CAPACITY, VIRTUAL MASS, AND GENERALIZED SYMMETRIZATION

L. E. PAYNE AND ALEXANDER WEINSTEIN

1. Introduction. A body of revolution B can be symmetrized with respect to
its axis of symmetry in a number of ways. One of these is the Schwarz sym-
metrization, which preserves the volume of B. Another is the Steiner symmetri-
zation of the meridian section of B, which preserves the area of this section but
in general decreases the volume. The influence of the Schwarz symmetrization
on the capacity has been investigated by G. Pdlya and G. Szegé, [1]. More re-
cently P. R. Garabedian and D. C. Spencer [2] discussed the same question for
the virtual mass of bodies of revolution. In the present paper we shall study by
a different and simpler method the behavior of the capacity and virtual mass
under a more general type of symmetrization, which includes the Schwarz and

Steiner symmetrizations as particular cases.

2. Definitions. Let the (x, y)-plane be the meridian plane of B, the x-axis
being the axis of symmetry. The part of the meridian section of B which lies in
the upper half plane ¥ > 0 is denoted by D. The complement of D in the half
plane is designated as E. We assume that D is simply connected and that E is
a connected domain. The boundary of D consists in general of a segment of
the x-axis and a line L. We exclude the case where L is a closed curve and
lies entirely above the x-axis, as is the case in which B is a torus. We assume
L to have at most a finite number ot angular points.

We shall use in this paper some recent results of axially symmetric potential
theory in n-dimensional space. This theory which is of mathematical interest
in itself will be used here mainly as a tool to obtain results for bodies of revo-
lution in three dimensions.

Let us henceforth consider our (x, y )-plane as the meridian plane of a body
of revolution B[n] in n-dimensions, n =3, 4, 5, +++ . We assume that B[n] has
the same meridian section D as our three-dimensional body B = B[3]. All quanti-
ties considered hereafter are defined in the meridian plane and therefore are
functions of x and y only. Actually we shall never use B[n] but only its meridian

section.
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Let ¢(x, y) be an axially symmetric potential function defined for y > 0
and let ¢/ (x, y) be the corresponding stream function. We have then the gener-

alized Stokes-Beltrami equations

0 e 3800 0800
dx dy’ dy ax

To emphasize the dependence of ¢ and ¢y on n we shall often use the notations
¢ln] and ylni.
The volume V[n] of Bin] is given by

(2) Vinl = wnoy ‘” y" 2 dxdy,
D

where o, = 2nh/2,/f‘(h/2). We introduce the capacity C{n] of B[n] by the

formula

Wn.
(3) Clal = —= [ y™2 (grad p[n1)? dxdy,

wn E

where ¢[n] is a potential which assumes the value unity on L and vanishes as
(x2 4+ y2 y(m=2)/2 5 infinity. It is obvious that (3) reduces to the classical
definition of the capacity for n = 3.

We define also the virtual mass M[n] of B[n] by the formula

(4) Minl = wny §§ ™2 (grad ¢ [n])? dudy.
E

The function y/[n] in (4) assumes the value y""'/(n~1) on L and vanishes at
infinity like ¥y ! (x2 + y2)™/2, Qur definition of the virtual mass generalizes

that of P. R. Garabedian and D. C. Spencer [2].

w

3. The correspondence principle and the fundamental formula. We use here
a relationship due to A. Weinstein [4],

(5) Ylandl=y"1(n - 17" oln + 2].

This equation shows that to each stream function ¢/[n} corresponds a well-
defined potential ¢p{n + 2]. In particular to the stream function yy[n] in formula
(4) corresponds a potential ¢[n + 2] which assumes the value unity on L and

n/2

vanishes as (x2 + y2)” at infinity. In other words ¢[n + 2] is the electro-

static potential of Bln + 2]. The substitution of (5) into (4) leads after an
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elementary integration by parts to the fundamental formula
n -1
(6)  Mn)+ Vil = o[- 1) (3 1)] ctnea,

which we shall employ here in the study of the behavior of ¥[n].

