
ON THE SINGULARITIES OF TAYLOR SERIES
WITH RECIPROCAL COEFFICIENTS

SHMUEL AGMON

1. Introduction. Let

(1.1) f(z) =
n-0

be a Taylor series with a nonvanishing radius of convergence and such that

an ^ 0. Put

and suppose that the latter series also has a positive radius of convergence.

Now / (z) can be considered as the inverse of f(z) under the Hadamard "multi-

plication" of series, and it is natural to inquire into the existence of a simple

relation between the singularities of the two functions. This problem was treated

by Soula [3], who discovered such a relation for the singularities of the two

series on their circles of convergence. His result is as follows:

T H E O R E M S. Let f(z) and fm (z) be defined by ( 1 . 1 ) and ( 1 . 1 ' ) , where

an is real, an ^ 0, and where, furthermore,

(1.2) lim \an\
ι/n = 1 .

(Thus the unit circle is the circle of convergence for both series.) // z — 1 is

the only singularity of f(z) on the unit circle then either the unit circle is a cut

for / - i ( z ) > or / - i ( z ) a^so n a s z = 1 as its only singularity on the unit circle.

Moreover, in the latter case we have:

( i ) \im(an/an + l) = 1
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( i i ) z = 1 is a singularity "without contact" (with the unit c i rc le) for both

functions f(z) and /_ ( z ). That is, there exist δ > 0 and φ, with 0 < φ < 77/2,

such that f(z) and / M ( z ) are analytic in the sector

0 < | z - 1 | < δ , φ < | arg ( z - 1) | < TΓ .

We remark that if the radius of convergence of f(z) is 1 (which is no loss

of general i ty) then it is not difficult to see that one cannot expect to have a

dependence even between the singularit ies of the two ser ies on their circles of

convergence unless the radius of convergence of fmγ(z) i s a lso 1. Thus ( 1 . 2 )

is a necessary restriction. Also it seems that the condition that f(z) should

have only one singular point, say z = 1, on its circle of convergence is essen-

tial for the simple character of the result . However, the condition on the reality

of the coefficients in Soula's theorem is superfluous. All that is needed in

Soula's proof when the coefficients are complex is the use of Lemma 5 of this

paper. In what follows we shall refer to this more general result as Theorem S.

We propose in this paper to obtain a relation between the s ingularit ies of

f(z) and / (z) outside the unit circle. To this end it i s necessary to have

some information on the location of the singularit ies of f(z) outside the unit

circle. We shall impose on f(z) the somewhat restrictive condition that it be

holomorphic in the whole plane cut along the line 1 <C x < oc. With this con-

dition, however, we shall derive a surprisingly simple result concerning the

location of the s ingularit ies of fml(z) in the whole plane.

2. Preliminary considerations. We collect in this section the definitions

and lemmas which we shal l need in the proof of our main resul t . Some of these

lemmas are well-known theorems.

DEFINITION. Let f(z) be given in the neighborhood of the origin by the

Taylor ser ies ( 1 . 1 ) . The star of holomorphy of f{z) (Mittag-Leffler s t a r ) is

defined as the domain composed of all segments teι , 0 <̂  t < p (θ), where

p(θ)e i s the first singularity of f{z) on the ray teι ( 0 <_ t < 00) when

f{z) is continued analytically along this ray. The function p{θ) shal l be called

the star-function and shal l be defined by periodicity for all values of (9.

It follows readily from the definition that p(θ) is a lower semicontinuous

function, and as such it a t ta ins its lower bound in any finite interval.

LEMMA 1. (Hadamard's multiplication theorem for s tars [ l , p. 3 0 0 ] ) . Let
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(2.1) / ( * ) = £ anz
n and g ( z ) = £ bnz

n

71=0

have the radii of convergence Rf and Rg, respectively, and star-functions pr(θ)

and p {θ). Put

(2.2)
n-0

Then h(z) converges for \z\ < RfRg and can be continued analytically along

the segment te , 0 < t < r(β), for any 0 < θ < 2π, where

r ( θ) = min pΛu) p(θ - u).
O'̂  U< 277 * °

The following is a simple lemma on the separation of singularities of an

analytic function.

LEMMA 2. Let f(z) be an analytic function in the neighborhood of the

origin where it has the Taylor development ( 1 . 1 ) , and let p{θ) be its star-

function. Then, given 0χ and θ2, 0 < θι < θ2 < 2 π9 and e > 0, there exist

two analytic functions g ( z ) and g2(z) with developments

such that

( i ) f(z) = gι(z) + g2(z);

( i i ) the star-function pβ(θ) of g{(z) satisfy

(2.3)

pS(θ) = p(θ) and pξ{θ) = 00 for θx < θ < θ2 ,

pf(θ) = 00 αnrf p | ( 0 ) = p{θ) for θ2 < θ < θx + 2 τ τ ,

pίί1/) - € for i,j = 1 ,2 .

