INTERSECTION THEORY FOR CYCLES
OF AN ALGEBRAIC VARIETY

I. BARsoTTI

Introduction. For a number of years intersection theory represented one of
the most debated subjects in the field of algebraic geometry; also one of the
niain reasons for seeing in the whole structure of algebraic geometry an inherent
flimsiness which even discouraged the study of this branch of mathematics. This
situation came to an end when the methods of algebra began to be successfully
applied to geometry, mainly by van der Waerden and Zariski; in the specific case
of intersection theory, a completely general and rigorous treatment of the subject
was given by Chevalley [ 3] in 1945. This rebuilding of algebraic geometry on
firm foundations has often taken a form quite different from what the classical
works would have led cne to expect. Thus it is rot surprising that Chevalley’s
solution of the problem has no evident link with the methods that, according to
the suggestions of the classical geometers, should have been used in order to
define the intersection multiplicity (for a sketch of these methods and sug-
gestions see, for instance, [ 4]); rather, it is linked to the analytical approach,
and it is therefore a strictly “local’” theory, thus having the advantage of pro-
viding an intersection multiplicity also for algebroid varieties. The method by
A. Weil [ 5] is another example of local theory.

The classical approach to the problem is illustrated in the introduction to [2]
(see ““first approach’’), and carried out in the present paper. After an introduc-
tion dealing with algebraic correspondences ($1) we study in $2 a particular
algebraic system related to any given cycle 3 of a projective space, namely the
system consisting of all the cycles obtained from 3 by projective transformations
of the ambient space, plus the “‘limit cycles’” which must be added in order to
complete the algebraic system (and which would correspond to the degenerate
projective transformations). This system, called the homographic system of 3,
is used in $3 to obtain the principal results, namely Lemma 3.1 and Theorem
3.2. The wording of these results, as of the other results of §3, is complicated

by the fact that we do not restrict ourselves to varieties over an algebraically
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closed field, or to varieties in the sense of [ 51]; the gist of them, however, is

the following:

€

¢
ge-
neric” element of the homographic system of 3, and let P be an isolated com-

Given the irreducible cycles 9, 3 of a projective space, let 3 be the

ponent (of the right dimension) of the intersection of the varieties 9 and 3. Then
the number of those intersections of the varieties § and 3 which approach P
when 8 approaches 3 is, by definition, the intersection multiplicity of § and 3
at P; this number does not change if 3 is allowed to vary in any ‘“‘admissible’’
algebraic system rather than in its homographic system; and finally, the number
is the same when 3 varies in any algebraic system, provided that then we al-
ready count each intersection of § and 3 with a certain multiplicity, to be com-
puted by means of an “admissible” system. Also, the same number is obtained

if 9, or both § and 3, are allowed to vary.

The fact that we allow our varieties to be defined over an arbitrary field is
not just a refinement of debatable usefulness, but a plain necessity: in fact, the
general element of an algebraic system is never defined over an algebraically

closed field (unless the system consists of just one element).

This definition takes care of the intersection of cycles of a projective space;
the next step (carried out in $5) is the extension of the definition and of the
related results to the cycles of an arbitrary (irreducible) variety V. Should it be
possible to find, for any given cycle 3 of V, an algebraic system of cycles of V,
containing 3, and playing the same role as the homographic system, then the
theory on V would not differ from the theory on a projective space; more gener-
ally, it would be enough to find another cycle x which does not contain the inter-
section U in which we are interested, and such that 3 + £ is contained in such
a general algebraic system. Now, it is well known that this is not the case in
general, but that one very wide class of cycles 3 through U which fulfill the
condition is the set of the cycles of V which are locally (at U) intersections of
V and of a cycle of the ambient space; and this, in turn, is always the case if
U is simple on V and the ground field is algebraically closed. As a conse-
quence, we define the intersection multiplicity of § and 3 at U on V only for the
case in which § and 3 are intersections, at U, of V with cycles Y, Z of the
ambient space S; for this case the algebraic system containing 3 + € (with ¢ not
passing through {) which can be used in order to define the intersection multi-
plicity is the system of the intersections of V with the elements of the homo-
graphic system of 3; it is not even necessary, however, to consider this system:
since the intersection of 9 and 3 in S is already defined, the multiplicity of U
in this intersection can be assumed to be, by definition, the multiplicity of U in

the intersection of § and 3 on V. This is an outline of the content of §5, but
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one more detail needs to be mentioned here: it may happen, a priori at least,
that although 3 is not an intersection at U, it becomes such by a suitable bi-
rational transformation of ¥ which is regular at U; this is taken into account
after Theorem 5.9. Finally, since we are using rational cycles, it must be re-
marked that such cases as the vertex of a quadric cone are naturally taken, care
of by the theory: aline 3 through the vertex U of a quadric cone V is the inter-
section at U of V with the cycle 3/2 of the 3-space containing ¥, 3 being the
tangent plane to V along 3.

Bezout’s theorem is proved in §4 by means of one of the usual geometric
methods, namely by letting the two cycles degenerate completely into cycles
consisting of linear varieties only; other proofs of a more algebraic nature would
display the relations of Bezout’s theorem to that property of the divisors which
is called the ““product formula” by number theorists; the present proof, however,
offers the advantage of being extremely simple.

The main advantage of the present geometrical theory of intersections is the

€

fact that it can readily be applied to problems “in the large’; although through-
out this paper the local intersection number is stressed, the theory finds easy
and immediate application to the construction of the algebraic system determined
by two cycles over any connected component of their intersection which happens
to have a dimension larger than expected; in particular, the characteristic system
of an irreducible subvariety of a variety and its virtual degree could easily be
established. These topics, however, would find their natural place in a paper

dealing with algebraic equivalence.

1. Preliminary results. We shall use the same definitions and notations as in
[ 1] and [2], paying attention to the fact that some of the definitions or notations
of [ 1] have been modified in [2]. A few additional modifications or generaliza-
tions will be explained now. In [ 1] “cycle’” meant “‘integral effective cycle”

““rational ef-

(that is, with positive integers as coefficients); in [2] it meant
fective cycle’; it shall now mean ‘‘rational (effective or virtual) cycle’. More

precisely, a cycle is an expression of the form

n
3= Z a, V;,

=1

where n > 1, the a;’s are nonzero rational numbers, and the V;’s are mutually dis-
tinct irreducible pseudosubvarieties of a pseudovariety over a field; 3 is unmixed
if all the V;’s have the same dimension (called the dimension of the cycle). The
set of s-dimensional cycles becomes an additive group by addition of the zero

cycle 0 = OV for any s-dimensional irreducible pseudosubvariety V. The above
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expression Z:.lq a; V; is called the minimal representation of 3; any expression
0V is a minimal representation of 0. If V is an s-dimensional irreducible pseudo-
subvariety, the multiplicity of V in 3 is zero if V # V; for each i or if 3 = 0,
and equals a; if V = V;. The cycle 3 is irreducible if n = ay = 1. The identifi-
cation, used in [1] and [2], of an irreducible cycle 3 = 1V with the irreducible
pseudovariety V is no longer valid. If E?:l a; V; is the minimal representation
of the cycle 3 # 0, then each V; is called a component variety of 3, and each
1V; is a component of 3; the cycle § whose minimal representation is E;’: Lo W
is part of 3 if m <n, and if it is possible to establish a 1 -1 correspondence
j — i(;) such that a) = b]., Vi(j) = Wj for j = 1, -+« , m; the only part of 0
is 0.

If U is a subvariety of a projective space S over %, two cycles §, 3 of S

whose minimal representations are

n m
9= a; Vi, 3= b ¥
i=1 j=1

are said to coincide locally at U if either (1) no component of U is a subvariety
of any V; of of any Wj, or (2) if, say, V{, «++, V; and Wy, --- , W are the com-
ponent varieties of 9 and 3 respectively which contain some component of U,

thenr=s, V;= W; fori=1,---,r,and q; = b; fori =1, --. , r; the cycle
r S
2 alVi= X bW
i=1 j=1

in case (2), or the cycle 0 in case (1), is called the U-part of 3 (or of 9); the
radical rad 3 of 3 is the join of the component varieties of 3 if 3 # 0, and is the
empty variety if 3 = 0.

An algebraic correspondence is a cycle, not a pseudovariety. In the expres-
sions [D; V, G1,{D; V,G1,(D; V,G), D[G], D(G), Alv], A(v), the symbols
D and A are cycles, while the expressions themselves are pseudovarieties. In
the expressions {D; V, G}, {D; V, G}*, D{G}, D{GY*, Afv}, Afv}*, D and A
are cycles, and so are the expressions themselves. In the expressions e (D*/D;
V, G), e(D*/D; V, G)*, D is a cycle, D* a pseudovariety. In the expressions
ord 3, deg 3, red 3, 3 can be either a cycle or a variety; in the expressions ins 3,
exp 3, h(3), 3 can be either an irreducible cycle or an irreducible pseudovariety.

It is thus evident that if §, 3 are cycles, then rad 9 n rad 3 is the variety
which is the intersection of the varieties rad © and rad 3 (point-set theoretic),

while §n 3 has not been defined so far; and when it will be defined, it will be a
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cycle, not a variety.

Let V, F be varieties over k, F' being irreducible, and let D be an unmixed
algebraic correspondence between F and V, every component of which operates
on the whole F; let G be an irreducible subvariety of F, D* an irreducible com-
ponent of [D; ¥V, G1. The symbol e(D*/D; V, G)* has been defined (when it
exists) in [2] under the assumption that I’ and ) be irreducible. We shall extend
it now to a more general case. Let D be unmixed, and let D = zi a; D; be its
minimal representation. Let v be a valuation of k(F) over k, of the same dimen-
sion as G over k, and whose center on F is G; let {x(i)} be the h.g.p. (homo-
geneous general point) of D;, and denote by C;(v) the complete set of exten-
sions of v to k(D;) with respect to {x(i)} (see [2, $3]). Assume dim D* =
dim D — dim F + dim G, and call n;(v) the number (> 0) of elements of C;(v)

whose center on D; is D*. If
Y. ai ng (v)ins D;[F] (ord DG
does not depend on v, this nuniber will be denoted by
e(D*/D; V,G)* = e(D*/D; G, V)*.

Clearly, if D” is another unmixed algebraic correspondence between F and V,
having the same dimension as D, and if e (D*/D; V, G)* and e(D*/D% V, G)*
both exist, then e (D*/aD + bD"; V, G)* exists and equals

ae(D*/D; V, G)* + be(D*/D% V, G)*

for any pair of rational numbers a, b. As a consequence of statement 5 of Theor-
em 3.1 of [ 2], we have the result: if vij(j =1, 2, ... ) are the distinct elements

of C;(v) whose center on [J; is D*, then
1) e(D*/D;V,G) = Eii ai[rv,j: I,] [Kvij: E(D*)] [Ky: k(G)17N

If D* has the dimension dim D — dim F + dim G, but it is not a component of
[D; V, G1, then we set, by definition, e (D*/D; V, G)* = 0. This is in accord-
ance with (1), since in this case no element of any £;(v) has the center D* on D.

According to [2], instead of saying that e(D*/D; V, G)* = o, we shall also
say that o is the multiplicity of D* in {D; V, G1*, even if {D; V, G1* does not
exist; this will be extended to the other expressions, like “73 is part of {D; V,
G}*” and similar ones.

Let zi a; V; be the minimal representation of an unmixed cycle 9 over k. If
K is an extension of k, and Vij(j =1,2,...) are the distinct components of

(V;)g> the extension of § over K has been defined in [2] to be
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by = X, o oxp Vilexp Vi)™ Vij,

the exponent of V;; being independent of j. This had the advantage that ¥, , b =
¥ty 9k, and that deg = deg Dy - We shall often need, however, to consider
the cycle

b = Ez] a; ins V; (ins Vij )7t Vi]‘;

this, as remarked in [2, $1] is an alternate definition of the extension of a
cycle. The cycle 9 shall be called the modified extension of 9 over K, and no
special symbol will be used to denote it. We have ord §“ = ord 9. Let finally
be a cycle over K. We say that ?) is a partial extension of 9§ over K if ) = Zi D,

where each component variety of ¥, is a component of (V; ), and a; ord V; =

ord 3, .

LeEmMmA 1.1. Let D, D*, F, V, G, k have the same meanings as in formula
(1). Let F be birationally equivalent to F, and such that if G  is any irreducible
subvariety of F’ which corresponds to G, and which has the same dimension as
G, then Q(G/F) C Q(G'/F"). Let D’ be the algebraic correspondence between
F’and V such that D'{ F'}* = D{F}*; for each G let D*, D%, - - - be the pseudo-
varieties which correspond to D* and such that ID;." operates on G', and assume
F’to be such that e (D?/D % V,G")* exists for each G’ and each i. Then e(D*/D;
V, G)* exists if and only if

a =2 e(DI/D5V, G")* ord (1D7)[G]

does not depend on G’ that is, if and only if zi e(D:‘/D'; vV, G)* D’; is a
partial extension of a fixed multiple of 1D* over k(G*) for any G*. In such case,

we have

e(D*/D; V, GY* = alord(1D*)[G]) L.

Proof. The proof of this lemma is an immediate application of (1), since the
varieties G’ are the centers on F’ of the valuations v of formula (1).

