
FORCES ON THE BOUNDARY OF A DIELECTRIC

G. POWER

1. Introduction. It has been shown [ 1, ch.VII] that the component parallel

to the axis of x of the resultant force on the matter inside any closed surface S±

drawn in a medium of specific inductive capacity K is given by

where (I, m, n) are the direction-cosirtes of the normal to the surface,

K — — —
P - — (X2 - V2 - 72)

Pχγ = ^-
x y 4w

K

and λ, y, Z are given in terms of the potential by —dφ/dx, —dφ/dy, —dφ/dz,

respectively, provided the effect of electrostriction is neglected.

If any other surface S 2

 i s taken, surrounding S if and if

dPxx dPxy dPxz

dx dy dz

at all points between the surfaces, that is to say provided V2φ = 0 at all such

points, then, by Green's theorem,

s

and similarly for the other components of the resultant force on the matter inside
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234 G. POWER

This method can be used to find the resultant forces caused by the refraction

of the lines of force at a surface of discontinuity separating one medium of spec-

cific inductive capacity K( from a second of specific inductive capacity /{0

2. Two-dimensional fields. Instead of .applying the foregoing method to two-

dimensional fields, we can best obtain the results by using the complex poten-

tial. Let

Ω === φ + iώ

be the complex potential of the field in the dielectric Ko. The components of the

resultant force on the boundary C are then given by

* • «

da°V
)

and the couple Γ o is the real part of

Ko f dtt0

:dz.

These results follow from the equations of the Introduction with Z = 0. The

details are omitted since the proof is identical with that of the well-known

theorem of Blasius [3, p. 163; 2, p. 91] in fluid flow. The substitution of

P cn~ίcn

Ω = y
o Z_^7 1 - 1 n

Σ

and

=

n = ι

and separation into real and imaginary parts, yields the explicit forms

Ko P - ι
o

n -I

κ0
(lb) Y = —

2 B = 1 n = I
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~ Σ
1

<V-γ Σ
π = ι

CIRCULAR CYLINDER IN A GENERAL FIELD. If a circular cylinder of

radius α, filled with homogeneous dielectric of specific inductive capacity iv, is

placed at the origin of coordinates in a two-dimensional field whose complex po-

tential is /( z ) in air, having no singularities inside or on r = a9 then the com-

plex potentials inside and outside the cylinder are respectively

(2)

(1-/O -/ a2 \

TΠT) ' \ τ /
It is assumed that there are no other boundaries present, and that the field is

caused by isolated singularities (charges, dipoles, etc.) The result can easily

be obtained by considering the boundary conditions. Note that by putting K — 0

in Ωo above we obtain the Circle Theorem [ 4, p. 84].

If the original real potential is taken to be

φ(r,θ)=
Enr

n cos nθ E'n τn sin nθ

then the potentials inside and outside the dielectric are

2

and

Thus with the above notation we have

2£ή

φ(r, 0)

a2 \

v •θ) •

c = E ,c' = E', d = 1 - / \ a2n E , d' = -——r a2n E'.
» " " " il+K) " n ( 1 + X) n

Hence the resultant forces on the boundary are given by
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( 3 )

X =

Y =

(1-/0

2U + /0

2n

2 ( 1 + /O
71 = t

Γ = 0.

Equations ( 2 ) can be extended in the form of infinite ser ies to the case

where there i s also present a conducting surface r—b (b<a). Infinite ser ies

are also obtained when r = b i s a line of flow. These two cases can then be used

to obtain results for a dielectric elliptic cylinder.

3. Three-dimensional fields. In spherical polar coordinates (r, θ, ω)9 the

components of force are

( 4 )

whί

Z = J J ( F cos θ - G sin θ) dS,

y = J J [ ( ^ sin θ + G cos 0) sin ω + // cos ω] rfS,

X = }}[{F sin θ + G cos 0) cos ω - // sin ω] ί/S,

Tdθ

^o idφo\ / dΦo \
0 4τ7 \ 3r / \ rdθ I '

Ko (dΦo\ I dΦo \
0 = ~π \~) \ r sin θ dω ' '

rsinθdω

with similar expressions for Fj , Gj, ^ t . As before, φ0 is the potential inside the

dielectric Ko. The integration is performed over the sphere of radius r.

The couple components are

N = if H rsin θ dS,

( 5 ) M = ff[Gr cos ω - Π r s i n ω cos 0] d S ,

L = ff[Hr cos ω cos (9 - G r sin ω ] ί/5,
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Considering components due to FQ9 Go, ίl0 only, and making the change of

variable

μ = - cos 0, dS = r2 dω dμ,

we obtain

[6)
Zo

Ko

[
o J-ι dμ I (1 2) \ dω dr

( 1 - ί

μdω dμ

and proceed similarly for Xo, Yo, N0, Mo, L o .

These integrals can be evaluated if the potential φ0 is expanded with the

usual notation [ 1, ch. VII, p. 239, and elsewhere], in the form

( 7 )
P Wn

n + l

vheve

( 8 ) C O S S ω

( 9 ) P + y^ (a cos s ω + b sin sω)n L-^ v s,n sfn
s - 1

and Ps

n satisfies the differential equation

dPl

dμ dμ
n(n+1) -

( l - μ ? ) "

With the usual notation for associated Legendre functions of the first kind, we

have
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Ps =
n

,2\s/2 ( l - μ 2 ) S / 2 ( μ 2 - D "
d n + sμ

dμs 2n n\ dμn+s

The potential ψι has a similar expansion.