We shall indicate an easy proof of Lemma 2. Let C be a star-shaped recti-

fiable Jordan curve enclosing the origin, contained in the star of holomorphy of
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f(z), a n d w h o s e d e f i n i n g f u n c t i o n R - R(θ) ( 0 <̂  0 < 2π) s a t i s f i e s

R ( θ i ) > p i θ i ) - e (i = 1, 2 ) .

Let Cx be the part of C in the sector θx <^ θ < θ2, and C2 the complementary

part of Cm Then by Cauchy's theorem we have

2πι c ζ-z 2πι c\ ζ - z 2πi C2 ζ-z

It follows now readily that the functions g^ z) and g2(z) satisfy the conditions

of Lemma 2.

The following two lemmas are known. (For example, see [2, p. 103, Th. I l l] ,

where the lemmas are generalized to Dirichlet series). We remark, however, that

we make a trivial addition (without proof) to the lemmas by not assuming the

angle in question to be symmetric with respect to the positive axis.

LEMMA 3. Let

anz

be a Taylor series having the unit circle for its circle of convergence. Suppose

that f(z) can be continued analytically in a domain Dan whose boundary is

composed of the two spirals:

p = exp [ ( tan α ) θ] ( 0 < θ < θ0 ),

and

p = e x p [ ( t a n β) (2π- θ)] (θ 0 <θ<2 π),

where 0 < Ct, β < π/2 and θ0 = (2π tan / 3 ) / ( t a n α + tan β), and where

z = peιθ. Then, given 0 < 0C' < Cί and 0 < / 3 ' < β, there exists an "interpo-

lation function" G(u), analytic in the angle - j 3 ' < arg u < Cί' such that

(2.5) G(n) = an (n = 0, 1, . . . ) ,

and
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(2.5')
loglGU)l\

lim sup — <̂  0,

uniformly in -β' < arg u < 0t'.

The next lemma is a kind of converse of Lemma 3.

LEMMA 3'. Let G(u) be an analytic function of exponential type in the infi-

nite sector -β < arg u <_ Cί, \ u \ > Ro (0 < α , β < π/2) satisfying (2.5'). Let

/ ( * ) = G(n)zn.

Then f(z) can be continued analytically in the domain Da .

We shall prove now the following lemma.

LEMMA 4. Let G(u) be an analytic function of exponential type in the

a n g l e - j 8 < a r g u < C ί ( 0 < C ί , / 3 < 7 7 / 2 ) . P u t

(2.6) τΛΘ) = lim sup
l\oe\G(reiθ)\

Suppose that

ΊG(Θ) < Ωι sin θ for 0 < 0 <^ a,

( i )

\(0) < - Ω2 sin θ for -β < 0 <_0,

where Ωt > 0, Ω2 > 0 and ίlι + Ω2 < 2 77, and that

( i i ) G{n) = 0 for n = 0, 1, ••• .

Lei α * α^rf β * ( 0 < α*, /3* < 77/2) όe cίe/merf 67

(2.7)

tan α* =
2ττ- (Ω r + Ω 2 )

tan

ίlι cot β + (2 77- Ω2) cot α '

2π- (Ωx + Ω2)

(2 77 - Ω t) cot j8 + Ω2 cot α

Γ/te/x we have Ίr(θ) < 0 for -β* < θ < α*, αnίf, in particular,



4 3 6 SHMUEL AGMON

( 2 . 8 ) G(u) = O ( e " δ l u | ) ,

uniformly in any angle —β* < - β < arg u < Cί < Cί* /or some 8 - δ((X, β ) > 0.

Proo/. Put

C(u)

(2.9) F(u) = .
sin πu

It is easily seen that F(u) is analytic and of exponential type in the angle

-β < arg u < a. Let T F (#) be the "type function" (2.6) of F(u). It follows

from ( i ) and (2.9) that

T F ( α ) < (Ω t - π) sin α and τp(-β) < (Ω2 - 77) sin β .

Applying a well-known result of Phragmen and Lindelδf [5, p. 183 1, we deduce

from the last two inequalities that

(2.10) T F ( # ) < A cos 0 + B sin θ,

where A and B are the solutions of

A cos a + B sin Cί = (Ω t - 77) sin α ,

A cos β - B sin /3 = (Ω2 - π) sin /3.

That is:

Ωx + Ω2 - 2π (Ω t - 77) cot /3 - (Ω2 - 77) cot α

(2.100 ^ « , B =
cot α + cot β cot α + cot β

Hence, from (2.9), (2.10), and (2.10'), we get

(2.11) τ

cA
θ>) 1 ^ cos ^ + S sin (9+ 77 |sin (9 I (-β < <9 < α ) .

The assertion of the lemma now follows from (2.11) if we note that the right

side of (2.11) is a continuous negative function for -/3* < θ < α*. (We also

make use of the well-known fact that an analytic function of exponential type

satisfying (2.11) also satisfies

G(u) = 0 ( e x p [ H (.4 cos θ + ( ϋ + 77) sin θ + e ) ] )

uniformly in the angle.)
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Finally, we shall need the following lemma which is a generalization of a

lemma due to Soula [3, p. 38]. ϊt is stated in a somewhat more general form than

is needed for our purpose here; however, the lemma in this form is required for

the completion of Soula's theorem (Theorem S) mentioned in § 1.