COROLLARY. Maintain the notations of Lemma 1.1, and let { £} be a set of
parameters of Q(G/F); then {3 is a set of parameters of each )(D*/D;). If
e(D*/D; V, G)* exists, it equals

Y, ai e(Q(D*/D;); &) e(Q(G/F); O

Proof. In Lemma 1.1 choose for F” a normal associate to F, so that each
e(Df/lDi'; V, G*)* exists (by statement 1 of Theorem 5.3 of [2]) and equals
e(Q(D;‘/D;); ¢) e(Q(GY/F?%); ¢)7'. As a consequence of the lemma we then

have
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e(D*/D3 V, 6 = X ai e(QUDI/D; &) e(QUGYE); )7 x

ord(lD;‘)[G'] (ord(1D*)[G] !

for any G’. There are finitely many varieties G’ in this case, and we shall denote
them by G:, G;, <+, while the D;"s which operate on G,; shall be denoted by
D’;U.(j =1, 2,...). We have:

e(D*/D; ¥, ) X e(Q(G,/F); O LE(G,): k(6)] ord (10%) [G]
=X, a ij e(Q(D}./D); ) ord (1D}, ) (G 11k(G]): k(G
or also
e(D*/D3 V, ) X e(Q(G, /F; ) [k(G,): k(6]
=2, a Z].m e(Q(D;j/D;); O LE(D) ) k(D™)].
Now, by Lemma 2.2 of [ 2], we have
Y QG /FN s OTR(G): k(6)] = e(QUG/F); 0)
and
z],m e(Q(D},;/D)); O LD} k(D*)] = e(Q(D*/D,); 0),
Q.E.D.

We now maintain the same notations, and assume that V is irreducible and
that each component of D, as well as 1D*, operates on the whole V. In this case
e(D*/D; V, G)* does not actually depend on D, but depends only on D{ V' }*, by
the above corollary, since Q(D*/D;) contains k (V). Accordingly, if A denotes
D{V1* and A* denotes (1D*) [ V], we shall denote e (D*/D; V, G)* also by
e (A*/A)*. We remark that A* can be described as a component of the inter-
section of rad A and Gy (y) such that 1A* operates on the whole G. Let A%,
A:, -+« be components of rad A n Gy(y) such that each 1A operates on the
whole G. If o; = e(A’;/A )* exists for each i, we shall say that Zi o; A’: is part
of the intersection G* n A of G’ with A, G’ being the modified extension of 1G
over k (V). Notice that the symbol n now links two cycles, so that no confusion
may arise with rad A n rad G’ This notation, as will appear later, is in agree-

ment with the general intersection theory.

LEmmA 1.2. Let K be an algebraic function field over k, A an algebraic
correspondence between K and an irreducible variety F over k, every component

of which operates on the whole F. Let K’ be an algebraic function field over k



480 I. BARSOTTI

containing K, and A’ the modified extension of A over K. Let G be an irreducible
subvariety of F, Z and Z* the modified extensions of 1G over K and K’ respec-
tively. Let A* be a component of rad A n rad Z, such that 1 A* operates on the
whole G, and let Af(i =1, 2, +++) be the distinct components of A%; then each
Af is a component of rad A’ n rad Z’, and each IAT operates on the whole G.
T'he multiplicity e (A¥*/A)* exists if and only if e(;\f/.& V" exists for some i, in
which case this exists and is the sume for each i. If this is the case, then the

modified extension N*7of e (N*/NY* \* over K’ is part of Z* a A",

Proof. Obviously each A;.k is a component of rad A’ n rad Z’, and dim A* =
dim Ar for each i. Therefore, if A* has the dimension dim A + dim G — dim F, so
does Af, and conversely. The contention which needs to be proved is the last
one. Now, if K’ is purely transcendental over K, also this contention becomes
obvious, since in such a case there is exactly one A?. We shall therefore assume
K’ to be an algebraic extension of K. Again, a well-known artifice makes it
possible to prove the last contention if it is known that it holds true for each K’
which is normal over K. Hence we restrict our attention further to the case in
which K’ is normal over K (the word “normal’’ does not imply separability).

Under these assumptions, let v be a valuation of £ (F) over k of dimension
equal to dim G, and whose center on F is G. Clearly we may further assume A
to be irreducible. Let then w be an extension of v to A (rad \), having the
center A* on rad A; let Ai' (i=1,2,+++) be the component varieties of A’, and
let w” be an extension of w to K'(A;), whose center on A: will therefore be,
say, AT. Each automorphism o of the Galois group @ of K’ over K can be in-
terpreted, in a natural way, as an operator which transforms, isomorphically and
transitively, the fields K’( Ai') into each other. Then ow’ has a meaning, and
when o ranges in , ow’ ranges among all the extensions of w to K’(A), for
each i, while the centers of these range among all the A*. As a consequence,
[Towe: 'y ] and [Kyy ot K, 1 are the same for each o. The ramification theory

gives then
[Faw,: l"w] [Kaw,: Kw] = [K'(A;) :K(rad A)Im™tn7t,

n being the number of distinct extensions of w to K’(A7) whose center on A{ is
A’:, and m being the number of distinct aA’: which are subvarieties of A:. Now,
let o.(w) be the sum of all the expressions [I",,.: Tl Ky /\"(/\7;)] when
w** ranges over the distinct extensions of w to K”(A) whose center on A] is
AT, and i =1, 2, +«+ . If m’ denotes the number of distinct Ai'-which contain AT,

from what precedes we obtain

o(w) = nm'[Fw,t Fw] [Kw,: K'(At)]
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= m [K(A]): K(rad A)] m™' [K,, : K(A*)T[K*(AY): K(A)]7L,
Now, there is the relation

m x number of distinct A = m’ x number of distinct AT;
that is,

m’m~' = red A red AT(red A} red A¥)7};
on the other hand,
[K(A7): K(A®)] = ord AT[K": K] (ord A*) 7Y,

and likewise for [K*(A]): K (rad A)]. Hence

a(w) = ins A7 ins A*(ins A ins A7) 7' (K : K(A™)].

If we denote by B(v) the right side of formula (1), which would equal
e (A*/A)* if it were independent of v when C(v/F) = G, and by y(v) the simi-

lar expression for e (A¥/A*)*, then we have the relation:
P i

y(v) = X ins Alins AN aw(w) [T : 111K, k(G)T7!

ins A*(ins AT)™ X (T, T 1K, : K(A")][K,: k()]

I

ins A* (ins AT)~1 B(v),

where w ranges over all the extensions of v to K(rad A) whose center on rad A
is A*. This proves that y(v) is independent of v if and only if 3(v) has the

same property, and, because of (1), also proves all the statements of Lemma 1.2.

Q.E.D.

THEOREM 1.1. Let D be an unmixed algebraic correspondence between the
irreducible variety F over k and the variety V over k, every component of which
operates on the whole F. Let P and G be irreducible subvarieties of F, P also
being a subvariety of &, and let D’ be a component of [D; V, Pl such that
e(D’/D; V, P)* exists. Let D’:, DZ, <. be the components of [D; V, G| which
contain D’ then

dimD’; =dimD —dim F + dim G.

Assume e(D?/D; V, G)* to exist for each i, and set
. * ok
D* = ¥ e(D;/D; V, G)" DY.
Then e(D’/D*; V, P)* exists and equals e(D’/D; V, P)*.

Proof. If r = dim Df, then we have dim D’ > r — dim G + dim P. Since
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dim D’ = dim D ~ dim F + dim P, it follows that r < dim D — dim F + dim G, and
therefore the equal sign must hold. This proves the statement concerning the
dimension. We shall give a proof of the main result under the assumption that D
is irreducible; the proof in the general case would proceed exactly in the same
way.

Let v be a valuation of £(F') over %, of dimension equal to dim G, whose
center of F is G, and let w{ be a valuation of K, over k, of dimension equal to
dim P, which compounded with » gives a valuation of k(F), of dimension equal
to dim P, and whose center on F is P. Let u be the valuation of £(G) C K, in-
duced by wi, and let w{, wj, -+ be the distinct extensions of u to K,. Denote
by w; the valuation of k£ (F) which is compounded of v and wi', so that C(w;/F)=
P. For each i, let v;;, v;,,+++ be the distinct extensions of v to & (rad D) having
the center D’: on rad [?, and let Ujy» Uj,s == be the distinct extensions of u to

e (5= 1,2, 20)
be the distinct extensions of u_ to Kvi]. which induce w; in Ky, and call Wiiirs

i2’
k(i)j) having the center D” on D’;. For given i, j, r, [, let w

the valuation of £ (rad D) compounded of v, and w;;. .. For a given [, the Wiirs
are all the distinct extensions of w, to k(rad D) which have the center D’ on D;

therefore formula (1) gives

(ry

e(D'/D;P,V)*[le/:k(P)]= > Liirs

1T V[Ky? 1 k(DND];
l lijrs

ijrs
now,

o 1= [Fv..: Fv] [Fw'.. :Fw']s
ij lijrs l

Yhijrst T Yy
so that

e(D/D; P, V)* [le':Ku] [Ky:k(P)] [Fw; : 1,1

= z [Fvij: Fv] [Fw;ijrs : l_‘uir] [Fuir: Fu] [Kw;ijrs : K”ir] X

ijrs
[Ky : k(D].
We now sum with respect to [, and use the formulas
2, (K Kul [Twp i Dal = [Ky: £(6)]
and

Y, (Kup, oK VT 2Ty )= [Ky 2 k(DD

lijr lijrs ’ ir

obtaining
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e(D/D; P, V)* [Ky: k(P [Ky: k(G)]
= X, (X0 T Ty EDDD (F, [Ty s Tul [Ky s E(DOD.
This proves Theorem 1.1, since
e (D}/D; G, V)" [Ky: k(G)] = T[Ty s Ty [Ky, s k(D] Q.E.D.

It is hardly worth mentioning that if w is a valuation of £ (F) compounded of

a valuation v of £ (F) and a valuation u of K,,, then

Afwlt* = (Afod) {ul™;

the proof of this fact is an immediate consequence of the obvious relation
Afwi = (A{v}) {u}. Another result which will be used later is the following:
If A is an algebraic correspondence between the algebraic function field K over
k and the variety V over k, let k” be an extension of k, K" a composite of K and
k’ over k (that is, the quotient field of the homomorphic image of K x &’ over k&
modulo one of its prime ideals), A’ the modified extension of A over K’, so that
A’ is an algebraic correspondence between K” and V’=V,,. If v is a valuation
of K over k, v’ any extension of v to K’ over k’, then A} v’}* is the modified
extension of A{v}* over K,-. This fact also is derived from the analogous result
concerning A{v}, namely: if A':AK,, then A’{ v’} is the extension of Afwv}

over K,».
Finally, the extension of the meaning of e (D*/D; V, G)* to the case in

which D is reducible, and in particular the corollary to Lemma 1.1, affords a
generalization of the reduction theorem (Theorem 5.4 of [2]) in the following

sense:

THEOREM. 1.2. In the statement of Theorem 4.2 of (2], let us replace the
assumption of the existence of { D; Vj, W; }* and { D), Wi, W; }* by the following

assumption:
e(D;li)/D; Vi, W; Y exists for each h, i,
and if
DW= ¥ e (DF/D; V;, Wi Y DY,

then e(U/D(i); Wj, W;)* exists for each i. Let us replace, moreover, the as-
sumption that D is irreducible by the assumption that D is unmixed. Then

e U/D(i); Wi, W; )* does not depend on i.

2. The homographic system. An irreducible algebraic system € of integral
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effective cycles is in one-to-one correspondence with the irreducible variety G =
G(€) (see [1]); therefore we shall apply to O the language adapted to varieties.
For instance, if G is a variety over k, we shall write £(C) in place of £(G),
M(C) in place of M (G) (this denotes the set of the places of G; see [11); the
cycle A = A(C) shall be referred to as the general element or general cycle of
€.

A linear variety is an irreducible variety L over a field k& such that ord L = 1,
or, equivalently, such that deg L = 1. From the definition of order or degree [1,
$2:2,$1], it appears that an r-dimensional irreducible subvariety V of the pro-
jective space S =35, (k) is linear if and only if @(V/k[X]) has a basis con-
sisting of linear (i.e. of degree 1) forms in the X’s { X} being the h.g.p. of S;
and a minimal basis will consist then of n-r linear forms. After an obvious identi-
fication, it also follows that a linear variety is a projective space. A linear
cycle is an irreducible cycle whose radical is a linear variety.

Let S be an n-dimensional projective space over k, {x} its h.g.p., and let X
denote the one-column matrix (xq, ««« , x, ), while U = (u,-j) is a square matrix
of order n + 1 with elements in k. Set X’ = UX, and let xé, ceey xr'l be the ele-
ments of the one-column matrix X’; let U be the homomorphic mapping of £[x]
such that Va=a if a € k, Ux; =% (i =0, -+ ,n); if det U #£0, U is an auto-
morphism and transforms in an obvious way an ideal of k[x] into an ideal of
k[x], a subvariety of S into a subvariety of S, and a cycle of S into a cycle of
S. U will be called the matrix of U; two Us whose matrices have proportional
elements have the same effect on homogeneous ideals, subvarieties, and cycles,
and shall be identified; v is called a nondegenerate homography of S. If 3 is a
cycle of S, then V3 is called a homographic transform of 3.