4. Generalized symmetrization. A line x = constant, ¥y > 0, intersects L in
m points ¥;(x) > ¥,(x) > y3(x) > +e+> ¥, (x) > 0. The number of inter-
sections m usually depends on x. Let us consider the line L, defined bythe

equation

(7) Y1 (x) = X (- DF yax),
k=1

where ¢ is a positive constant not necessarily an integer. The body of revolution
Bq[n] with section Dq defined by its profile Lq is said to be obtained by a
symmetrization Sy. Let us note that S,.; can be considered as a Schwarz sym-
metrization of B[n]. On the other hand, under S, the meridian profile of B{n]
undergoes a Steiner symmetrization. Qur main results are embodied in the follow-

ing theorems:

I. V[n] does not increase under Sq for 0 < ¢ < n -1 and does not de-

crease under Sq for ¢ > n—1. In particular, V'[n] remains invariant under Sn-1e

II. Cln] does not increase under S, for 0 < ¢ < n—1.
. M{n] does not increase under Sy forn -1 < ¢ < n+ 1.

Let us observe that by (6) Theorem IIl follows immediately from I and II. In
order to prove Theorems 1 and II we shall first establish some useful inequali-

ties.

5. Fundamental inequalities. Let y; > v, > ««« >y, > 0 and let ¢ and s

be two positive numbers. We have then

1/q m 1f{gts)
-<— z (_l)k- 1 y]g"'s <

k=1 -

1/q

Ms
a

(8) | X (-1
k=1

EN
n
—

To prove the second inequality of (8) let us observe that it is sufficient to
show that
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1/(g+s) m 1/q

(9) i < | Xy

™M s

Bl
]
-

Bl
n
—

Let us put ¥/ = a;, and (¢ + s)/g=r > 1. Then we need only show that

(10) al +a) +eeotar < (ag + ay+-ee+ag)

But this is a classical inequality [ 5, p.32]. As to the first part® of (8) we give
here a proof communicated to us by H. F. Weinberger [ 7]. This inequality does
not seem to be mentioned in the available literature. Using again the notations
in (10) and putting

m m ,
(D) Flapay-an) = ¥ DR of - | DR g,
k=1 k=1

we have to prove that, fora; > a; >+ > a, > 0andr > 1,

(12) F(ay, ay, o+, ay,) > 0.

-

This inequality is obviously true for m = 1 and follows immediately if m = 2 from
inequality (10). Let us therefore assume that (12) holds if we replace m by

m — 2; this is equivalent to assuming the inequality
(13) F(a2’ 02,(13,---,(1,”)20.

We have also

- oF
(14) F(al,az,---,am)=1’((22,(12,0.3,---,0,,1)+fa1 — da,.
2  da

But from (11) we observe that

1 aF m r-1
(15) —— = - | Y (D
k=1

which shows that dF/da; is nonnegative. Since the same holds by assumption

for F (a,, a,, as, +++, ay ) we obtain at once the required inequality (12).

"R. Bellman has pointed out that this inequality holds more generally with y re-
placed by an arbitrary continuous convex function f(y) defined for y > 0.
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6. The effect of the generalized symmetrization on '{n]. It follows immedi-
ately from (2) that

m
(16) VIl = 0, (n =370 [ (DMt ds,
k=1

where the integral is taken over the interval (&, B) bounded by the greatest
and smallest values of x on L. Let us apply the symmetrization S; defined by

(7). The volume V,;[n] is then given by

5 m n-=1/q
(17) Volnl = v, (n = 171 f7 1 3 (1% 5 dx .
k=1

By (8) we see that for g < n — 1 we have
ﬁ m
(18)  Vglnl < o, (n= 17" [O1 F (= D* 5 dx = Vind.
k=1

On the other hand for ¢ > n ~ 1 we have again by (8)

m

(19) Vel > o, (n =170 P15 (1R gt | dx = Vinl.
k=1

The formulas (18) and (19) establish the proof of Theorem I of § 4.

7. The effect of generalized symmetrization on C(n}. In studying the be-
havior of C[n] under the symmetrization S; we shall generalize to a certain
extent the procedure given by Pdlya and Szeg8 for the Steiner symmetrization
{1, p.182]. Let us introduce a Cartesian system (x, y, z) and consider a sur-
face z (x, y) defined in a large half circle A enclosing U. We assume z (x, y) to
be a function positive throughout 4 and vanishing on the circular portion of its
boundary. The particular function z which we shall consider will assume a con-
stant positive value z, in the subdomain D of A. This value will be the maximum
of z(x, y) in A. We further assume that z (x, y) is analytic outside D. The sur-
face z =z (x, y) except for its flat portion may also be defined as a surface
y=y(x, z} in a certain domain G of the (x, z)— plane. However, y(x, z) may
not be a single-valued function of x and z. For this reason we must consider as

in [1] the surfaces y, (%, z) (k=1,2,+-+, m), where

y1(x9 z) > }’2(96,2) >eee> }’m(x,z) > 0.
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These surfaces taken together with the flat portion constitute the surface
z{x, ¥).

Let us consider the integral

m dy, \ 2 dy,\2|1/2
(20) = SS )3 )’1?-2(%2) [1 + (a—k) + (——k) ] dx dz.