LEMMA 5. Let h(z) be an analytic function in the infinite sector \z\ > Ro,

I a r £ z I < a < 77/2, where it satisfies

H\h(n)\
( i ) lim = 0 {n being an integer);

n=oo n

( i i ) there exists a nonnegative, continuous, and increasing function 8{θ),

0 <_0 < α , with 8(0) = 0, such that

H \ h ( r e ί d ) \ < I S ( | 0 | ) I s i n 0 \ + β ] r ,

for any e > 0 , r > _ r o ( e ) large enough, and \ θ | < Cί. Then

l h ( z ) \
(2.12) lim U 0,

l*h~\ 2 /

uniformly in any sector \ arg z \ < Ct' < 0C, | z | >̂  /v0 .

Proof. We shall make use of the well-known inequality

2 | z | U ( K ) - A(0))
( 2 . 1 3 ) | / ( 2 ) - / ( 0 ) t < ' , , ,

w h e r e f(z) i s a n a l y t i c for j z J <̂  R, a n d

A ( R ) = m a x R \ f ( z ) \ .

We shall first show that

(2.14) l i m \ h ( n + ζ ) - h ( n ) ] = 0 ,

uniformly for ς in any bounded set. Indeed, choose η such that 0 < η < Cλ, and

let \ζ\ < C. Let w + z = re1'^ be a point inside the circle of radius /{ = n sin η

and center z = w inscribed inside the angle | arg z | <_ η. On account of ( i i) ,

taking 6 = δ(r/) sin 17 and rc large enough, we have
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( 2 . 1 5 ) H\h(reίΘ)\ < 2δ(η) s in η r< 28{η) s in 77(1 + s in η) n

<, (48(η) s i n η )n .

A p p l y i n g ( 2 . 1 3 ) t o f(z) = h(n + z) f o r z = ζ, K = n s i n 17, a n d u s i n g ( 2 . 1 5 ) ,

w e g e t

n + ζ)-h(n)\ <
2\ζ\U48(η) sin η)n + \H \h(n)\\]

n s i n η - \ζ\

8C sinη 8(η) 2C h(n)

nsin η — C/n sin 77 — C/w

Sending n to infinity and using ( i ) , we find that

l i m s u p \ h ( n + ζ ) - h ( n ) \ < 8 C 8 ( η ) ,

uniformly for \ζ\ <^ C. L e t t i n g η tend to z e r o , and r e c a l l i n g t h a t δ ( 0 ) = 0 ,

we arr ive at ( 2 . 1 4 ) In w h a t fol lows we s h a l l n e e d only the w e a k e r r e s u l t

( 2 . 1 6 )
h(xV

1= 0 (x real),

which follows in an obvious way from ( 2 . 1 4 ) .

We next show that h(z )/z i s bounded in every sector

I arg z I < Of < a , I z I > Ro .

This will be established if we prove that/K-O/z is bounded uniformly in the

circles C •• \z — ξ\ <^ ξ sin of (ξ large enough). Now, as before, for £ positive

and large enough, and for z such that j z \ <_ ζ sin α, we have

R U ( f + * ) l < (4δ(α)sin a)ξ.

Applying (2.13), for | z | < ξ sin of we find

8δ(α) sin of sin α „ 2 sin of , n t . . , ,

| A ( ^ + z ) - A ( ί ) | < r - ^ + : ' 1 rfi I Λ C ^> $ I ,

s i n CC - s i n OC s i n α - s i n CC

from which we get that

(2.17) \h(ξ+ 2 ) | < C,ξ + C2 \h(ξ)\,
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where Cχ and C2 are constants depending only on Cί and Cί'. We have only to

divide (2.17) by έ;' + z and use (2.16) in order to obtain the uniform bounded-

ness of h ( ξ + z )/( ξ + z) for I z I <_ ξ sin Cί' ( ξ —> co), and therefore the bound-

edness of h(z)/z in any interior sector. To complete the lemma we apply a

well-known result of Phragme'n and Lindelδf by which the boundedness and

(2.16) imply (2.12). We also note that by successive applications of the last

lemma it follows that the result still holds if the arigle containing the posi-

tive axis is not supposed to be symmetric.

3. The main theorem. We pass now to our main result:

THEOREM 1. Let f(z) be an analytic function in the whole plane cut along

the line 1 <̂  x < oo. Suppose that the coefficients of its Taylor expansion ( 1 . 1 )

are different from zero and satisfy ( 1 . 2 ) . Let f_ {z) be the "inverse" series

defined by ( 1 . 1 ' ) , and denote by p_χ(θ) its star-function (Def. § 2 ) . Then there

exist two numbers α , β, with 0 < Cί < 77/2 and 0 <_ β < 77/2, such that for any

0 < θ < 2π we have

(3.1) P M (0) =

and (trivially) p_ ( 0 ) = 1.