Maintaining the same notations, assume the uil-’s to be indeterminates; then
V is a nondegenerate homography of S, (k(u)), and will be referred to as the
general homography of S. Set K’=k(u), so that K” is homogeneous for the set
Yugos *++ s unn}; let K be the subfield of K’ consisting of all the homogeneous
elements of degree zero of K. If 3 is an unmixed cycle of S, set ¥"= U3y s then
B is a cycle of S+, and it is the extension over K “of a cycle 3 of S, . Clearly 3
is an unmixed algebraic correspondence between K and S, and is called the gen-
eral homographic transform of 3. Assume 3 to be integral and effective; if k is
the algebraic closure of k, and 3, 3 are the extensions of 3, 3 over ky Kk re-
spectively, then 3 is related to 3as 3 is to 3, and the set H of the cycles Siv},
where v ranges over the places of Kk over k, is an algebraic system of cycles

on' S, called the homographic system of 3.

1Note that, according to [1] or [2], a cycle on S means a cycle of the extension of S
over the algebraic closure of k.
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LEMMA 2.1. The homographic system of %is the smallest algebraic system

of cycles on S containing all the homographic transforms of 3.

Proof. Set K =Kk, and let v € M(K). Let ugo be such that v (u; ugg) >0
for every i, j. Let ¢ be the homomorphic mapping of R, whose kernel is §,, and
set u,'j(v) = o(uij u;é ); since ug, is not necessarily the only u,s such that
v(uij urg ) > 0 for each i, j» the set {uij(v)i is determined but for a nonzero
factor in k. Let U(v) be the matrix obtained after replacing, in U, each u;; by
the corresponding ui]-(v): if det U(v) # 0, then U(v) is the matrix of a non-
degenerate homography v (w). These notations will be used throughout this
section.

We contend that V(v) 3= g{v}, and this will completely prove the lemma.
Let (¢, y) be a determination of ¥¢,y3 =¥¢, y3(see[1, $21); denote by Y
the one-column matrix (yq, *++ , yr+; ), r being the dimension of 3, and by T the
matrix (tij ), so that ¥ = TX; vUcan be extended in a natural way to ;(z, u, X ),

and we have
VY = W(TX) = T(vX) = TUX =(TT) X = T(TX) = 1Y,

where by T we denote the automorphism of _k—(t, u, x) over Z(u, x) such that
TT = TU. If v has the previous meaning, T (v) and T(v) will be related to T, T,
vas U(v), V(v) are to U, v, v. If 3is irreducible, set

b = p(rad 3/k[x1) K" (2) [x],
where K* = K’k; we have, by definition,
Gt y) K () [yl = p a K () [y],
hence
y (e, vy) K7 () [vy) = vp n K°(¢) [uy].

Applying T, and using the fact that Uy = Ty, we obtain

G(T e, y) K () [yl = vh a K(e) [y],

which proves that y( T™! ¢, y) is a determination of Y,y 3% hence y (771 (v) ¢,

y) is a determination of ‘Ift,y R{vl. But, since
T Hw) = (o)7L,

we see in like manner that (T ' (v), y) is a determination of ‘I’t,y V(v)3. It
is thus proved that N (v) 3= B{v}if 3 is irreducible. If 7 is not irreducible, the

same relation is easily established as a consequence of its validity for irre-
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ducible cycles, Q.E.D.

LEMMA 2.2. The homographic system of 3 contains the homographic system

of each of its cycles.

Proof. Let $ be the homographic system of 3, and let 3; € 9, so that
lpz,y 3 = ¢ T )t y)

(but for a proportionality coefficient) for some v € M(K); here T ! (v)tii has
to be interpreted as the ij-th element of the matrix TU ' (v), w}Ech_has a mean-
ing even if det U(v) = 0. Let 3{, 8, be obtained from 3; as ', 3 are from 2

we have
Yoy B1 =y (T () T y).
For any v* € M(K) we have therefore
Yoy Bylo%h = ¢ (T7H) TN ) b y)
Now, there exists a place v” € M(K) such that

T o) T ()T = T () T,

so that

¥y 3itod = g (17w 6, y) = W,y Blo”},
or 8,1v}= 810"}, Q.ED.

LEMMA 2.3. Let 3 be an unmixed integral effective cycle of S =S, (k), and
let 3 be the general homographic transform of 3. Set G = (}8 (see [1], Lemma
4.2); let A be the algebraic correspondence between G and S induced by 3 ac-
cording to Lemma 4.2 of [11, and set Z =D, . Let k be the algebraic closure of
k, and let P be a point of G such that (Z{P}) 5 is a homographic transform of
3. Then G is analytically irreducible at P.

Proof. Let § be the homographic system of 3, and set G =G($); then &
is a component of the extension of G over the algebraic closure J of k. Assume
the lemma to be true when k is algebraically closed. In this case, G is ana-
lytically irreducible at each P € G such that P is the image point of a homo-
graphic transform of 3 = 3;= Let P be the pomt mentioned in the lemma, R =
Q(P/G), P the image (on G) of (Z{P })k’ R = Q(P/G) Ifm= %(P/G) m=
§B(P/G ), we have that mk is a primary ideal of Rk belonging to m n R/c, and
that m* o R C m where [ — o when & — . Therefore the topology induced
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in R by the R-topology is the R-topology, so that the completion R’ of R is a
subring of the completion R’ of R. Since, by assumption, R” is an integral do-
main, so is R% that is, G is analytically irreducible at P. This shows that it is
enough to prove the statement under the further assumption that % be algebrai-
cally closed.

Under this assumption, let 3” be a homographic transform of 3, and set P =
P(3),P’=P(3%), sothat 3=Z{P}, 3°=Z{P"}. Let K have the previous usual
meaning. For each v, € #(K) whose center on G is P’ we have det U(v,) # 0;
let 7 be the automorphism of k (u) over k such that 7 U = U™ ' (v, ) U. We have,
for v € M(K):

Wiy Rfavl = ¢ (T 7o) t,y).

Now,
T =TU, T'T=TU",
T ago) T=TU (av)=T(z P U) (v} =TU () U (vy)
=T w) T o) T,
so that

-

¥yy Blmod = ¢ (T7H(w) T (v, ).z, y)s
On the other hand, as we have already seen, ¥; , U (v, ) B{v} is obtained from
Yy Blo} = ¢ (17(0) 4, y)
by replacing { ¢} with { T (v ) ¢}, so that

\Pt,y U(Uo) 8{U§ = l/’(T_l(U) T—l(vo)ts )’) = \‘Pz,y 8{770%-
It follows that

Binvl = v(vy) Bivl,

and this proves that C(7v/G) depends only on C(v/G). Then the same is true
for C(v/77 ' G) and C(v/G). Let H be the smallest subfield of K containing % (G)
and 7 ' (k(G)) ="k(#"*G); the embedding of k(G) and k(7 1 G )in H gives an
irreducible algebraic correspondence C between G and 7 'G, and the above-
proved property shows that C has the same dimension as G, and that k ( rad C)is
purely inseparable over k(G ). Besides, if P = P{ 3} € G, then C[P] is the
point 7 *P’of 77 'G, and P = C[# ' P’]. Now, by Lemma 2.1, P* can be chosen
in such a way that G is analytically irreducible at P’, and therefore 7 G is
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analytically irreducible at 7 'P” Let G* be a normal associate to G, C* the
irreducible algebraic correspondence between 7 ! G and G* generated by the em-
bedding of k(7 G ) and &k (G*) in H. Should G be not analytically irreducible at
P, C*[#'P”] would contain two distinct points, which is impossible by
Theorem 4.1 of [1]. Hence G is analytically irreducible at P. By Lemma 2.1,
however, we can choose for P the image of any cycle 3™ of $ whose homo-
graphic system is 9, Q.E.D.

TueorEM 2.1. Maintain the same notation as in Lemma 2.3. If V is an ir-
reducible subvariety of S, then Z{V} exists, and each component of the total
transform { Z; V, G operates on the whole V.

Proof. Let D be a component of { Z; V, G], P a point of V on which 1D oper-

ates, and assume
dimD > dimZ - dim S + dim V.
If then D’ is a component of [D; P, G], we have
dim D’ > dim D ~dim V > dim Z - dim §,

and D’ belongs to (Z; P, G). I, therefore, we show that each component of [ Z ;
P, G] has dimension equal to dim Z — dim S, it is also proved that each com-
ponent of { Z; V, G ] has dimension equal to dim Z — dim S + dim V, and that as a
consequence Z{ V' } exists, because V is simple on S (see statement f of Lemma
4.2 of [1]). In order to show that {Z; P, G| has the pure dimension dim Z -
dim S, we proceed as follows: let /& be the algebraic closure of %, and let 3 be
the general homographic transform of 3; let K have the usual meaning, and set
K = Kk, 3= 81?’ 3= 3 let G, Z be relfted to 3 as G, Z are to 3, so that G is
a component of the extension of G over k. Let P, P,, -+- be the components of
P7c-; we have G_C [Z; P, G for some ; if and only if there exists a Q € [Z; P,
G] such that Q is a component of Q]? Therefore [Z; P, G] has the pure dimen-
sion dim Z — dim S if and only if each [Z; P;, G| has the same property. As a
consequence, it is sufficient to prove the statement under the further assumption
that k is algebraically closed. Under this assumption, let P*€ S, and let 7 be
a non-degenerate homography of S such that 7P =P’ Let M be the matrix of #,
so that 7 X = MX (X being the one-column matrix (xg, -+, xp)). Let o be the
automorphism of k(u) over k& such that o U = MU. Then it is possible to prove
(by the same method used in the proof of Lemma 2.3) the following: if » € M(K)
and P € rad (B{v}), then P’ € rad (B{o 'v}); in other words, Z[ P’] is the
total transform of ¢ ! Z[ P] in the algebraic correspondence C (between o G
and G) generated by the embedding of £(G) and k(o™'G) in K. Now, C is the
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same as the algebraic correspondence C used in the proof of Lemma 2.3, con-
cerning which it was proved that it does not have fundamental points either on G
or on ¢ 'G. Therefore C has no fundamental variety either on G or on o ' G.
Since P’ can be chosen in such a way that Z[P ‘] has the pure dimension
dim Z — dim S, it follows that Z[P] also has the pure dimension dim Z — dim S,
as asserted.

Suppose that a component D of { Z; V, G] operates on W C V, so that it is
also a component of [ Z; W, G1. From the above proof it follows that

dimD =dimZ - dim S + dim¥ < dimZ - dimS + dim V/,
a contradiction, Q.E.D.

We say that a cycle or a subvariety 3 of S is degenerate if each component

of 3 is a linear cycle or subvariety.

LEMMA 2.4. The homographic system of an unmixed cycle of S =S, (k) con-

tains some degenerate cycle.

Proof. We may assume % to be algebraically closed, since we are dealing
with an algebraic system. In view of Lemma 2.2, the statement is true if it is
true when 3 is irreducible. Therefore we assume 3 to be irreducible. Set r =
dim 3, and let F be a linear subvariety of S such that rad 3 n F consists of
finitely many points; we also require F to have dimension n — r. Such an F cer-
tainly exists, because by repeated application of the theorem according to which
each minimal prime of a principal ideal is maximal dimensional, one can easily
establish that the intersection of rad 3 with a linear subvariety of S of dimension
s has dimension > r + s — n, and that there exists some s-dimensional linear sub-
variety of S whose intersection with rad 3 has the pure dimension r +s —n if
this number is not negative.

Let {x} be the h.g.p. of S, and let {,, +++, I, be the linear forms in the x’s
forming a basis of @ (F/k[x]). The system of equations [;=0(i=1, ¢+ ,r)
can be solved for r among the x’s, say x,-r4+;, «*+ , x, and the solution is
written in the form

n-r
%= ai-ntr,j % (apg €k i=n—-r+1,.--,n).

j=o

Let U’ be the square matrix
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0 .
0 1
0o - - - 1 0

ay,o° * *  @i,n-r 0

Q.0 * ° Or,n-r o - - - 0

of order n + 1. Let v € M(K) be such that U(v) = U’ and set
P=g(rad 3/k[x]).
Let T be the projective space over k whose h.g.p. is { u}, and set
ui']. = u; u;‘; ,
so that v is at finite distance for {u’}. If {p,(x), py(x), -++ } is a basis of |,
set
x: = z]. ui']. s
and let 3 be the radical of the ideal of £[x, ©’] whose basis is
tp, (9, p, (27, -e 4.

If D=gp(9), then 1D is an algebraic correspondence between T and S, and it

differs from Z = Dg T at most for components which do not operate on the whole

T. Set
P =C(v/T), a= C(v/klu’]),

and let o be the homomorphic mapping of k[x, u’] whose kernel is qk[x, u’].
Then {ox} is the h.g.p. of F, and {p(ox’)} is the basis of an ideal of k[x]
whose radical is u((1D)[P1/k[x]). However, since {ox’} is the h.g.p. of F,
{p(ox°)} is also the basis of an ideal of k[ x4, «++ , x,-,] whose radical & is
w(rad 3 n F/k[xgy, «++ , xp-r1); therefore R is purely O-dimensional. Also, %
can be extended to an ideal Rk{x] of £[x], and

Relx] = ((1D) [P1/k[x]).

Now, Rk[x] is purely r-dimensional; besides, each minimal prime of ®, being

a O-dimensional ideal of [ xy, +++ , x,-,], has a basis consisting of linear forms
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in the x’s with coefficients in %, and the same must be true of each minimal
prime of Rk[x]. This proves that (1D)[P] is a degenerate r-dimensional va-
riety. Since Z[P] C (1D)[P], and since each component of Z[P ] has dimen-
sion >r, this also proves that (1) Z[ P] is purely r-dimensional, and (2) Z[P]
is degenerate. From (1), and from the fact that T is locally normal at P, fol-
lows that Z[ P] = 3[v], so that (2) implies that 3[v], which is the radical of a
cycle of the homographic system of 3, is degenerate, Q.E.D.

