I
Since 7{ > 0, we have

(15) iGZ—H<"‘“‘ (x) (x) |1
5 = — <a Ml - ()] + 1g,(0)]]

Integrating (15) from 0 to x, we obtain

(16) H(x) < H(0) expla™? ¢(x)].

In view of the definition of // (x ), the expression in (6) is equivalent to the two

in (8). This completes the proof of Theorem 1.

Proof of Theorem 2. In ruch the same way as in the preof of Theorem 1, it

is easy to show that

1 di g
iR CET A A

Consequently, we have

17 Hix) = W)+ a|W(x)]? > C expl-a V2 ¢(x)].

For eacl positive integer n, let x,, x;, x7” be points in the interval n <x <n + |
I g ’ n> Xny Xp p SX S

such that
|5 (x )] = max [ ¥ (x)|, |udx)| = min [u(x)], |v*(x7)| = min|v-(x)]|

in the interval n < x < n + 1. Integrating (10) from x; to x, and (11) from x; to

%, We obtain

(18) wr(x) = ) + [ 1= g,(2) u(x) + g (x) v(2)] dx

IN

wr )|+ (W) ] ™ g )]+ (o) ]) da,

(19) v(x,) = v’(x,'l') + j:f,n [—qz(x) u(x) — ql(x) v(x)] dx

n

IN

[or ) ]+ (WG] L7 g, ()] + g, ()] o
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Since
|7 (xp) | < Jurlxg)] + |07 ()1,

(18) and (19) yield
(20) W7 Cxn )| < ur(xp) | + [vrla)) ]
+ 2| W (x,) | jn”“ g ()] + 1g,(2) |1 dx.

Clearly either |u“(x”)| = 0 or u*(x) does not change sign inn <x < n + 1. If

u’(x) does not change signinn < x < n + 1, we have

(21) 2 max lu(x)| > |u(n+1) —u(n)| = |j,;n+1 ux) dx| > lu’(x,:)l
n<x<n+l
Obviously (21) holds if | u'(x’:)l = 0. So (21) is always true. Hence
(22) 2|W(xy)| > 2 max . lu(x)| > [u(x))].
n<x<nti
Similarly,
(23) 2[W(x,) | > v ()],
Substitution of (22) and (23) into (20) yields
(24) W2 (x,)] < |W(xp)] 14 + 2 jl;nﬂ[\ql(x)\ + 1, ()] dxb.

From (17) and (24), we obtain

25) W) 212 L7 g ()] + (g, (0)]) dx]? + al

> Cexpl-a V2 ¢(x,) 1.

Since ¢(x) = O(x) as x — o, it is easy to show that, for an infinite number ot

n,

f”ﬂ (g, ()] + g, (x)]] dx

n

is bounded. Thus for an infinite number of n, we have the inequality
(26) [H(x,) % expla™? &(x,)1 > C,

for some positive constant C;. Consequently (26) yields the result
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r _
lim sup | W (x) | exp[; a V? (,r')(x\] > 0.

X —0c
This completes the proof of Theorem 2.

4. Asymptotic behavior of the solutions. If ¢(x) converges as x — w, the
solutions W (x) of (6) are not only bounded, but also resemble the solutions of
the differential equation

. d2 W }

(27 — +al = 0.
dx”

This result is proved in the following theorem.
TrEOREM 3. If

(a) W(x) is a solution of (6),
(b) ¢(x), defined as in (7), converges as x —> w,

then for some complex constants A and B,

(28) lim [W(x) — (A sinya x + B cos\/a x)] = 0.

Proof of Theorem 3. Lety (x) and y (x) be two linearly independent so-
lutions of the equation (27) such that

(29) y,(0) =0, ¥/(0) =15 y,(0)=1, y/(0)=0.
Rewrite (6) in the form
d*y
dx?

(30) +all =la=-00x)1 W.

Then a solution ¥ (x ) of (30) can be expressed as
G F(x) =4 y,(x) + 8 y,(x)

+ [T la = QT T [y, (x) 5,(2) - y,(x) y,()] dt

for some complex constants 4 and B, where the integral is convergent since

é(x) is convergent, W (x) is bounded, and
yl(x) =a ? sin \a x, yz(x) = cos \a x;

(31) can be obtained by the method of variation of constants. llence the absolute

value of the integral in (31) can be arbitrarily small if x is large enough. In other
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words,

lim {W(x) - [4 y,(x) + B yz(x)]} =0.