The theorem states, in other words, that the star of holomorphy of

consists in general of the two logarithmic spirals:

ρ_i(θ) = exp[(tan Cί)6>] for 0 < θ < φ,

and

p ^ ( θ ) = e x p K t a n β ) {2π - θ ) ] f o r φ < θ < 2 π ,

where φ is given by

2τ7 tan β
(3.1')

tan Cί + tan β

(We shall treat # = 0 separately in order to account for the case where either

(X or β is equal to 77/2, in which case we agree that the product of a positive

number and infinity is infinity.)

It is possible to distinguish the following cases which correspond to limiting

values of Cί and β: ( i ) Cί = 0 or β = 0. In this case we have ^ ( 6 0 = 1, and the
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unit circle is a cut for f_Az); this is a particular case of Theorem S.

( i i ) 0 < α < 77/2 and 0 < β < π/2. In this case the star of holomorphy of

/_ (2) is the domain Daβ (introduced in Lemma 3), whose boundary consists of

the two spirals (3.1'); this domain is also the region of existence of /_ (z).

(i i i) 0 < α < π/2 while β = π/2. In this case all the points of the spiral

p = exp[(tan Ot)0] (0 <_ θ < 2π) are singularities. (However, this does not

exclude the possibility of analytic continuation through the segment 1 < x <

exp[(tan Gί)2τr].)

(iv) Gί = π/2 while 0 < β < π/2. This case is similar to the preceding one;

the only difference is that the roles of 0C and β are interchanged.

(v) α = β - π/2. In this case / (z) has the properties of f(z), and is ana-

lytic in the whole plane cut along 1 <_ x < 00.

Proof of Theorem 1. Since f(z) satisfies the conditions of Theorem S, it

follows that our results will go beyond those of Soula only when z = 1 is the

only singularity of f_χ(z) on the unit circle, and when it is, furthermore, "with-

out contact". We shall assume in what follows that this is indeed the case.

Now, the proof of the theorem is somewhat long and will be divided into two

parts.

Part I. Let us define α , β, with 0 < α < π/2 and 0 < β < π/2, by the

relations

tan Gί = lim sup

(3.2) A ^ + o

tan β = lim sup
Λ + o

We shall establish in this part of the proof that:

(a) The interval 0 <_ θ < 277 can be divided into two disjoint intervals Iχ and

/ 2, where Ix is the interval 0 < ^ 6 ' < ω or 0 < θ < ω, and /2 is the interval

ω < θ < 2rr or ω < θ <^2π (one of the intervals can consist of a single point),

such that p M ( 0 ) is increasing in lχ and decreasing in /2, and such that further-

more, the equality p (θ ι ) - p_ χ( θ2 ) for θx < θ2, θx and θ2 both in to the same

interval, can hold only if p ^ ( 0) = 00 for θί < θ <^ θ2.

(b) The following inequalities hold:



TAYLOR SERIES WITH RECIPROCAL COEFFICIENTS 4 4 1

(3.3) logp β l (fl) > (tan a)θ in lί ,

> (tan jβ) (2π~ θ) in 12 .

Now, both ( a ) and (b) are consequences of the following inequality which

we shall establish later:

(3.4) p M ( 0 ) > min j p_χ( βj p_χ( θ - θx ), p M ( θ2) p_χ{ 0 - 0 2 ) j ,

where 0 < # t < θ < θ2 < 2π. Indeed, it is easily seen that (a) will be proved if

we can show that the minimum of p . (0) in an interval 0 < θί <^ 0 < 6Ί < 2π

is attained only at one of the end-points. To establish this let us assume, by

way oί contradiction, that the minimum is attained at a certain inner point θ.

Using now (3.4) for θ = θ, and using the fact that both p_χ(θ - θy) and p_ ( θ2 -

0) are greater than one, we get the absurdity

p ( i n ί p ( 0 ^ , p ( P.A

This proves ( a ) . We note also that from ( a ) follows that the points where

pmί(θ) — oo constitute one interval.

Let us now establish (b) . We shall limit ourselves to proving the first in-

equality; the second will follow in a similar fashion. It is clear from the above

that it is enough to prove the first inequality (3.3) for θ which is interior to /t

and such that ρ_χ(x) is finite for 0 <_x <^ θ + 6, 6 being a small positive number

depending on 0 (if no such θ exists, then p . χ ( 0 ) = oo for 0 £ Il9 θ φ. 0, and

the inequality is satisfied with Cί = 77/2). Let now h > 0 be such that θ +

2h C llf and let us apply (3.4) to θx( = )β, 0( = ) 0 + h and 02( = )0+2/i . We get

. 1(6>)p. 1(Λ), p^( θ + 2h ) p^i-h

Since p e {-h) > 1 and p_ (0 + 2h) >_ p_ (0 + h), we obviously must have

p m l ( θ + h) > p m χ ( θ ) p _ χ ( h ) .

Passing to logarithms, from the last inequality we get

l o g p M ( 0 + A) - l o g p e l ( 0 )
(3.5) lim sup >̂  tan α ,
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where α was defined by (3.2). But, since log p_χ(θ) is an increasing function

in Il9 its derivative exists almost everywhere in Il9 the largest sub-interval of

lx where p_ (θ) is finite. Making use of (3.5), we see that almost everywhere

in 11, we have

(3.6) Π o g p M ( 0 ) ] ' > tan Cί.