LEMMA 2.5. Maintain the notations of Theorem 2.1, and assume k to be al-
gebraically closed, and 3 to be irreducible. Then Z[ V] is irreducible.

Proof. Since, by Theorem 2.1, Z{ V'} exists, and so does Z{ P} if P € V, by
Theorem 1.1 we have that (Z{V}) { P} exists, and that it is enough to prove
the lemma under the additional assumption that V is a point. Besides, the same
argument used in the proof of Theorem 2.1 shows that Z[ P] is either irreducible
for each P € G, or reducible for each P € G. Set D = DB»T’ T having the same
meaning as in the proof of LLemma 2.4. In order to prove that Z[P] is irreduci-
ble, it is enough to prove that D[P] is irreducible for some (hence for each)
P € S. Let W be the subvariety of T consisting of the centers on T of those
v € M(T) for which det U(v)=0. We shall show first that if it is true that
D[P] has only one component outside W for P € S, then it is also true that
D[P] is irreducible. In fact, let ¥ be the prime algef)raic system of cycles of
T whose general element is D{S} (after extending it over £(S)). If D[P] is
reducible for each P € S, then % is not simple; according to Theorem 5.4 of [ 1],
% is then composed with a simple algebraic system %” and an involution & on
G(A”); A’ contains cycles which have no component variety on W (because not
every element of ¥ has the radical in W), and S contains cycles which have no
component variety in any one given proper subvariety of G(U”). Therefore U
contains cycles which have no component variety in W, and this proves that for

some (hence for each) P € S, D[ P] is irreducible, as claimed.

For any point Q € T — W we shall write U(Q) instead of V(v), v € M(T),
C(v/T)=Q. Then D[P]1-(D[P] n W) consists of the Q € T ~W such that
LV 1(Q)€E rad 3. Let P be the general homographic transform of P constructed
with the general~homography L ™! (rather than V), and set E = D T then
VHQ)P=E[Q1if QE T -W, sothat D[P1-(D[P]l nW)=L-(L a W),
where L is the subvariety of T on which E[rad 3] operates. If we prove that
£ [rad 3] is irreducible, it will follow that L is irreducible, as desired. Now,
the same argument used at the beginning of this proof shows that £[rad 3]
is irreducible if E[ P ‘] is irreducible for some (hence for each) P* € S, or also
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if E[P’] has only one component outside W for a P* € S, say P’= P. But this
is obviously true, since the set of the Q € T — W for which V™' (Q)P = P, that
is, for which U(()P = P, is a linear variety less its intersection with #, Q.E.D.

THEOREM 2.2. Notations as in Theorem 2.1. Set n =dim S, r = dim 3, s =
dim V. If r + s —n > 0, then each component of [ Z; V, G] operates on the whole

G,V nrad 3is not empty, and each of its components has dimension >r + s — n.

Proof. The proof of this result, like that of Theorem 2.1, is readily reduced
to the case in which £ is algebraically closed and 3 is irreducible. In this case,
according to Lemma 2.5, D =[Z; V, G] is irreducible, and, by Theorem 2.1, D =
{Z; V, G1. If P is a point of G such that Z{P } = 3/, then V nrad 3°=(1D)[P]
by Theorem 2.1. Set d = dim D, and let F be the irreducible subvariety of G on
which 1D operates. Then d = r + m — n + s, where m = dim G. Therefore,
(1D) [P]is empty if P ¢ I, while if P € F each component of (11) [P],
hence of ¥/ n rad 3, has dimension > r +s ~n + m~ dim F. By Lemma 2.4, the
homographic system § of 3 contains some degenerate cycle 3", and therefore, by
L.emma 2.2, it contains the homographic system §’ of 3”. According to the first
part of the proof of Lemma 2.4, $ contains some cycle 3, such that V' n rad 3,
is nonempty and has pure dimension r + s ~ n. If Py € G is such that 3, =
Z{ P}, it follows that Py € F and that

r+s—-n+m-dimF <r+s -n,

that is, that dim F = m, F = G. Hence 1D operates on the whole G, as claimed,
and each component of (1D) [P], for any P, has dimension >r +s —n, Q.E.D.

3. Intersection of cycles of a projective space. [n this section S denotes an
n-dimensional projective space over k.

If 9, 3 are unmixed cycles of S, of dimensions r, s respectively, such that
r+s—n>0, then a component V of rad 3 nrad 9 is said to be a component
variety of 3 n Y orof 9 n 3 ifdimV=r+s—n.

Let 9, 3 be unmixed integral effective cycles of S, of dimensions r, s re-
spectively; assume V to be a component variety of § n 3, and let § = Zi a; v,
be the minimal representation of . Let 3 be the general homographic transform
of 3, G= GS’ Z the algebraic correspondence between %£(G) and S induced by
3 according to Lemma 4.2 of [1]. Let P be the (unique) point of G such that
Z{P}= 3. Then P is arational point, so that ¥/ x P is irreducible, and V x P is
a pseudosubvariety of {Z; 9;, G] for some i; Theorems 2.1 and 2.2 imply then
that /' x P is a component of [{Z; 9;, G}; 9;, P] for some i. Now assume Z =

Zj ¢; Zj to be a minimal representation of Z, and let 3,, 3,, +++ be the distinct
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component varieties of 3. Then each 3; x P is component of exactly one [1Z;
S, P, say[1Z(;); S, P1; and if some Zj is such that [1Z}; S, P] has more than
one component, say 3, and 3,, then A(3,) = A(3,). This being established,

set c;"— c.h( 3; ) (h((lZ/) [G1))™Y, i being such that j(i) = j; set also 7Z* =
Z o*¥Z,. "Then we have Z#{PJ* = Z{P | = 3. By Theorem 2.1, {Z*; b;, G}*

ex1sts for each ;. Since G is analytically irreducible at P by Lemma 2.3,

o, =e(V x P/{Z* 9, G 9, P}

exists for each i by Theorem 5.3 of [2]. The number z]. a; O(j is denoted by i (V,
9 n 3, S) and called the intersection multiplicity of % with 3 at V on S. We set
i(V,9n3,S)=0ifdim V=r+ s —nbut V is not a subvariety of rad 9 n rad 3.

If each component V' of rad § nrad 3 has the dimension r + s —n, we set
9 n 3=Zji(V].,i3 n 3,S)V].;

9 n 3 is called the intersection of 9§ with 3 on S (although S does not appear,
at this stage, in the symbol § n 3). Evidently, if i(V, 9; n 3, S) andi(V, 9, n
%, S) both exist and have the same dimension, then i (V, (9, + 9,) n 3, S) also
exists, and equals Z]. (v, 9] n S

A cycle & of S whose minimal representation is & = Y.e. W is said to be a
part of H n 3 (whether § n 3 exists or not) if (1) each W is a component variety
of H n 3, and (2) e; =i(W;, 9 n 3, S). The same cycle 53 is said to coincide lo-
cally at U with 9 n 3 (U being a subvariety of §) if (1) each W; which contains
some component of U is a component variety of § n 3, (2) each component of
rad 9 n rad 3 which contains some component of U coincides with some ;, and
3) ej = i(Wj, 9 n 3, S) for each ; which contains some component of U. Also,
9 n 3 is said to exist locally at U if i(V, § n 3, S) exists for each component
V of rad § n rad 3 which contains some component of U; the local part of § n 3
at U is Z]- i(Xj, 9 n 3, S) Xj, where X; ranges among all the components of

rad § n rad 3 each of which contains some component of U.

LEMMA 3.1. Let Y, 3 be unmixed integral effective cycles of S =S, (k),of
dimensions r, s respectively. If r+s —n>0, let V be a component variety of
9 n 3. Let 6 be an unmixed algebraic correspondence between an algebraic func-
tion field K over k and S, such that the set N(8) of the v € M(K) for which
0{v}* is the modified extension of 3 over K, is nonempty. If 9" is the modified
extension of § over K, let Aj (j=1, 2, -++) be the component varieties of " n 0,

and set

Ag =X (A, 9" n0,S) A
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If v € N(6), then a partial extension of i(V, % n 3, S) V over K,, is part of
Agtvlt*.

Proof. The statement is clearly true if it is true when 9 is irreducible; ac-
cordingly, we shall assume 9 to be irreducible, and put ¥ =rad 9.

In order to avoid lengthy repetitions, we shall say that the set { K, 6} is “ad-
missible” if (1) every component of @ operates on the whole S, (2) N(6) is not
empty, and (3) each component of rad § n Yx has dimension r + s — n and oper-
ates on the whole Y. And we shall say that an admissible set { K, 0} is “satis-

factory” if the following statement is true: Set
* .
Lo =2, e(A/0)* A

then, for each v € N (@), a partial extension of i(V, § n 3, S) V over K, is
part of [gi v},

Step 1. Let 3 be the general homographic transform of 3, G = Gg, K =k(G),
0’ the algebraic correspondence between K and S induced by X according to
Lemma 4.2 of [1]. If 9’ = Zj a].' 6]. is the minimal representation of 67, set

D; =Dy

and let P € G be such that Z/ aj.' DjiP } = 3. Set

a; = a/h(3,) (h(e N7,

3; being any component variety of D;{P}; finally, put
0 = z]. ¢ 9/. .

Then clearly { X, 6} is admissible by Theorems 2.1, 2.2, and N () is the set of
the v € M (K) whose center on G is P. f ' =I'y and C = Dp (., then by defini-

tion we have
i(V,9n3,S)=e(VxP/C;Y,P)

if v € N(9), by formula (1) and by the corollary to Theorem 5.1 of [ 2] it follows
that ['{v{* is & partial extension of C{P }*, and therefore { K, 0} is satisfactory.

This is the contention of Step 1.

Step 2. Let K* be an algebraic function field over K, §* the modified exten-
sion of 6 over K*. By means of Lemma 1.2 it is a simple matter to prove that
{K*, 6%} is admissible if and only if { K, 8} is admissible; in this case, N (6*)

consists of the extensions to K* of the elements of N(6); and clearly, if { K*,
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6*} and {K, 0} are admissible, then {K*, 6*} is satisfactory if and only if
{K, 6} is such.

Step 3. We work again with two sets { K, 0} and { K*, 0™}, on which we make
the following assumptions: (1) if G = Gy, G* = Gg+, then K = k(G), K* = k(G*);
(2) {K, 0} is (admissible and) satisfactory; (3) if Z = Do, ¢» Z* = Dgx, ¢+, then
GC G* and Z ={Z*%; S, G}*. We wish to prove that { K*, §*} is admissible and
satisfactory.

Clearly each component of §* operates on the whole S. If N = N(9), N* =
N(6*),let v € N, and let w be a valuation of K* whose dimension equals dim G,
and such that C(w/G*) = G. Then any valuation of K* compounded of w and of
an extension of v to K, belongs to N*, so that N* is nonempty. Let C’; be a
component of { Z*; ¥, G*] such that IC;< operates on the whole G, and let ¥’
be the subvariety of ¥ on which 1 C;’f operates. Since ( 1 C?) [G*] is a component
of Z*[G*] n Ygx, by Theorem 2.2 it has dimension > r + s — n, so that dim C’; >
r+s —n+ dim G*, Let C; be a component of [ lC’;; Y, G1, so that

dimC}.ZdimC;‘.‘-—dimG*+dimGZr+s—-n+dimG.

Since C; is also a pseudosubvariety of { Z; ¥, G1, and since 1 C; operates on the
whole G, by assumption C]' is also a pseudosubvariety of [ Z; Y, G1, and there-
fore

diij <r+s-n+dimG.
This proves that
dimC}.=r+s——n+dimG;

hence Cj is a component of [Z; Y, G] and 1C; operates on the whole G; there-
fore 1C; operates on the whole Y, and the same must be true of 1C’;. As a con-
sequence, {K*, 0%} is admissible. We remark that we have also proved that G is
not fundamental for 1 C? .

Let now G’* be a normal associate to G*, and call G’ an irreducible sub-

variety of G’* which corresponds to G in the birational correspondence between

G* and G’*. Set

*
Z' = DB*,G'*'

If le* is any component of {Z**; Y, G**], and if lCl'.* operates on the whole
G’*, since { K*, 0™} is admissible and 5 is normal we have that e(C;*/Z'*;
Y, G’*)* exists. Set

C;* - zl G(C:*/Z'*; Y, G;*)* C:*-
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Then I™ =g+ equals C**{G** }*. Set also Z’={Z**; S, G’}, so that Z*{ G’}*
is the modified extension of Z{G }* over £(G”’). Since G is not fundamental for
1 Cf (as previously remarked), G’ is not fundamental for C’*, and G’ ¥ is locally
normal at G’. Hence, by Theorem 4.1 of [1], C’={C’*; Y, G’}* exists. The
component varieties C of C’ are those components 4 of {Z% Y, G’] such that
14 operates on the whole G*% but then C/; Z**, ¥, G’ can replace respectively
U,D,W,, W, in Theorem 1.2, and the result is that C“ equals the cycle obtained
from[Z’; Y, G*] in the same way as C** is obtained from [ Z°*; Y, G’*1.
Let C be obtained in the same way from [ Z; Y, G]; then

and, by Lemma 1.2, C*} G’}* is the modified extension of I" over k(G *).