X — 00
This completes the proof.
Differentiating (31) clearly yields

lim {W(x) -[4 y/(x) + B y}(x)]1} = 0.

x — 00

4. Boundedness of the solutions in certain regions. In this section we shall
apply the results of Theorem 1 to obtain sufficient conditions for the bounded-
ness of the solutions of the equation (1) in certain regions of the z-plane.

Let R be the region

(32) z=x+1iy, 0<x<ow, a&<y<PpB.
On a half line L (yo ),z =x + ¥y in R, the differential equation (1) becomes

2w

2

(33) +Q(x+iy0)W=0.

dx
Denoting the real and imaginary part of Q(x + iy ) by ¢, (x, y;) and ¢ (x,%,),
respectively, we see that according to Theorem 1, the growth of a solution W (x)

of (1) on L (yo ) depends on the growth of

(34) $(xy,) = [T lla-qlxy )|+ lq,(xy) ] dx,

where a is a positive constant. If ¢ (x, yo) is convergent for some positive
constant a, then W (z ) and W*(z) are bounded on L (yo ), and
lim [W(x +iy,) = (4 sin \Ja x + B cos \/a x)] =0

X —00

for some complex constants A and B. Let
(35) Mn%)=£ﬂa-mx+Wﬂlh.

Clearly the convergence of ®(x, y, ) implies the convergence of P (x, ¥, ). Let
®(x, y,) be uniformly bounded in R in the sense that for eachy (a <y, < B),
there exists a positive constant @ such that sup a is finite and inf a is positive,
and O (x, yo) < M, M being some constant, for all x in 0 < x < o and all y in
& <y < B; then by applying (16) on each L(y,), it is easy to see that W (z)
and W’(z) are bounded in R. If the condition that sup a is finite is removed,
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clearly we still have I (z) bounded in R. This proves the following theorem.
THEOREM 4. If

(a) R is aregion defined as in (32),
(b) P(x, Yo ), defined as in (35), is uniformly bounded in R in the sense

defined above,

then euch solution W (z) of (1) and its derivative W’( z) are bounded in R.
Consider another region R,

(36) z=x+rem0, 0<r<ow a<x<f3,

where 0, is a real constant. On a half line L(xq), z = x5 + r exp (i6;), in

R, the equation (1) reduces to
dw

37 — + P(r,x5) W =0,
dr?

where P (r, x5) = Q[xo + 1 exp (i6,)] exp (2i6,).

THEOREM 5. If

(a) R is a region defined as in (36),
(b) for each x4, & < xy < B, there exists a positive constant a such that

sup a is finite and inf a is positive and
fo’ la = P(r,x0)| dr < M,
M being some constant, forallrin 0 < r < wand all xy in & < x < f3,
then each solution W (z) of (1) and its derivative W’(z) are bounded in R.

The proofs of this theorem and of the following Theorem 6 are similar to
that of Theorem 4.
Denote by S the sector

(38) z = retf, 0<r<ow 4<0<8.

On a fixed ray = 6, in S, equation (1) reduces to

2
(39) ¥ T e) W =0,
dr?

where T (r, 65) = Q(r exp(ify)) exp (2i6,). Ve have the following result.
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THEOREM 6. If

(a) Sis aregion defined as in (38),
(b) for each 64, o < 6, < B, there exists a positive constant a such that

sup a is finite and inf a is positive and
j;r la = T(r, 6,)| dr < M,
M being some constant, for all rin 0 < r < wand all 6, in o < 0 <3,
then each solution W(z) of (1) and its derivative W"(z) are bounded in S.
5. Extension. lLet C be an analytic curve [ 2, p. 702]
(40) x=f(t), y = g(),
where ¢ is real. Along C the equation (1) has the form

2w y

(41) — + A(¢) d—W-Jrg(l) W =o0.
dt? dt

It is well known that equation (41) can be reduced to the form of (6). It follows
that our results apply to the solutions along a line or in regions bounded by
lines as well as to the solutions along an analytic curve or in regions bounded

by analytic curves.

6. A self-adjoint differential equation of the third order. Let Y(z) be a

solution of the self-adjoint differential equation

d*y dY 1 dQ(z)
42) +Q(z) — + — ? Y =0,
dz3 dz 2  dz

where {)(z) is analytic in a region R. Let W (z) be a solution of

2w

1
(43) + = Q(z) W =0.

dz* 4
In Theorem 7 we shall prove that every solution Y (z) of (42) is bounded in R
if and only if every solution W (z) of (43) is bounded in R. In fact the growth
of the solutions of (43) determines and is determined by the growth of the so-
lutions of (42).