We now employ a simple inequality applicable to any nondecreasing function

g(x) 15, pp. 361, 373]:

g(b)~ g(a) > fa

b g'(x)dx,

where the integral is taken in the Lebesgue sense. When applying this to the

function log p_Λθ) - (tan (λ)θ in [θϊ9 θ2], using (3.6), we conclude that

log p_ ( # ) - ( t a n Oi)θ is nondecreasing in ll9 and a fortiori in the interval

/ l β The desired first inequality (3.3) now follows if we note that log p_γ{0) -

(tan Cί)θ vanishes for θ = 0.

We still have to establish (3.4). Let θι and θ2 satisfy 0 < θx < θ2 < 2π,

and let 6 be an arbitrary positive number. By Lemma 2 there exist two analytic

functions gι(z) and g2(z), with star-functions p&(θ) and p^(θ), such that

a n d s u c h t h a t t h e c o r r e s p o n d i n g s t a r - f u n c t i o n s s a t i s f y t h e r e l a t i o n s ( 2 . 3 ) . Now

t h e H a d a m a r d m u l t i p l i c a t i o n of t h e two " i n v e r s e " f u n c t i o n s f(z) a n d f_χ{z)

i s t h e " u n i t " f u n c t i o n 1 / ( 1 - z), s o t h a t if w e d e f i n e

( 3 . 7 ) hι(z)^[f(z)tgι(z)] a n d Λ 2 ( r ) = [ / • ( * ) , g 2 U ) ] ,

we g e t

= [f(z\ φ ) ] + [ / ( * ) , g 2 ( z ) ] = A t ( z ) + h2(z).

L e t u s n o w d e n o t e by p^(θ) a n d p^iθ) t h e s t a r - f u n c t i o n s of A t ( z ) a n d h2(z).

I t f o l l o w s a g a i n from ( 3 . 7 ) a n d H a d a m a r d ' s m u l t i p l i c a t i o n t h e o r e m , s i n c e f(z)
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is analytic in the whole plane cut along 1 <_ x < oo, that

(3.8) pf(θ) > pf (0) and pj(0) > pξ{θ).

Using properties ( 2 . 3 ) of pf(O), we see that

443

(3.9) - oo for # 2 < 0 < θι + 27r,

) -- oo for θx < θ < θ2.

( I n o t h e r w o r d s , hι(z) a n d h2(z) a r e a n a l y t i c in t h e a n g l e s θ2 < a rg z < θι +

2?7 a n d θx < a r g z < θ2 r e s p e c t i v e l y . ) We a l s o find t h a t

( 3 . 1 0 ) ί , / = 1 . 2 ) .

Moreover , s i n c e hι(z) a n d h2(z) a d d to 1 / ( 1 — 2 ) , a f u n c t i o n h a v i n g i t s only

s i n g u l a r i t y a t z — 1, we c o n c l u d e t h a t

( 3 . 1 1 Ξ oo for θx < 0 < θ2 .

L e t u s c o n s i d e r now t h e H a d a m a r d m u l t i p l i c a t i o n of fm (z) a n d hί(z). C l e a r l y ,

we h a v e

(3.12)

1

1 - 2

Using once more Hadamard's theorem, taking into account (3.9)—(3.12) for

p (θ), and also remembering that pf( θ) = p_t( 0) for 0 t < 0 < 0 2, we obtain

P.ι(θ)-pf(θ)>min{ph

ιiθι)(ίι(θ-θ1),pll(θa)pml{θ-θ2)}

> ™n{(p_ι{θι)-e)Pmi(θ-θι),(p.ιiθ2)-e)p_ι(0-θ2)}.

We now have only to send 6 in the last inequality to zero in order to arrive at

the desired result (3.4).

Part II. It follows from Part I that if Ot and β are defined by (3.2), then

(3.13) log ρ_γ(θ) > min { (tan a) θ, (tan β) (2π ~ 0 ) 1 .
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Theorem 1 will, therefore, be established if we show that (3.13) is actually an

equality. Now, we may assume that (X and β are not both equal to 77/2. For,

if this were the case, then we would have pΛΘ) = oo for 0 < θ < 2π, and the

theorem would be proved. In what follows we shall assume that the theorem is

false and that (3.13) is a strict inequality for a certain θ— θ0. This we shall

show will lead to a contradiction. Now, from the lower semicontinuity of p_ (θ)

it follows that if we do not have everywhere equality in (3.13), then for in-

finitely many points we have a strict inequality. This allows us to assume that

ΘQ differs from ψ, where φ is defined by ( 3 . 1 ' ) . There is also no loss of gener-

ality in assuming 0 < θ0 < ι//, since otherwise we have only to replace / ( z )

and f_.(z) by f(z) and / . ( z ) , respectively. We first note that in the interval

[0,ψ)

(tan OL)Θ < (tan β) (2π - θ),

and hence there exists 8 > 0 small enough that

l o g p β l ( ^ 0 ) > (tan GC) 0O + δ .