If v* € N* and P = C(v*/G*), then Z*{P |* is the modified extension of 3
over k(P ); therefore P € G; hence P”=C (v*/G**) belongs to one of the irre-
ducible subvarieties of G** (say G’) which correspond to G. Since C’{ G’}* is
the modified extension of I over £(G’), and because of formula (1), there are
components V]' (j=1,2,+++) of ¥ x P such that e( Vj/C'; Y, P’)* exists, and
such that

i(V,9 n3,S)odV = Zje(Vj/C'; Y, P°)* ord(lV}.){P’}*.

Hence each V; is a component of [Cc’*; Y, P’], and e(Vj/C'*; T, P*)* exists
since G** is normal (see Theorem 5.3 of [ 2]). But then Theorem 1.1 yields

e(V}./C'*; Y, P)* = e(V}./C'; Y, P
As a consequence, a partial extension of
sk 7\ k 3t 3
zi e(V]./C ; Y, P%) (1V].){P }
(which is also a partial extension of i(V, 9 n 3, S)V) over Ky is part of
™ { v* }*. This means that { K*, 6*} is satisfactory, as announced.

Step 4. If {K, 6} is the set given in the statement of Lemma 3.1, let 6’ be
the general homographic transform of 3, and set

K = kQeee,u.ul, es),

Yij Yoo
the u;;’s playing the usual role in the definition of 6” Let K*, 6* be obtained
from K, 6 as K’; 6 are from k, 3, and by means of the same u;;’s. Set also

* *
G = Gel, G* = Ge*, I{1 = k(G), Kl = k(G ),
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and let 0;, 6} be the algebraic correspondences between respectively, K, K,
and S of which A’ §* are modified extensions over respectively, K* and K*,

If v € N = N(6) and w is the unique extension of v over K*, since 0fv}*
is the modified extension of 3 over K, it follows that 6*{w}* is the modified
extension of 6" over K,. This also means that G C G*, and that Z, '=§Z;k;

< 1k
S, G17, where we have set

Z, = 091»0’ AR De’;,c*’
By Step 1, {K,, 6,1} is satisfactory; since {K’:, HT} has been shown to be re-
lated to { K, 0,} as { K*, 6"} is related to { K, 0} in Step 3, it follows that {K’:,
0’:} is satisfactory. Step 2 implies then that { K*, * } is satisfactory.

Step 5. Let K, 6, K*, 6%, N have the same meanings as in Step 4, and set

N* = N(6%), T* = 'y, .

Let w be a valuation of K* over K such that uij(w)=0if i #j, uj;(w) =1, and
Ky =K. If v € N, let v* be the place of K* over & which is compounded of w
and v, so that v* € N*. Since { K*, 6™} is satisfactory by Step 4, a modified ex-
tension of i(V, 9 n 3, S) V over K , =K Js part of

C*{o* P = (I {wl®) {o}*,

Since w is a place of K* over K, and K,, = K, and since 8" is the general homo-
graphic transform of ¢, the following statement is true by definition: If A; is a
component variety of 9" n 6, then i(Aj, 9" n 6, Sx) A; is part of 0 {wl*. As a
consequence, A = A, is part of I™{w}*, and its component varieties are all the
components of rad §” nrad 6 of dimension r + s —n. If V; is a component of the
extension of V over K, and if A’ is a component variety of ' {w}* such that
(1A") {v}* has V, as a component variety, certainly

dimA':dimVl =r+ s —n;

that is, A’ is a component variety of A. This proves that (I'* {w}*) {v}* and
Afv}* coincide locally at ¥;; hence a partial extension of i(V, 9 n 3,5)V
over K, is part of A{v }*, Q.E.D.

REMARK 1. Maintaining the same notations, by comparing Steps 3 and 5 we
see that if { K, 0} is admissible, then T'y = A, and {K, 0} is satisfactory.

REMARK 2. Remark 1 shows that the use of the word “intersection” and of
the symbol n in Lemma 1.2 agrees with the present definition of intersection of

cycles.
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REMARK 3. Remark 1 also shows that in defining the intersection Y n 3,
any admissible set { K, 6} can be used in place of the set { K, 0} of Step 1 of the
proof of Lemma 3.1. Step 1 itself shows that admissible sets do exist.

THEOREM 3.1. If 9,, 9, are r-dimensional cycles of S, and 3,, 3, are s-

dimensional cycles of S, and V is a component variety of
(91 + 92) n (34 + 32),
then
iV, (9 + 9,) 0 (31 + 3,),8) = 2 iV, 9 g, S).

Proof. (See Remark 4 at the end of this proof). Assume §]-, 3; (j=1,2) to
be integral effective cycles. By definition,

PV, (9y + 9,) n (33 + 320, 8) = 2,i(V, 9, n (3 + 3,),5).
Hence it is enough to prove that if § denotes either §;, then

iV, 903 0n3,),8) =2i(V,90n3,S).
Now, let ¢; be the general homographic transform of 3> and set
K = k(nq-, uli u;;, 00.).

Then 6, + 6, is the general homographic transform of 3; + 3,. In the notations
of Lemma 3.1 and its proof,

¥

N = N(91 + 62) = N(el) n N(ez),
and
{K, 91} (i=1, 2), {K’ 01 + 62}
are satisfactory. We also have
Fel +92 = Fel + Fez,

so that Lemma 3.1 itself and Remark 3 imply
i(Vs 9 n(3 +3,)5) = ZI. i(V,9 n 3;,5), QED.

REMARK 4. So far, Theorem 3.1 has a meaning only if 9is 3j (j=1,2) are
integral effective cycles. This particular case is sufficient, however, to give a

meaning to ;(V, % n 3, S) when 9, 3 are rational virtual cycles: in fact, for
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some integer m it is true that

mY =9 -9, m3 =3, - 3,

where 9, 3; (j=1, 2) are integral effective cycles; Theorem 3.1 shows that
the number

m iV, 9, n 3,5~ i(V, 9 n 3,,5)

- i(V, 9, n 3,,8) +i(V, 9, n 3,5, 5)]

depends only on ¥, 9, 3. This number will be denoted by i(V, § n 3, S) and
called the intersection multiplicity of § with % at V on S; all the other notations
and definitions concerning § n 3 are extended likewise. With this definition it
is easily proved that Theorem 3.1 remains true in general. As a matter of fact,
Lemma 3.1 itself remains true after removing the assumption that § and 3 are in-

tegral effective cycles.

Let 2 be an unmixed r-dimensional cycle of an irreducible n- dimensional va-
riety U over k, and let V be an irreducible subvariety of U of dimension <r, R =
QV/U); let 3 = zi b, 3; be the minimal representation of 3, and set b =
$(3;/U) n R for each i such that R C Q(3,/U) (that is, such that V C 3;).
We say that 3 is a complete intersection at V on U if there exists a subset { {'}
of a set of parameters of R such that (1) the pi’s are all the distinct minimal
primes of the ideal of R whose basis is { ¢y 4’2, «++}, and (2) we have

b = e(Ry 3 ) = e(Q(3/0)5 )

for each i for which p; exists. Any such set {{} is called a set of representa-
tives of 3 at V on U. Also, { £} is assumed to consist of units of R if V i rad 3.
A complete intersection at V obviously coincides, locally at ¥/, with an integral

effective cycle.

LEMMA 3.2. Maintain the notations of Lemma 3.1; assume 3 to be irreduci-
ble, and 9 to be a complete intersection at V on S. Let {{} be a set of repre-
sentatives of 9 at V on S, and set p=P(rad 3/S) n Q(V/S). If 6 is the homo-
morphic mapping of Q(V/S) whose kernel is Y, then {o{} is a set of parameters
of Q(V/rad 3), and i(V, 9 n 3,5)=e(Q(V/rad 3); 0{).

Proof. Let 0 be the general homographic transform of 3,
K = k( soe u.. u—l .oo)’

ij “o0?

T the projective space whose h.g.p. is { u}, P the point of T at which u;; = 0 for
i #j, ujj = 1. Let {y} be a regular set of parameters of Q(P/T). Set Z = Dy s
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and let § = Z]. a; i;]. be the minimal representation of §. Set C; = {Z; b;, T}*
If Cﬂ ({=1, 2, ...) are the component varieties of Cj, then from the corollary
to Lemma 1.1 follows that

C; = 2, e(Q(Cy/rad 2); ) e(Q(9,/8); O €.
According to Lemma 3.1 and its proof, we also have, by Theorem 3.1:
i(V, 9038 =2 aeVxP/Csy,P)
=29 e(Q(V x P/C]-l); n) e(Q(P/T); )1 e(Q(Cﬂ/rad YARNS)
x e(Q(9;/8); ™.
Since a; = e(Q(Y;/S); {), this also gives
i(Vy9n3S)= zjl e(Q(V x P/Cﬂ); n) e(Q(le/rad Z);¢).

The ideals $(le/rad Z) n @Q(V x P/rad Z) are all the minimal primes of the
ideal of Q(V x P/rad Z) whose basis is { { }; therefore the associativity formu-
la (Theorem 2.1 of [2]) gives

i(V,9 n 3,8) = e(Q(V x P/rad Z), ¢, 7).

The only minimal prime of the ideal of Q(V x P/rad Z) whose basis is {5} is
the ideal P(rad 3 x P/rad Z) a Q(V x P/rad Z), and

e(Q(rad 3 x P/rad Z); ) = e(rad 3 x P/rad Z; S, P)* = 1;

therefore, if T denotes the homomorphic mapping of Q(V x P/rad Z) whose

kernel is said prime, the associativity formula gives
i(V,9 n3,S)=e(Q(V x P/rad 3 x P; T{) = e(Q(V/rad 3); 0{), Q.E.D.

Notice that the fact expressed in Lemma 3.2 is the basic reason for which

[’y = A, when 0 is admissible (see Remark 1 and the proof of Lemma 3.1).

LEmma 3.3. Let 9, 3 be unmixed cycles of S, and let V be a component
variety of 9 n 3. Let A be the general homographic transform of 9,

- -1
K=kCoonyugugl,-o0),

4

v any place of K over k such that Ky =k, uij(v) =0 if i #j, u;;(v)=11If 3
is the modified extension of 3 over K, and Aj (j=1, 2, +++) are all the com-
ponent varieties of A n 3/, set
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A = Zji(Aj,A n 3 S A
Theni(V, 9 n 3,S) V is part of A{ v},

Proof. Assume first § and 3 to be integral effective cycles. Let 4. be the
reciprocal element of u;; in the matrix U = (u;;); if { X} is the h.g.p. of S, leto
be the non-degenerate homography of S, such that

d
oXi = Z]. Ui Uy XI..

Then oA is the modified extension 9’ of § over K, and § = ¢ 3 is the general
homographic transform of 3. If A; is a component variety of A n 3’, then 0 A; is

a component variety of §* n 6, and
i(A]., An3ySy)= i(aA]., 5" n 6,5,
If

¢(..., ui], u(;ol’...,t, y) = ‘Pt,yA’

and T is constructed from {u;] u

by § 2 we have

00 } as T is constructed from {uii} in $2, then

\'pt'y(O'A) = ¢( ey uij LL;;, sy 1—159 y)'

If we replace here each ujj by uij(v), we obtain

W, (@A) (o] = glu (0), 6,y) = ¥, (Ao},
which goes to show that

(oA {o}* = Afol}*.

Buti(V, 9 n 3, S) V is part of (¢ A) {v}* by Lemma 3.1, so that it is also part
of A{v}*, as asserted.
If § or 3 are not integral effective cycles, the proof of Lemma 3.3 is easily

derived from the above special case, Q.E.D.

THEOREM 3.2. Let K be an algebraic function field over k, A and 6 two un-
mixed algebraic correspondences between K and S, of dimensions r, s respec-
tively. Let 9, 3 be two cycles of S such that the set N of the v € M(K) for
which A{v}*, 0{v}* are the modified extensions over K, of 9, 3 respectively is
nonempty. Let V be a component variety of 9 n 3, and let Aj (j=1, 2, +-+) be

all the component varieties of 6 n A; set
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o = i(A, 00,5, A= Z]. o A

Then the set { Aj} is nonempty, and, for each v € N, a partial extension of i(V,
3 n 9, S) over Ky is part of Afv}*.

THEOREM 3.3. If Y, 3 are unmixed cycles of S, and V is a component vari-
ety of H n 3, then

i(V,9n 3,5 =i(V,3n9,5).

Proof. Theorems 3.2 and 3.3 will be proved together in a number of steps.
We shall prove them under the additional assumption that 9, 3 are integral ef-

fective cycles. The transition to the general case is obvious.

Step 1. In the notation of Theorem 3.2, let £’ be the algebraic closure of £ in
K, and let K be a field isomorphic to K over £* then the direct product K x K’
over k’is an integral domain. Let £ be the quotient field of K x K" Let A”be a
“copy” of A over K*. Given a v € N, select elements x, + « +y %, € K such
that (1) K = (%), (2) £Tx) C Ry, (3) if p=C(v/k’[ %)), then k'[x]¥3 contains

all the coefficients of

Wt,y 0 € K[t yl,

after one of these has been made equal to 1, and (4) k'[x]b contains all the co-
efficients of

‘pl,yA C K[t, }’]’

after one of these has been made equal to 1.