THEOREM 7. Every solution Y (z) of (42) is bounded in R if and only if
every solution W(z) of (43) is bounded in R.

Proof. Let W,(z) and ¥,(z) be any two linearly independent solutions of
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(43). The theorem follows from the fact that W2(z), W, (z) ¥, (z) and W2(z)
are three linearly independent solutions of (42). That Wi(z), Wy (2) W, (z) and
W2(z) are solutions of (42) can be verified by substitution. We now show that
they are linearly independent. If 4, B, C are constants, and if

(44) AWIZ(z)+BW1(z)W2(z)+CW;(Z)E0,
then by factoring (44) we get

(45) (AW, (z) + bW"z(z)] [CWl (z) + sz(z)] =0,

where @, b, ¢ and d depend on 4, B and C. Hence at least on the factors in (45)
is identically zero. It follows that eithera = b = 0 or ¢ = d = 0. Consequently
A = B =C = 0. This completes the proof.

7. Added in proof. With the aid of the Phragmén-Lindel5f theorems [ see 3],
the results of $4 can be greatly improved.
For example, let R be the region defined as in (32), with B — o =7 "% Let

there be a positive constant a such that as x — o,

(46) é(x, y) =0(ekx),

where & < k, uniformly for y in & < 3, and that

(47) é(x, ) = 0(1), ¢(x,B) =0(1).

Then, by Corollary 1.1, any solution W (z) ot (1) is bounded on L (& ) and on
L (), and so is bounded on these lines and on the segment x =0 in R. From
(46) and Theorem 1, we have

W(z) = 0(eMe™™)

uniformly in y, where M is some positive constant. By a theorem of Phragmén-
Lindelsf, W (z) is then bounded in R. Similarly W ( z) is bounded in R.
Using Theorem 3, from (47), we see that

48) W(z) - (A, sina'? z + B, cosa'’/? z)
( 1

tends to zero as z —» o on L (& ) for some constants 4, and B,. Similarly (48)
tends to zero on L (B) if A; and B, are replaced, respectively, by some con-
stants 4, and 3,. Write

Fi(z) = A;sina? z + B; cosa'/? z, (i=1,2).
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Then

(W(z) = Fy ()] [W(2) = F,(2)]

tends to zero as z—> o on L (&) and on L (3 ); and since it is bounded in i¢,
by another theorem of Phragmén-l.indel&f, it tends uniformly to zero as z — .

Thus to any € there corresponds a segment z = x5 + iy in R on which
(49) [ W(z) - Fy(2)] |W(z) = Fy(2)] <e
At every point of this segment either
[W(z) = F (2)] < €Y% or |W(z) — Fy(2z)]| < €Y% (or both),

and we may suppose that the former inequality holds at y = &, the latter at y =
B; let y, be the upper bound of values of y for which the former holds; then y,
is either a point where the latter holds, or a limit of such points; hence, since
both factors on the left side of (49) are continuous, both inequalities hold at

Yo- At z = xg + iyy, we then have
(50)  |Fy(2) = Fplz)| < |W(2) = Fy(z)| + |W(2) = Fy(2)] < 2€V2,

On the other hand, (49) holds on every segment z = x, + iy if x, is large enough,
and there is a point z = x; + iy, at which (50) holds. Consider an arbitary seg-
ment z = x, + iy. Since F;(z)~ F,(z) is a periodic function in x, there is a
point on this segment at which (50) holds. But F,(z) - F), (z) is continuous
and € is arbitary, so that F; (z) - F,(z) = 0 at some point on this segment, and
therefore on every segment. If these points have a limit-point inside 2, then
F,(z)=F,(z) in R; otherwise there is a segment on y = & or y = 3 in which
Fi(z)-F,(z)=0, then A, =4,, B, =B,, and hence F,(z)=F,(z) in R.
Thus as z —»> o the function (48) tends to zero on L (&) and on L(3), and
since it is bounded in R, by a theorem of Phragmén-Lindel&f, it tends to zero
uniformly in ¢ < y < 8.

Similarly, as z — @, we see that
W(z) - a'/? (4, cosa'/? z — B, sina'/? z)

tends to zero uniformly in & <y < 3.
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