We shall now define the domain D = Z)(α, β, θ0, 8) as the set of points z = re

satisfying

log r < (tan α ) 0 for 0 < 0 < θ0,

(3.14)

logr < min ί (tan α ) θ + 8, (tan β) (2π - θ)] for θ0 < 0 < 2π.

Let us denote by R(θ) the star-function corresponding to the boundary of D.

We claim that

(3.15) R(θ) < p_χ(θ).

Indeed, this is obvious from the definition of D and from (3.13) so long as

0 < θ < θ0. If θ0 < 0 < 2π, then we have to distinguish between two cases:

( i ) θ belongs to the interval I{ introduced in Part I; then both ΘΌ and θ(θ0 <

θ) belong to lϊ9 and since we have established before that log p M ( # ) - (tan Cί) θ

is an increasing function in 7χ, we have

log p M ( 0 ) - (tan α)θ > log p β l ( 0 o ) - (tan α ) 0 o > δ ,

so that
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θ+ δ >_ l o g R(θ).

( i i) θ C /2 In this case we see from (3.14) and (3.3) that

R ( θ ) < e x p [ ( t a n β ) ( 2 π - θ ) ] < p m χ ( θ ) .

This establishes (3.15).

Let now β', θ\ δ ' be such that 0 < β' < β, θ0 < θ' < φ and 0 < δ ' < δ,

where β'9 θ'9 and δ ' are chosen so near to /3, θ0, and zero, respectively, that

(3.16) (tan β') (2π- θ') > ( tan

Let 6 and ex be two small positive numbers, and let

ϋ* = D*(a -e,β',θ', δ', 6 l

be the domain defined by:

logr < [tan(α - e)] θ for 0 < θ < θ',

(3.17) , l o g r < m i n { [ t a n ( α -e)]θ+ δ', ( t a n β') (2π~θ)\ f o r θ' < θ < 2π,

log I z ~ 1 I > eι .

Because of (3.15) it is clear that f_χ{z) is analytic in the closure of D . Let

C be the boundary of lϊ , and set

(3.18)

where the determination of log z is chosen in the following manner: let Φ be the

argument corresponding to the vertex V of C where the two spirals

log r = [tan(α - e)]θ+8' and logr = (tan β) (2π - θ)

intersect, that is

2τ7tan / T - δ '
(3.19) φ = tan(α - e) + tan β'

Then we choose -(2π- Φ)_< arg z < Φ. It is readily seen that G(u) is an entire
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function of exponential type. Furthermore, for 6γ small enough, G(u) is in-

dependent of 6j. That is, if we change only e± and leave the other parameters

in the definition of C fixed, then the value of the integral (3.18) will remain

unchanged. This follows easily from Cauchy's theorem if we note that the curves

so obtained all have the same vertex V. Finally, if n is a nonnegative integer,

then from (3.18) and (1.1') we obtain

1

We shall now study the growth of G (u) more closely. For this purpose let

us put

u = \u\ e

and

(3.20) A ^ i z ) = (arg z) sin φ - ( log \ z\) cos φ .

From (3 .18) we get

(3 .21) log \G(u)\ < \u\ max Aφ(z) + K,

zee*

where K is a constant.

Now, the curve C is composed of five analytic arcs,

J = l

on each of which we shall evaluate the maximum of Aφ(z).

( i ) On C b the arc of circle

| z - 1[ '= ε l f ηχ < argz < η2,

since η and η tend to zero with el9 we have

(3.22) | Λ φ ( z ) | < I arg z I I sin 0 | + | log | z \ \ \ cos φ \

< 2π max ( ^ , η2 ) + log (1 + €ί ) = η3 ,
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w h e r e η t e n d s to z e r o wi th €« .
3

(ii) On C2, the spiral arc

log I z I = (arg z ) tan (α - e) for η2 < arg z < θ',

we have

(3.23) Λφ(z) = (arg z) sin φ (1 - cot φ tan(α - e)).

Hence

(3.24) max Aώ(z) < 0 for < φ < 0.
zβc2

 Ψ - 2 ~

On the other hand, if 0 < φ* < π/2 is defined by

δ'
(3.25) tan φ* = tan (α - e) + — = tan (α - e) + μ* ,

Φ

we get from (3.23) and (3.25), for 0 < φ < φ*,

(3.26) max AAz) < θ' sin 0 ( 1 - cot 0* t a n ( α - e)
zβC2

/ tan(α- e) \
= θ' sin ώ 1 = Ω* sin φ,

^ \ tan(α-6)+μ* | Ψ

where we put

θ'μ*
(3.27) Ω*

tan(α - e) + μ*

(iii) On C3, the segment

exp[£0'f] f where θ' tan (α - e) £ t < θ' tan(α - β) +

we obtain the same inequalities as in the preceding case,

(iv) On C4, the spiral

log ] z\ = δ ' + (arg z) tan((X- 6), 0' < arg 2: < φ ,

we have
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Aφ( z ) = (arg z ) sin φ 1 - cot φ tan(α - e)
S'