Let x:, ooy, xr'" be the elements of K which correspond to Xy ooy X, in
the isomorphism between K and K*. Then E = k*(x, x*). The ideal P of k[ x, x”]
whose basis is {x{ — %, *++, %y — %y} is prime; let u be any valuation of E
over k whose center on k’[x, x°] is §, and whose dimension over & equals
dim $/% = transc K/k. Then u is a place of £ over K. Let A* be the modified
extension of A’ over K: then we see that A*{ 4 }* is the modified extension of
A over K. Let A* be obtained from A* and 6 as Ag (in Lemma 3.1) is obtained
from 6 and 9. Then, by Lemma 3.1, a partial extension of A over K,, is part of

A*{ut*,
Step 2. Let k”[z] be the integral closure of £“[x, x”], and let v* be the
place of K’ which corresponds to v in the isomorphism between K and K”. Set

q=C(v”/k’[x°]), and let O be the minimal prime of gk’[x, x“]. Denote by v*

the place of £ over k which is compounded of 1 and of an extension of v to K.
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Then Q ¢ C(v*/k“[x, x°1), and therefore some minimal prime O of Q& z] is
contained in C(v*/k’[z1). We select a place w of E over K whose center on
k’[z] is Q% then there exists a place w* of £ over k& whose center on k[ z] is
C(v*/k’[ z]), and which is compounded of w and of some place v, of K, over

k.1f v, is the place of K over k induced by v, we have
Clw*/k %, x1) = C(v*/k’ (%, x°1),
hence
Cluvo/k’[x1) = C(w*/k"[x]) = C(v*/&[x]) = C(v/k"[x]).

As a consequence, because of the choice of {x}, v4 and v have, on Gy and Gy,

the same centers; since v € N, we deduce that v, € N. We also have
Clw/k’[x1) = Qn k’[x] = g = C(o¥k’[x]):

therefore, since v € N, it follows that A*{w }* is the modified extension of 9
over K,,. Let A’ be obtained from 6, §* (= modified extension of § over K) as
Ag (in Lemma 3.1) is obtained from 9, 6 respectively. Now we can replace, in
Lemma 3.1 § by 6, 3 by 9%, 8 by A*, Ag by A*, and the result is that a partial

extension of A’ over Ky, is part of A*{w}*.

Step 3. We now make the assumption that a partial extension of i(V, 3 n g,
S)V over K”o is part of A*{ v, }*. Since we also have that

A fw* P = (A w}*) fo,

is the modified extension of A’{v, }* over K, «» we deduce that a partial exten-
sionof i(V, 3 n 9,S) V over Ky, is part of A*fw* ¥,

Let F be the irreducible variety over & “ whose n.h.g.p. is { z}; set

L=D $ = C(w*/F) = C(o*/F),

A F?
and let U be the subvariety of S on which L operates. Since F is normal, for any

component C of [L; U, P] of dimension r + s ~ n the number e(C/L; U, P)*

exists. The previous result shows that among the C’s there are pseudosubvarie-
ties V]- of Sk’ x F such that (1Vj Y[P1 is a component of Vk(P); and it also
shows that if

Vo= e(Vy/L; U, PY (L) [P,

then a partial extension of i (V, 3 n 9, S) V over k(P) is part of V"
The concluding statement of Step 1 shows that a partial extension of A{v}*

over K, is part of A*{o*}*. If V” is the part of A{v}* whose component varie-
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ties are components of the extension of ¥ over K,,, this also means that a partial
extension of V** over K, coincides with a partial extension of V/“over K ,, and
therefore also with a partial extension of i(V, 3n 9, S) V over K, But then
V* itself is a partial extension of i (¥, 3 n Y, S) V over K,,, and this proves
that Theorem 3.2 is true if the assumption made at the beginning of Step 3 is

lrue,

Step 4. We now apply the content of Steps 1, 2, 3, to the following case:

assume 9, 3 to be irreducible; let §” be the general homographic transform of 3,

H = k(..., u..u ! cee);

ij o0’

let A’ be the general homographic transform of §, constructed with an inde-

pendent set { u{]} of indeterminates, and set

’ ’ -1 .
Ho= hCeee s ufiullty oon)s

set

1 ’. -7l .o
K_k(...’uiiuoo’...,...,uiiuoo, .)’

and let A, 0 be the modified extensions of A, 6” over K. We select placesp,
p’of H, H’ over k such that

Kp = Kp' =k, uii(p) = ul.'].(p') =0ifi £ j, ui;(p) = ui'i-(p') =1.

We further select for v the place of K over k& which is compounded of the unique
extension p* of p over H’, and of p”. In this case the set {x} can be selected to

coincide with the set

{eee,u u b eee  eee,ututTl L}
> %ij Too? ’ * % Yoo ?

(see Step 1), and &k’ = k. Besides, k[x, x’] is integrally closed, so that {z} =
{x, x’} (see Step 2). The fact that k[ z] = k[ x, ] implies that we can select
vy = v in Step 2. Hence we can replace, in Lemma 3.3, S by S,,, 9 by the modi-
fied extension 3” of 3 over H’, 3 by the modified extension 9 of § over H{ K
by K, v by p*, A by 6, A by A%, V by the extension V” of V over H’, and Lemma
3.3 yields that i (¥, 3" n 9%, S,.) V" is part of A’{p* }*. Now, from the defi-

nition of intersection multiplicity follows that

i(V” 37 09" 8,) =i(V,3n9,5);
therefore i (¥, 3 n 9, S) V is part of

(AEp* 1) {p}* = Afol* = Afoo}*.
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Hence, in this particular case, the assumption made at the beginning of Step 3 is
true, and therefore, by Step 3, i(V, 3 n 9, S) V is part of Afw}*. If A;j is any
component variety of A, then 1A;, considered as an algebraic correspondence
between K and Sy» operates on the whole rad 0’ (see Remark 1), while, con-
sidered as an algebraic correspondence between K and S, -, 1 A; operates on the
whole rad A% If { £}, {5} are sets of regular parameters of Q(rad 6'/SH) and
Q(rad A7/S, ») respectively, it follows that 0, A are complete intersections at
Aj on SK , and that { £}, { 5} are sets of representatives of 6, A, respectively, on

SK' Set

R = Q( Af/SK ).
If o, T are the homomorphic mappings of R whose kernels are  (rad A/Sg) n R
and B (rad /S, ) n R respectively, Lemma 3.2 implies that
i(Aj, 0 nA,S)=e(oR;0(),

and this equals e (R; ¢, 8) by the associativity formula (Theorem 2.1 of [2]);

therefore, again by the associativity formula and Lemma 3.2, we have
i(Aj, 0 n A Sp)=e(R; ¢, 8) =e(TR; T8) = i(Aj, A n6,5S).

This shows that A is unaffected when A, ¢ are interchanged, that is, when 9, 3
are interchanged; hence i(V, 9 n 3, S) V is also part of Afv}*, and this

amounts to saying that
i(Vy9n3,S)=i(V, 2n9,89).

Theorem 3.3 is thus completely proved when 9 and 3 are irreducible, and there-

fore also when they are not irreducible, because of Theorem 3.1.

Step 5. We go back to the general case considered in Steps 1, 2, 3, and prove
that the assumption made at the beginning of Step 3 is always true. According to
Theorem 3.3, proved in Step 4, the equality

I,(A;, 9 n 9', SK) = L(A]’, 9’ n 6’ SK)

is true for any component variety A’ of A% Therefore we can replace, in Lemma
3.1, 5 by 9, 3 by 3, 0 by 6, Ag by A’, and the result is that a partial extension
of

iV, 9n03,S)V=iV,3n09,S)V

over Ky is part of Al v, }*, since, as it was proved in Step 2, v, € N. This
completes the proof of Theorem 3.2, Q.E.D.
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THEOREM 3.4. Let ¥, 9, 3 be three unmixed cycles of S=S,(k), of di-

mensions r, s, t respectively such that
r+s+t—-2n>0;

let V be a component of tad £ nrad § n rad 3 of dimensionr+s +t—2n. Let
Uy, Uy, +++ be the components of rad ¢ n rad § which contain V, and let W,
Wy, «++ be the components of rad % n rad 3§ which contain V. Then

dimUj=r+s ~n,dimW; =s +t-n,
so that

U= E].i(Uj, ¢n 9, S)U and W= Zl.i(W]., b3 SHW,

exist. Moreover,
iV, cnaW,S)=i(V,Un 3,95).

This number shall be denoted by i(V, £ a § n 3, S), and a similar notation

will be used when more that three cycles are involved.

Proof. We may assume, by Theorem 3.1, ¢, 9, 3 to be irreducible. Let X,
@', 8’ be the general homographic transforms of ¥, Y, 3, respectively, con-
structed with three independent sets of indeterminates'{ u;j}, {v;j}, tw;;}, and
set

H=kCGeoyuyul,een), J=k(eer, TLove ), L= h(eee, wowlt, o),

i %007 Yiji Yoo ij o0’

K o= koo g ushy eeey oey 0 03, ey oy w03l +e0).

Let X, 9), 3 be the modified extensions of X', 9, 8 respectively over K. Then
(Xnd)nZBand X n(Yn3) exist. Let { £}, {5}, { {} be sets of regular parame-
ters of Q(rad X'/SH ), Q(rad @'/SJ ), Q(rad 8'/SL ) respectively. If A; is any
component variety of A= X n ), lA]. operates on the whole rad X” and the whole
rad @’,' so that X and ) are complete intersections at Aj on S, , and {& {n} are
their sets of representatives at Aj on Sk Therefore, by Lemma 3.2, Theorem
3.3, and the associativity formula (Theorem 2.1 of [ 2]), we have

i(A]., XnY, Sg) = e(Q(A]-/SK); &)

If I, is a component variety of I"' = A n 3, this also shows that A is a complete
intersection at I; on S, and that {& 1} is a set of representatives of A at I,

on S, ; since 3 is also a complete intersection at I'; on S¢» and {{} is a set of

b
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representatives of 3 at Fl on SK’ the same argument gives

(T, A n B,S) = e(Q(I}/S )5 &1, 0).

If now A = n 3, we can prove by the same method that

i(Fl’ X n A, SK) = e(Q(Fl/SK ); 577’1 4)9
so that A n 3= X nA. Let now v be a place of K over & such that,

ui].(v) = vi].(v) = wij(v) =0 if [ # j,u“.(v) = vii(v) = wii(v) = I,KU=k.

Theorem 3.2 implies that U is part of A{v}*, and therefore also that i (V, U n 3,
S)V is part of I'{ v}*; for the same reason, i(V, xnW,S)V is part of I'} v}¥¥,
Q.E.D.

4. Further properties of the intersection multiplicity in a projective space.

Throughout this section, S will be an n-dimensional projective space over the

field k.

THEOREM 4.1. If &, 9 are unmixed integral effective cycles of S, and V is
a component variety of Tn 9, then i(V, £ n 9, S) is a positive integer.

Proof. In the proof of Theorem 3.4 it has been shown that
L(A/’ x n @7 SK ) = e(Q(A]/SK ); 69 7])!

so that A is an integral effective cycle. But then i(V, £n%, S) is an integer
because it is the multiplicity of V in A{v}* (v having the same meaning as

in the proof of Theorem 3.4), Q.E.D.

From Lemma 3.2, Theorems 3.2 and 3.4, and Lemma 2.3 of [2], it is now
possible to see that a cycle 3 is a complete intersection at V/ on S, and has the
set of representatives { {} at V on S, if and only if 3 coincides locally at V with

¥, n¥, n--., where g; is the (n — 1)-dimensional cycle

T; = Z], Ui].(gi) (Ko, k(C(vi]-/S))] C(vij/S);

here Vi (j=1,2,++.) are all the discrete normalized valuations of £(S) over £

of rank 1 and dimension n — 1 such that v (&) > o.

THEOREM 4.2. Let 9, 3 be unmixed cycles of S of dimensions r, s such
that r + s —n>0; let V be a component variety of 9 n 3. Let k" be an extension
of k, and 9’y 3" the modified extensions of 9, 3 over k’. Then each component

Vi of Vi is a component variety of 9" n 3’, and
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zll(V]’ 9" n 3’Sk') VI
is the modified extension over k’of i(V, 9 n 3,S) V.

Proof. The first assertion is evidently true. In order to prove the second
statement, let 9*, 3* be the general homographic transforms of §, 3 respec-

tively, constructed with two independent sets of indeterminates { uij 5, {vii }. Set

= LU ) —1 LI S L) —1 e
K =k(..-, Uij Yoor =" » » Vij Yoo )s

and let §), B be the modified extensions of §*, 8% respectively over K. Then
A =9 n 3B exists, and if v is a place of K over % such that

Ky = ky ujj(v) = vij(v) =0 if i#j,u;(v)=0vy(v)=1,

then i(V, Y n 3, S) V is part of Afv}* by Theorem 3.2. Now let 9’ 8’, K’be
obtained from 9% 3" as ), 3, K are from 9, 3; then )’ 3" are the modified ex-
tensions of ), 8 respectively over K’ If A’= 9" n 3’, assume for a moment A’
to be the modified extension of A over £ If v’ is any extension of v to K”over
k’ such that K , = k’, then A’{v"}* is the modified extension of Afv}* over k°,

and therefore
iV ad, 807,

is the modified extension over £’ of i(V, 9 n 3, S)V, as claimed. We conclude
that the theorem is true if it is true when applied to @), 3, or also, a fortiori, if it
is true under the additional assumption that 9, 3 are complete intersections at V.
This, in turn, is equivalent, by Lemma 3.2, to the following assertion: Let 4 be
an irreducible subvariety of S, { £} a set of parameters of R = Q(A4/S); let A’ be
the modified extension of 14 over k%, A, +++, A, its component varieties,

and set
R; = Q(4;/5,.).
Then
A= 2, e(Ri3 Q) e(R; )7 4.

Now, if k£’ is an algebraic function field over k the proof of this statement is
implicitly contained in the proof of Lemma 1.2; otherwise, it can be obtained by

a well-known limiting process, Q.E.D.