G k=1 x dz

Let us first apply the symmetrization S,.; by putting
m

(21) yrt o= ¥ (1) g
k=1

and consider the integral

c?y* 2 (?y* 2 |1/2
(22) I, = SS vV RN+l —] +|— dxdz.
ox dz

G

We prove now that
(233 > 1.

In fact by substituting (21) into {22} and computing dy, /dx and Jy, /dz we ob-

tain the formula

G k=1 dx

m 2(n-2}/(n-1) m r’)yk 2
(24) 1, = jH T (=1)F1 y,f"] + [ T (= 2
k=1

m ayk 2)1/2
| Y (=1)F gy — dxdz .
k=1 dz

According to the inequality (8), /, will not diminish if we replace the first square
bracket in (24) by [ X7, Y2 21%. Upon applying the Minkowski inequality we
find that the integrand in I, is not greater than the integrand in I; this proves
formula (23).

Leet us observe that

(25) 1= [y~ [1 vzl zj] 1/2 dudy - §§ ¥y dady,
’ D
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the last integral being the contribution from the flat part of the z surface. We now
insert into (25) the expression z(x, y)=€®P(x, y), € being a small positive

number and ® satisfying the same conditions as z. This substitution yields

(26) 1= Aj[j) Y2 dxdy + (€2/2) {f y" 2 (D] + @F) dudy + O(e*).

According to inequality (23), / does not increase under S,.;. The first integral
in (26) is obviously equal to the same integral taken over the symmetrized
domain 4, — D,, where 4, = A. By letting € tend to zero we conclude in the
usual way [1] that the integral

92 (02 + ®2) dxdy
A

does not increase under S,.;. If we let the radius of the half circle bounding
A tend to infinity we obtain the same statement for a function ® which vanishes
at infinity, providing that the integral converges. In particular if we take for
® a function which is equal to unity in ) and equal to the electrostatic potential
é[n]in £ we find that C[n] does not increase under Sn -1+

In order to prove that C[n] does not increase under S; for 0 < g < n-1
let us observe that under S; the line L bounding D{n | goes into a line Ly which
has by the inequalities (8) the following property: if g, < g, then the domain
Dq1 [n] bounded by qu has no points outside the domain [)q2 [n] bounded by
qu. We denote the capacities corresponding to these domains by qu[n] and
qu[n], respectively. It is a well known property of the ordinary three-dimension-
al capacity that if one body contains another body the former has the larger
capacity. The proof of this statement is based essentially on the variational
definition of the capacity. The same property holds obviously for all values of
n. We therefore have C; [n] < qu[n]. In particular Cyin] < C _[n]. As we
have already proved Cn_ l[n] < Cln] we obtain the result

(27) Cylnl < Clnl, 0<g<n-1,

which concludes the proof of Theorem II of $4. As already mentioned in 3 4,

Theorem Il follows immediately as a corollary of I and II.

8. Steiner’s Symmetrization of the meridian section with respect te the
y-axis. We shall consider briefly a symmetrization of the domain D with respect

to the y-axis defined by the classical equation
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(28) 2x = ¥ (-DF .
k=1

In a manner similar to that used in &7 we find that ¥ [n] remains invariant and

Cln]land M{n] do not increase under such a symmetrization.

9. Concluding remarks. All results of $4 can be extended to the case of
two dimensional bodies which are symmetric with respect to the x-axis. It should
be noted that these results hold for C[2] as long as the radius of 4 remains
finite. It has already been proven [1, 2] that C[2] and M[2] do not increase
under S; and also that C[3] and #[3] do not increase under S,. These cases
are included in our Theorems II and Ill. We note also that formula (6) appears in
an equivalent form for n =2 and n=3 in papers by G.I. Taylor 6] and M.
Schiffer and G. Szegd”[3], where C[4] and C[5] are (up to a constant factor)
called dipole coefficients. No attempt was made in these papers to study the
behavior of the dipole coefficients under symmetrization. However, it was recog-
nized in [ 3] that they are increasing set functions, a fact which becomes almost
obvious in our theory of generalized electrostatics (see §7). Finally let us
remark that in §2 we have introduced the (x, y )-plane as the meridian plane of
an n-dimensional space. But since all quantities are defined in terms of x and
y, the index n appearing in our formulas need not be restricted to integral values.
In fact it can easily be seen that all our formulas and results remain valid for
all real positive values of n greater than two. For such values of n our results
are mathematical statements about certain integrals such as V[nl, Clnl, and

#[n] which are associated with the generalized Stokes-DBeltrami equations.
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