argz

from which, using (3.25), we get

(3.28) max Aώ(z) < 0 for < φ < φ*
zβc4

 φ * 2 ~

(v) Finally, on C5, the spiral

log \z I = - (arg z) tan β', - {2π - Φ) < arg z < - ηχ ,

we have

Aφ(z) = (arg z) sin φ (1 + cot <£ tan /3'),

from which it follows that

(3.29) max Aώ(z) < 0 for - β' < φ < π/2,
zec5

By combining the inequalities (3.22)—(3.29), we conclude that

max Aφ(z) < max(r/3, Ω* sin φ) for 0 < φ < φ*,

(3.30)
zee*

maxt Aφ(z) < η3 for ~β' < φ < 0.

But η3 tends to zero with elf while Ω* and G{z) are independent of e ι β This,

with (3.30) and (3.21), implies that the type-function (2.6) of G(u) satisfies

(3.31)

τG(φ) < Ω* sin φ for 0 < φ < φ*

ΊG(φ) < 0 for ~ β' < φ < 0.

Now, let γ be a number such that m a x { θ t - e , / 3 ' } < y < 77/2. S i n c e / ( z ) i s

analytic in the whole plane cut along the half-line 1 <C x < 00, there ex is t s

by Lemma 3 an analytic function F(u) of exponential type in the angle | arg u \ <

γ, such that

(3.32) F(n) = an U = 0, 1,
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and

(3.33)

Let us put

(3.34)

ΊJφ) < 0 for \φ\ <C γ.

H(u) = F(u)

Then H{u) is analytic and of exponential type in the angle — β' < arg u <^

Furthermore, because of (3.31)—(3.34), the following relations hold:

( i )

( i i )

and

H{n) = 0

tH(φ) < Ω* sin φ for 0 < φ < φ*f

τH(φ) < 0 for - β' < φ < 0.

0, 1,

Thus H(u) satisfies the conditions of Lemma 4 with Ω t = Ω*, Ω2 = 0, CX = φ*

and β - β '. Applying this lemma, we conclude that H (u) tends uniformly to zero

in any angle interior to the angle Aa*β*: - /3* < arg u < α*, where CX* and

β* (0 < α* < τr/2, 0 < β* < π/2) are defined by

(3.35)

tan Cί* =
Ω* cot β'+ 2π cot φ* '

tan jβ* =
( 2 τ τ ~ Ω * ) cot β

- = tan β' ,

From the last property, and from (3 .34) , it follows in particular that F (u) can

have only a finite number of zeros in any angle interior to Aa*β*. Let now 0C,

β satisfy 0 < α < Cί* and Θ < β < β* 3 and let Ro be large enough so that

F(u) £ 0 in the sector

In this sector any determination of log F{u) is analytic and sat i s f ies , because

of ( 3 . 3 2 ) , ( 3 . 3 3 ) , and ( 1 . 2 ) , the conditions of Lemma 5. Hence
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l o g \ F ( u ) \
(3.36) lim * ' = 0,

uniformly in any sector interior to Σ ^ f ^ # . Let us put F-^u) ~ I/F(u). Then

F.j(w) is analytic in Σ~at'βtR0 and satisfies

(i) F.^n) ~ — for n > Ro ,

(π) lim — = 0,
\u\->oo \U\

uniformly in any sector interior to Σ ^ ^ ^ o We can now apply Lemma 3', and

conclude that

F.ι{n)zn ^ Σ —
n >R0 n > Ro an

is analytic in the domain Ax,/Γ bounded by the two spirals

r = exp [ (tan (X) 0] for 0 < Θ < ψ,

and

r = e x p [ ( t a n β) (2π - θ)] for ψ < θ < 2π,

where φ is the expression (3.1') with bars. Obviously the function f_Λz) will

be analytic in the,same region. Moreover, since CC and β can be chosen as

near as we please to Oί* and /3*, respectively, it follows that f_γ(z) is analytic

in Da*fβ* This gives us, in particular, the inequality

iogP./tf) > < t a n α*)(9 for 0 < 0 < ^* ,

where ψ* is the expression (3.1') with asterisks. The last inequality and (3.2)

lead to the inequality

(3.37) tan α > tan α*.

Now, from (3.27), (3.35), and (3.25) we find that
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2π - Ώ*
(3.38) tan Cί* =

Ω* cot β'+2τr cot φ*

tan (α - e) + μ*

0 V β , 277
cot /3 +

t a n ( α - € ) + μ* t a n (θί - e ) + μ*

2τ7 t a n ( α ~ €) + μ*[2τ7- θ']

277+ θ'μ* cot β'

μ*[2τ7- θ'- 0 ' t a n ( α - e) cot β']
= tan (α - 6) +

277+ θ'μ* cot β'

Combining (3.37) with (3.38), and sending e to zero, we get

, tan α + tan β'
2π~θ'

(3.39) tan α > tan α + μQ

tan β*

2π+θ'μQ cot β'

where, by (3.25), we have μQ = δ'/Φ 0 > 0, and where φ 0 is given by

2τ7 tan β ' - δ '
Φ

tan α + tan β'

Since from (3.16) we also have

<9'{tan α + tan β') < 277 tan β' ,

we find that the last term in (3.39) is positive. This, however, leads us to

tan α > tan α (0 < 0t < 77/2), an absurdity. Thus the assumption that (3.13)

is not always an equality leads to a contradiction. This establishes the theo-

rem.