THEOREM 4.3 (BEzouT’s THEOREM). Let 9, 3 be unmixed cycles of S
such that Y n 3 exists. Then
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ord (9 n 3) = (ord 9) (ord 3).

Proof. By Theorem 3.1, we may assume without loss of generality that § and
3 are irreducible; and, by Theorem 4.2, we may assume £ to be algebraically

closed. Let 9, 3, K, A have the same meanings as in the proof of Theorem 4.2.
Then

ord (9 n 3) = ord A.

Since & is algebraically closed, ) and 3 are the modified extensions over K of
the general elements of the homographic systems §, & of 9, 3 respectively. Ac-
cording to Lemma 2.4, § and & contain two degenerate cycles %°, 3’, and there-
fore they contain the homographic systems $*, 8 of 9%, 3" respectively (Lemma
2.2). Two cycles %", 3” of @', [ respectively, can be found in such a way
that 9" n 3” exists; we have then that §” n 3" = A{v}* for some v € M(K)

(Theorem 3.2), and therefore

ord (9” n 3”) = ord A

I

ord (9 n 3).

Ifr=ord 9, s = ord 3, we have
r S
" = z 1‘%’ 3" = Z 131"
i=1 i=1

the 9.’s and 3,’s being linear varieties. Lemma 3.2 gives that for each i, j the
intersection 19, n 13]. is an irreducible cycle whose radical is a linear variety.

Hence Theorem 3.1 implies that ord (9 n 3) =rs, Q.E.D.

THEOREM 4.4 (CRITERION FOR SIMPLE INTERSECTIONS). Let %, 3 be
irreducible cycles of S, of dimensions r, s respectively such thatr+s —n > 0.
Let V be a component of rad Y nrad 3. Then the following four statements are

equivalent:
(1) i(V, 9n 3,5) exists and equals 1;
(2) let { X} be the h.g.p. of S; let
{fi (X), f,(X), -} and {g, (X), g,(X), -}

be bases of p(rad 9/S) and @ (rad 3/S) respectively. Let {x} be the
h.g.p. of V. Then the Jacobian matrix ] (f(X), g(X); X, t) acquires the
rank 2n —r — s when { X } is replaced by {x}. Here {t} is a p-independent
basis of k over kP if p is the characteristic of k;
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(3) there are regular sets of parameters {{}, {n} of Q(rad 3/S), ¢ (rad oH/S)
respectively such that {{, n} is a regular set of parameters of Q(V/S);

(4) ©(V/S) is an isolated primary component of

wplrad 9/S) + p(rad 3/S).

If ins V =1, then J(f(X), g(X); X, t) in Statement 2 can be replaced by
T(f(X), g(X); X).

Proof. Let J), B, A, K have the same meaning as in the proof of Theorem 4.2.
Let S;, S, be the projective spaces whose h.g.p. are {u}, {v} respectively. Set

_ _ _ * * _
R =95, x SZ!Z = DS’Ra Y = D@,R, VANES 08*,52, Y' = Dg\‘*,s1 ’
and let P, Q be points of S;, S, such that
Y'EPY =9, Z¥(Q} = 3
set also G = P x (. Then the ideal whose basis is the set of the
Fi(X,u)= fi(eee, Z]- uy u;; X’,, )

has

{@(radY/,lg;[X,...,u,.,u,—l cee eee v v Loaal])

ij “o0? * Yij Yoo’

as an isolated primary component, and the ideal whose basis is the set of the
GL(X, ’l}) = gi("' ’ Zl ‘Ul] U;é X]’ -..)
has

@(radZ/k[X, cee, W..u L, eee y oo, U v e ])

ij ~oo’ ij “o00?

as an isolated primary component. If assertion 1 is true, then only one com-
ponent A’.of A has the property that L’=rad DA',R contains V x G; besides,
rad A’ has in A the multiplicity 1. Therefore, by Lemma 3.2, { F{, Fj, «++, Gy,
Gy, +++} is the basis of an ideal of which

@(LYELX, coeyu,uty eee,vee, v 0 0, 00 ])

ij Yoo’ ij “o0?

is an isolated primary component. Since

i(V,9n3,S)=e(V xG/1L%S,R)*,
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and since upon replacing the uil.’s, vi].’s by their values at G the F;(X, u),
G;(X, v) are replaced by the f;(X), g; (X), Theorem 5.6 of [ 2] or its corollary
implies that Statement 2 is true.

Assume now Statement 2 to be true; then Theorem 10 of [ 6] implies that
Statement 3 is true. Finally, if Statement 3 is true, then 9 and 3 are complete
intersections at V on S, and Lemma 3.2, together with Theorem 2.1 of [ 2], yields
the result that Statement 1 is true. Statement 4 is clearly a consequence of
Statement 3, and it implies Statement 2, Q.E.D.

COROLLARY. With notations as in Theorem 4.4, if
l(Vv b n 315) = 1,
then V is simple on rad 9 and rad 3.

Proof. This is a consequence of Statement 3 of the theorem and of a well-

known result on regular local rings, Q.E.D.

5. Intersection of cycles of an algebraic irreducible variety. Let V' be an ir-
reducible variety over the field &, U a subvariety of V, S the ambient space
of V. By this expression we mean to express the fact that if { X} is the h.g.p. of
S, then the h.g.p. { x} of V is a homomorphic image of { X }; of course S is not the
only projective space of which V is a subvariety. Let 3 be an unmixed cycle of
V. We say that 3 is a section of V at U if there exists an unmixed cycle 3 of
S such that 1V n X and 3 coincide locally at U. We shall develop in this section
a theory of intersections of cycles of ¥ which will be valid when the cycles are
sections of V at some U; before we do so, however, it is important to show that

this is the case under the customary conditions. Namely, we have:

THEOREM 5.1. Let V be an irreducible variety over the algebraically closed
field k, S the ambient space of V, U a nonempty irreducible subvariety of V,
simple on V, 2 an irreducible cycle of V; then there exists an irreducible cycle
% of S such that 1V n 3 coincides with 3 locally at V.

Proof. Since, by Theorem 3 of [6], each U simple on V contains a point P
simple on V, the theorem will be proved in general if it is proved under the as-
sumption that U is a point. Let {x} be a n.h.g.p. of V for which U is a finite
distance, R = Q(U/V). If

m=dimS, n = dimV, r = dim 3,

let {yl, ey, yn§ be a set of regular parameters of R contained in k[x]; then

¥,» ***» ¥, are algebraically independent over 4. Let F be the projective space
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over k whose n.h.g.p. is { y }, and set
U’ = p(p(U/klx]) nklyl), Z° = p(p(rad 3/k[x]) n k[y]).

Then U’ is a point, and dim Z’<r. The embedding of k[y] in £[x] gives an ir-
reducible algebraic correspondence D between F and V, such that rad D is bi-
rationally equivalent to V in a birational correspondence which is regular® at
finite distance; we shall therefore denote subvarieties of ¥ and D which corres-
pond to each other with the same symbol. Since Q(U“/F) contains a set of regu-
lar parameters of R, from the corrollary to Lemma 1.1 we obtain

e(U/D; U, V)* = 1.

Let Z be a component of [D; Z*, V] containing U; then Theorem 1.1 implies that
dim Z = dim Z*% since among the Z’s there is one which contains rad 3, and
which therefore has dimension > r, we conclude that dim Z “=r, so that dim Z =r
for each Z. Now, by Theorem 1.1, we have

1= e(U/D; UL VY = e(U/ X, e(Z/D; 2% VI* Z; U% V)%

Since Z’ is simple on F, according to a remark preceding Theorem 5.5 of [2] we
have that each e(Z/D; Z*, V)* is an integer; we cannot state that e (U/1Z; U’,
V)* exists for each Z; however, according to Lemma 1.1, we may operate in the
following way: Replace, in Lemma 1.1, D, D*, V, F, G, k respectively by

X, e(Z/D; 2 VY Z,U,V, 25 Uk,

and select correspondingly Z*, G% D* U’:, U:, «++ to replace F5 G4 D/, D’:,
D:, <<+ in Lemma 1.1; impose upon Z* the additional condition that{le’; v,
G’}* exists for each component variety D].’ of D% for each Z, set

®(Z) = X, e(U/D}; V, 6 ord (1UF) [67],
where [ is such that
(appiz*y = (1z)tz*y,

Since § lDl'; V, G’} exists, and A( U;f< ) =1, we deduce that ®(Z) is an integer.
The o of Lemma 1.1 is given by

o = ZZ e(Z/D; 2% V) a(Z),

and therefore. since ord U = 1 in this case, Lemma 1.1 itself gives that

27 is regular at U if for each U’ = T(U) it is true that Q(U/V)= Q(U’/V"); in this

’ . .
case U’ is unique.
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L= e(U/X, e(Z/D; 25 V) 25V, UV = X, e(Z/D; 25 V)" a(Z).

Since we have seen that each e(Z/D; Z* V)* and each &(Z) is an integer, it
follows that there is exactly one Z, namely rad 3, and that e(Z/D; Z*, V)* = 1.

Now, the set {y} can be identified with a subset of k[ X1, { X} being the
n.h.g.p. of S which corresponds to { x}. Set

B =1p(e(Z7klyD E[X]),

so that 3 is an irreducible cycle of S of dimension r + m — n. The fact that the
only Z is rad 3 means that rad 3 is the only component of V' nrad 5 containing

U; since
r=n+dim% - m,

we also have that rad 3 is a component variety of 1V n 3. Finally, since
e(Z/D; 25 V) =1,

a regular set of parameters of Q(Z/F) is a regular set of parameters of Q(Z/V),
and this means that p(rad 3/k[ X1)is an isolated primary component of

o (V/ELXD) + p(rad 8/k[X]).

This, in turn, by Statement 4 of Theorem 4.4 shows that i(rad 3, 1V n 3, S) =
1, Q.E.D.

Let V be an irreducible n-dimensional variety over the (arbitrary) field %, and
let 9, 3 be unmixed cycles of ¥ of dimension r, s respectively; if U is an ir-
reducible subvariety of rad 9 nrad 3, we say that U is a component variety of
(9n 3, V)ifdimU=r+s—n.If 3 is a section of V at U, let 3 be an unmixed
cycle of the m-dimensional ambient space S of ¥, such that 3 coincides locally
at U with 3n 1V. If U is also a subvariety of rad 9, then it is a subvariety of
rad 9§ n rad B. Since

dim% =s +m ~ n,
by Theorem 2.2 we have
dimU >r+s - n.

Assume U to have exactly the dimension r+s — n, so that it is a component
variety of (9 n 3, V) and of H n 3. Assume also § to be a section of V at U,
and let ¥) be related to § as 3 is to 3. The number i (U, 9 n 3, S) exists, and
by Theorem 3.4 it equals
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iU, alVa3,8)=i(U,Y n3 S).
This proves that
i(U, 9n 89 S) = l(U’ @ n 3, S)

does not depend on the choice of §), 3, but depends only on U, %, 3, V; accord-
ingly, it will be denoted by i (U, 9 n 3, V). We shall put i(U, 9n 3, V) =0 if
dimUs=r+s—-nbutl ¢ rad § nrad 3. A generalization of the meaning of this
symbol will be given after Theorem 5.9; the remark following Theorem 5.9 con-
tains comments on the validity of most results of this section for the generalized

symbol. Theorem 3.3 yields:
i(U,9n 3,V)=i(U,9n3,8)=i(U,8n9,5) =i(U,3anY,V);
that is, we have the following result:
THEOREM 5.2 (COMMUTATIVITY LAW). If one of the symbols
(U, 90 23, V),i(U, 30 9,V)
has a meaning, the other also has a meaning, and their values are equal.

The number i (U, 9 n 3, V) is called the intersection multiplicity of 9 and
3 at Uon V. Assume that 9, 3 are such that each component U; of rad § nrad 3
is a component variety of (9§ n 3, V), and that i( U]., Hn 3, V) is defined for
eachj; in this case we shall set

(903 V) =2 i(Usdn 3 V)U;

the cycle (9 n 3, V) is called the intersection of 9 and 3 on V. The locutions
“to be part of (9 n 3, V), “to coincide locally at ... with (§ n 3, V), “to
exist locally at ..’ and ‘‘the local part of (9 n 3, V) at ...’ shall have a
meaning even if (9 n 3, V) does not exist, in exactly the same way as the simi-
lar locutions in §3 have a meaning even if § n3 does not exist. Obviously, in
the special case in which ¥V =S, the symbols i (U, 9 n 3, S) as defined here or
in § 3 have the same meaning; accordingly, the symbol 9 n 3 of $3 shall be de-
noted from now on by (9 n 3, S).

From Theorem 4.2 we obtain:

THEOREM 5.3. Let V be an irreducible variety over k, 9 and 3 two unmixed
cycles of V such that

dim § + dim 3 -~ dim ¥V > 0,
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and let ¢ be a part of (9 n 3, V). Let k’ be an extension of k; V' the extension

of V over k’; ©°, v, 3”7 the modified extensions of T, 9, 3 respectively over

7

k% Assume V' to be irreducible. Then insV (ins V) 'x’is part of (9" n 3, V7).
From the definition, and from Theorem 3.1, we obtain:

THEOREM 5.4 (DISTRIBUTIVITY LAW). If U, 19]., 3y V are such that i(U,
Qj n 3 V') has a meaning for j, L =1, 2, and if

dim b = dim 9, dim 3 = dim 3,
then

i(U, (9, + l)z) n (31+ 3,5 V)

has a meaning and equals

2

z l(U’ t)]n %l’ V)-
ihl=1

THEOREM 5.5 (ASSOCIATIVITY LAW). Let &, 9, 3 be three unmixed cycles
of the n-dimensional irreducible variety V over k, of dimensions r, s, t respec-
tively. Let U be a component of rad € nrad § nrad 3 of dimensions r + s+t —2n;
assume T, 9, 3 to be sections of V at U; let &', 9’ be the local parts, at U, of
(xnY, V), (9n 3, V) respectively. Then i(U, £°n 3, V) and i(U, £n 3, V)
exist and are equal. Their common value is denoted by i (U, xntn3, V), and

a similar notation is used when more than three cycles are involved.

Proof. Let X, 9, 3 be unmixed cycles of S (the ambient space of V) such
that £, 9, 3 coincide locally at U with (X n1V,S),(YnlV,S), (5 nlV,S)
respectively. Then (X n$), S) and (Y n B, S) exist locally at U; let X°, 8 be
the local parts of (X nJ, S), (9 n B, S), respectively, at U. Theorem 3.4 im-
plies that

i(U, % n3,8)=i(U,zn8,8);

on the other hand, again by Theorem 3.4, (X" n 1V, S) coincides locally at U
with (X n 9, S), and therefore with (£ n 9, V) and with % this proves that

(U, % 0 3,8)=i(U, e n 3, V).

In the same way we obtain

i(U,cn 8,8)=i(U,zn 3,V), QLED.
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THEOREM 5.0 (TRANSITIVITY LAW). Let V be an irreducible variety over
k, W an irreducible subvariety of V. Let 9, 3 be unmixed cycles of W, and U a
component variety of (90 3, W). Let §), 3 be unmixed cycles of V such that
(D n1W, V), (8 nlW, V) exist locally at U and coincide at U with 9, 3
respectively. Then (§ n B, V) exists locally at U; let X be the local part of
(DnB,V)at U. Then (Xn1W, V) and (9 n 3, W) both locally exist and coin-
cide at U.

Proof. Let 9*, 8% be unmixed cycles of the ambient space S of V such that
(9*alV,S),(8*nlV,S) coincide locally at U with ), 3 respectively. Then
(9* n1W, S), (R*nlW, S) coincide locally at U with %, 3 respectively by
definition. Let X* be the local part of (§* n 8%, S) at U; X* exists because
the dimensions fulfill the correct relations. Then (X* n1V, S) coincides local-
ly at U with X, so that (X*n1W, S) coincides locally at U with (X n1W, V).
On the other hand, (& n 3, ¥) coincides locally at U with (*n 3% all, S),
Q.E.D..

Theorem 5.6 also shows that in the definition of i (U, 9 n 3, V), the ambient

space S could be replaced by any space S containing V' as a subvariety.

THEOREM 5.7 (LAW OF THE CONSERVATION OF THE NUMBER). Let 4
be an irreducible variety over k, and K an algebraic function field over k; let
R be an irreducible algebraic correspondence between K and A, and let X, I be
unmixed cycles of rad 8. Let v € M(K) be such that Ky, = k, and that Bifvl* is

irreducible, sayB{v}* = 1V, where V is an irreducible variety over k. Set
L= X{U}*, b = @{U}*s

so that T, 9 are unmixed cycles of V; let U be a component variety of (¢ n 9,
V). Among the components of rad X nrad ¥, let U; (j=1, 2, ) be those such
that rad (1U;) {v }* contains U; then

dimllj=dimx+dim@—-dim%

for each j. Assume X, ¥ to be sections of rad Bat Wy ull, ueee. Then (1) o =
i(llj, X n Y, rad B) exists for each Jjs so that U = Z]. OL]. 11]. exists, (2) U is a
component variety~of each (1 11/~) {vl*, and 3) i (U, £n Y, V) exists and equals
the multiplicity of U in UW{v}*.

Proof. We need to prove only the last statement, since the others are an
immediate consequence of the relations between the dimensions. Let 5 be the

ambient space of B, %" an unmixed cycle of & such that (X" B, ©) and X coin-
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cide locally at U, v I, u+-.. Then U coincides locally at each U; with (X"n 9,
5} by definition. Let S = G{v}* be the ambient space of V; the application of
Theorem 3.2 to the two algebraic correspondences X°, 8 between K and S proves
that (X’{v}* n 1V, S) coincides locally with £ at U. The same theorem, applied
to X" and 9, yields the result that (X’{v}* n 9, S) coincides locally at U with
U{v}*; therefore W{v}* coincides locally at U with (xn 9, V), Q.1.D.

THEOREM 5.8. Let V be an n-dimensional irreducible variety over k, % an
r-dimensional irreducible cycle of V, U an irreducible subvariety of rad 9, 3 an
s-dimensional cycle of V which is a complete intersection at U on V, and such

that

r+s —n=dmbU,

Assume Y to be a section of V at U. Let { {} be a set of representatives of 3 at
UonV, and set

p=P(rad 9/V) a QU/V).

If 0 is the homomorphic mapping of Q(U/V) whose kernel is %, then {o(} is a
set of parameters of Q(U/rad ), and i (U, Hn 3, V) exists and equals

e(Q(U/rad 9); o).

Proof. If {x} is a n.h.g.p. of V for which U is at finite distance, we may
assume 4’}. € k[x] for each j. Let { X} be the correspondent n.h.g.p. of the ambi-
ent space S of V, T the homomorphic mapping of k[ X ] onto k[x] such that TX; =
xj. Let z (j=1,2,+++) be elements of k[ X] such that Tzj = ¢js then the set
{z} is a subset of a set of parameters of Q(U/S), and, if m = dim §, there exists
a cycle 3 of S, of dimension s + m — n, such that 3 is a complete intersection at
Uon S, and has { z} as a set of representatives at U on S. Therefore, by Lemma
3.2, 3 coincides locally at U with (3 n 1V, S), so that i (U, Hn 3, V) exists
and coincides with (U, 9 n 3, S) locally at U; this, in turn, by Lemma 3.2,
equals e (Q(U/rad 9); 0T2), Q.E.D.

THEOREM 5.9 (RELATIVE INVARIANCE OF THE INTERSECTION MULTI-
PLICITY). Lei V, V’be irreducible varieties over k, T a birational correspond-
ence between V and V*; let 9, 3 be unmixed cycles of V, U a component variety
of (9 n 3, V) such that i(U, 9n 3, V) exists. Assume T to be regular®at U, so
that T is also regular at each component variety 9; of 9 containing U and at
each component variety 3; of 3 containing U. Let aj, by be the multiplicities of
9js 31, respectively, in 9, 3; set



518 1. BARSOTTI

U= T(U), 9 = T(9), 3;=T(3) "= Fa v, 3" =2, 3.
Then if i(U% 9% n 35V ") exists it equalsi(U, § n 3, V).
The cycle 9”is called a transform of 9 at U in (or with respect to) T.

Proof. By considering the composite variety of V and V’, we may clearly
reduce the proof to the following simpler case: There exists a n.h.g.p. {x} of
V for which U is a finite distance, and there exist elements x;, x;, s EE(V)
such that {x, x’} is a n.h.g.p. of ¥’ for which U’ is a finite distance. In this
case let S be the ambient space of V, and let { X} be the n.h.g.p. of S corre-
sponding to { x{; if $” is similarly related to V', we may assume that a n.h.g.p.
of S has the form { X, X"} { X’} being a set of indeterminates. The correspond-

1/

ence between }J'* and ¥V is now visualized as a “projection” of V" on S C S°

If A (resp. A’) is an irreducible subvariety of S (resp. of V*) containing U
(resp. U”), whose n.h.g.p. is { £} (resp. { & &£’}), we shall denote by A* the
irreducible subvariety of S” whose n.h.g.p. is { &, X}; therefore we have

A* n S =4 (resp. A* n V' =4").
This correspondence generates in an obvious way a correspondence
33— 3* (resp. 3" — 8%)

among cycles. Now, let 3 be a cycle of S such that (1¥ n 3, S) coincides
locally at U with 3; then

(U, 9n3,V)=iU, 50 5S5)

by definition. Theorem 4.4 readily shows that §, 3, 1V coincide, respectively,
with (9% n 15, S, (8" n 15, S), (1V* a 1S, S*) locally at U, and then an
immediate application of Theorem 5.6 yields that

i(U,9n38,8) = i_(U*, 5" n 8%, 59,

In like manner, we obtain that 3* coincides locally at UF with (8% all¥, 59,

and therefore also that
i(U*, 9% a B8%,5) = i(U*, 9" n 3", V").

We now wish to show that 17’ is a complete intersection on V'* at each irre-
ducible subvariety 4* of V' which contains U’ (and which is therefore regular
for the birational correspondence between V and V). Let in fact A be the trans-
form of A’ in V; since
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QCA/V) = QMA7/V),

there exists ap € k[x] - p(A/k[x]) such that pxj' € k[ x] for each j. We also
have p € klx, X1 —p(A7/k[%, X’]1), and therefore

X! = xl=p N pX! = 21 € QUAYVY)

for each j. The set {++«, X’ ~x/,..+.} is a regular set of parameters of
Q(V*/V*), hence a subset of a set of parameters of (4 “/V*), hence also a set
of representatives of 1V “at 4” on V¥, as announced.

This being established, we apply Theorem 5.8 to the varieties V*, U’ and
and the irreducible cycles 1V 1U*, obtaining the result that i (U%, 1U* n 177,
V*) exists and equals

e(Q(U’/U*); oo, X]’—- rg:;, e ),

where we have denoted by { &, £’} the n.h.g.p. of U*% but, as before,
{...,Xj._(f]_,...}

is a regular set of parameters of Q(U%/U*), and therefore

(1U* n 1V, V¥ =10U".

Likewise, we obtain that (g* n1}*, I'*) and (3* n 1%, V") coincide locally at
U’ with 7% 3” respectively. Now, Theorem 5.6 applied to V*, V*, v, 3, U% 9,

3" yields the result that (9" n 3% V) exists locally at U’ and coincides locally
at /” with

QU 95 n 35, VYU a1V, V).
In view of the previous equalities, this amounts to saying that
(U559 a3 V) =i(U, 90 3, V) QLD

Theorem 5.9 implies that i (U, 9 n 3, V) depends only on Q(U/V), on the
quotient rings in V of those component varieties of §, 3 which contain ¢, and on
the multiplicities of such component varieties in 9, 2 respectively. Accord-
ingly, in the notations of Theorem 5.9, if 9, 3"-are not both sections of V'’ at
U’, but i(U, 9 n 3, V) exists, we shall define i (U’ 9" n 3%, V') to be equal to
i(U, 9n 3, V); Theorem 5.9 itself shows that this is a good difinition, that is,
that it is independent of the choice of V% This enables us to define i (U, Hn 3,

V') also when V is an irreducible pseudovariety (see [1]), since each irreduci-
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ble pseudovariety is regularly equivalent to an irreducible variety. The question
is now raised as to whether all the results of this section remain true for the
present extended definition of the meaning of the symbol i (U, 9n 3, V). The

answer is as follows:

REMARK. Theorems 5.2 to 5.9 remain true after we replace the word “va-
iety” by the word “pseudovariety’’, and the sentence ’% is a section of V at
U” (or a logically equivalent one) by the sentence ‘“there exists an irreducible
variety V/’, birationally equivalent to V in a correspondence T which is regular
at each component of U, such that a transform of § at U in T is a section of V*
at I'(U)” (or by a logically equivalent one). The question is not even raised,
however, when U is simple on V and the ground field is algebraically closed
(see Theorem 5.1).

A comparison between Theorem 5.8 and the corollary to Lemma 1.1 shows
the a posteriori connection between the theory of intersections and the theory

of algebraic correspondences, namely:

THEOREM 5.10. Let D be an unmixed algebraic correspondence between
the irreducible variety F over k and the projective space S over k, and assume
each component of D to operate on the whole F. Let G be an irreducible sub-

variety of F, D* a component of [D; S, G1. Then if
e(D*/D; S, G)* and i(D*,D a 1(S x G),S x F)
both exist, they are equal.
From Theorems 5.1, 4.1, and 4.4 we obtain:

THEOREM 5.11. Let U be a simple irreducible subvariety of the irreducible
variety V over the algebraically closed field k. If %, 3 are irreducible cycles of
V such that U is a component variety of (9 n 3, V), then i(U, 9 n 3, V) exists

and is a positive integer. A necessary and sufficient condition in order that
(U, 9n3, V)=1
is that  (U/V) be an isolated primary component of

wplrad 9/V) + p(rad 3/V).

Let finally U, V be irreducible subvarieties of a projective space S over an

algebraically closed field 4; let S” be a “copy’ of S over k, U’ a copy of Uin
S% M a component variety of (LU n1V, S). Let A be the identical algebraic

correspondence between S and S, and set
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IMA = [A; 1’”, S’], UA = [A; U, S'], VA = [A; V, S'].

['rom the results of the present section, the following equalities are easily es-

tablished:
(U % V) =(L(U’"%xS) n 1(S"x V), S x S
1Uy = (A n1(U"%xS5),S xS, 1Vy =(An 1(VxS§),8 xS,

iM,1U n 1V,S) = i(MA,lUA n 1VA,radA)

i(Mp, A n 1(U % S) n 1(V x §,5 xS

i(MA,A n1(U"xV),S xS,

and this, by Theorem 5.8, proves that our definition of intersection multiplici-
ties coincides with the one given in [ 3] for the case of algebraic varieties,

when the latter is defined.
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