4. Some further results. In Theorem 1 the existence only of the constants

(X and β was proved. More careful analysis leads to the following more explicit

result concerning the constants. Let γ be a number such that 0 < γ < 77/2, and

let Fγ (it) be any interpolation function of f(z) defined in the angle \ arg u\ <_γ.

(Thus Fy(u) is of exponential type in the angle, verifying there (3.32) and

(3.33)). Then we have:
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( i ) The unit circle is a cut for / (2 ) if, and only if, the positive axis is a

direction of condensation of zeros for Fy{u). (That is, any angle | arg u\ < e

contains infinitely many zeros of Fy{u),)

( i i) If the positive axis is not a direction of condensation of zeros, then let

the two numbers φ+ (y) and φ~(γ) be defined in the following way: 0 < φ+ < y

is such that Fy{u) has only a finite number of zeros in any angle 0 _< arg u <

φ* — 6, and infinitely many zeros in any angle 0 <̂  arg u < φ+ + e. (We put

<̂>+ = y if Fy{u) has a finite number of zeros in any angle 0 < arg u <_ y — 6 )

Similarly we define φ" (0 < φ~ <_y) by the property that Fy(u) has a finite

number of zeros in any angle —φ~+ e <C arg u <^ 0 and infinitely many zeros

in —φΓ - £ < arg u < 0. Then, if φ+ < y, the constant Ot of Theorem 1 is the

number φ+ just defined. Similarly, if φ" < γ we have β - φ~. Furthermore, if

y is an increasing sequence such that y —> τr/2, then we always have

α = lim φ+(γn), β = Hm φ~(γn).

We shall omit here the proof of this result.

In Theorem 1 it was assumed that f(z) is analytic in the whole plane cut

along the line 1 <̂  x < oo. Suppose now that we know only that f(z) has the

point 2 = 1 as its only singularity on the unit circle, and that it is, furthermore,

semi-isolated. That is, there exists p > 1 such that f(z) is analytic in the

region bounded by the circle | z \ = p and the segment 1 <_ ̂  <. p It was shown

by Polya [4, p. 738] that in this case the singularities of f(z) can be "sepa-

rated" in the following way:

f{z) = /*(*) + f**{z) = Σa*an +Σ a** zn ,

where f*(z) is analytic in the whole plane cut along 1 <̂  x < oo while f**(z)

is analytic in the circle \ z\ < p. Obviously, we have an - a% + α^* with

lim sup | o * * | l / n = - .

Now, if the sequence ί an \ satisfies (1.2), it is easily seen that {a%} also

satisfies (1.2). There is also no loss of generality in assuming a% ^ 0. From

1 1 1 α£*

a* + α** α* an a*
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it follows that

1 1
lim sup

Hence, if we put

l/n

< P~ι

xn un

/ . (

we find that f_χ{z) — /_*(z) is analytic in | z \ < p. Applying Theorem 1 to

f*ι(z)9 we arrive at the following conclusion:

THEOREM 2. Let f{z) be analytic in the domain bounded by the circle

| z | < p ( p > l ) and the segment 1 <̂  x < p. Let (1.1) be the Taylor expansion

of f(z) in \z\ < 1, where an φ. 0 and where (1.2) £s satisfied. Let f_Λz) be

the "inverse" function defined by ( 1 . 1 ' ) . Then either the unit circle is a cut

for f_Λz), or there exist two constants CL and β (0 < OC < 77/2 and 0 < β <

77/2), such that fm<ί(z) can be continued analytically along any ray te , 0 <_t <

r(θ), where

r ( θ ) = m ί n { e

( t a n α ) ί ? , e < t a n 0 ) ( 2 τ r - 0 ) ^ p } f o r 0 < θ < 2 π ,

a n d

r ( 0 ) = 1 .

F u r t h e r m o r e , r ( 0 ) e l i s a c t u a l l y a s i n g u l a r i t y o f fm ( z ) i f r ( θ ) < p .

REFERENCES

1. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, Chelsea Publishing

Company, 1945.

2. V. Bernstein, Lecons sur les progres recents de la theorie des series de Dirichlet,
Gauthier Villars, Paris, 1933.

3. J. Soula, Sur les points singuliers des deux fonctions ^anz
n et Σzn/an, Bull.

Soc. Math. France 56(1928), 33-49.

4. G. Polya, JJntersuchungen uber Lucken und Singularitaten von Potenzreihen, Ann.
of Math. 34(1933), 731-777.

5. E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford,
Second Edition, 1939.

THE RICE INSTITUTE