I he recurrence and integral formulae used are

1

( b )

( c )

( d )

( e ) ( 1 - μ 2 ) - = U + 2) - U - S + 2 ) P * + 2

= (n + s + l) Ps

n - μ ( n + l

0 if n ^ n\

(n~s)\ ( 2 Λ
if rc = n'9

0 if ft'>ft or ft-ft' odd,

U + s - 1 ) ! 2

(n-s-l)l

4s (n + s - 3 ) !

U - s - 1 ) !

if ft = ft',

if ft = ft' + 2 ,

0 ii

+ 3 !
if ft' = ft + 1 ,



FORCES ON THE BOUNDARY OF A DIELECTRIC 239

( i )

( j)

(k)

dμ =
{n-s)\

n r τz + 1

- i

dμ = 0,

0 if / ι V n + 1 ,

2 U + 5 + 2 ) 1

( 2 / ι + 1 ) ( 2 τ * + 3 ) (n-s)l
if

1 p^+ i p ^ + i

1)!

( / ι + 5 + 1)1

s ( n - s + 1 ) !

if n = AZ'+ 2 ,

if n = n'.

Some of these formulae may be found in textbooks [ l ] .

The Z force is given by

z - z, - z 0 ,

where Z o is given by (6) above with a similar expression for Z z . Consider, first,

the integral

2

/
Λ27T Λ l

' • • / . / - , μ t

Jo J - i

w h e r e , from ( 8 ) a n d ( 9 ) ,

- μ 2 ) r h + >
71 = 1

Sή ~ Ao,n (/I cossω + β c n sin^ω)
s f n Λffi

and
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dPn £ , • Λ dPS"
W = α + > (α cos 5 ω + 6 s i n s ω )

n °>n dμ fTf

l

 s > n S*n dμ
Now the integral has to be independent of r, so that

o,/ι+i

μ{l-μ2)dμ.

But

(10)
r\

μ { \ -
J ~ 1

μ2)
d μ d μ

c/μ

= / ( 1 - μ 2 ) + (
•/-i (9α \ 2^ + 3 / da \ 2n + 3 /

J ~~ 1

(?μ \ 2 ^ + 3 / dμ

dμ - (n + 1'

π ( n + 1 ) -
( 1 - μ 2 )

In-s +2\ rι ί
/ Pί \(n

\ 2n + 3 I J-i n [

+ (w - s + 1)
1)!

- U + i)

( Λ - S + 1 ) ! ( 2 ^ + 3

+ S + 1) ! 2

! Λ + 3)
(by

ra + 3 U - μ 2 ' )

1 ) !

( n - s ) ! (2n+ 3 ) (2re
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which gives an expression for / 1 #

In a similar manner,

(ID 12 = ΓV
1 Jo J-l

μdω dμ

= -2π

n = 1

4- P
τι + 1 n

s = 1

μdμ,

(12)
r 277 Λ 1

Jo J-i - μ
dcύ dμ

- 2 ! 7 Σ L Σ
71 = 1 S = 1

s2(Λ a + β 6

Γ27T rι dφΛ ldφ0

: i3) / = / / r — —
4 Jo -/-I dμj\dr

( 1 - μ 2 )

7Z = 1

^ 0,rc+l ao,n ~Z τ
(9μ

B

dPS

n

s,n+l 6 s , n

/ I __ 2\
cίμ,

+ Σ ('

s = l

We s e e t h a t from ( 6 ) ,
8rrZ0

' " dμ

/ _ / + / - 2 1 ,
1 2 3 4 '
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f rom w h i c h , b y u s i n g ( 1 0 ) , ( 1 1 ) , ( 1 2 ) , ( 1 3 ) , w e g e t

(14
o

z°'- -

X ^ v cn-*-1 C Γ Ϊ C 7 Ί - L 1 o n 7 / \Λ a
s,n + l s,n

•s = 1

This determines Z, for the component Z£ can be written down in terms of the co-

efficients of the expansion of φ(. In the same way, when the components Yo, XQf

No, M09 Lo are determined then the components Y9 X9 N9 M9 L may be written

down.

13y using the same method as for Z o above, the following results are obtained:

5 = 1

^ s sfn s
α )

en'

s = i

Ko P-

s , π + l

" (n + s + 2 ) !

h, (n-s-l)l

*s+l,n'\>

2 ( n + l ) ( n + 2 ) Λ l t r ι + ι a ΰ > n - 2n(n

s,n+ι s+i,n*

( 1 7 )

( 1 8 )

( S , « „ - Λ 6. „ ) ,

n = 1 s = 1

λ'o P
2 n ( n + l )
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as,n + s + l,n s,n / s , n α s + l , n s,n s + l , n
I

( 1 9 ) L - f i f 2 » U + l ) U O f | 1 \ . . - β i . » α o . « . )

U + .s +
s + l , n s f n s , n s + l , n α - β α )

s.n s,n s+l,n

It can be shown that the field becomes two-dimensional if

(20)

s even,
2(n-s)l

= β = 0, a = a , A
s,n s,n I o,τz' 5

2n\

s oί/c/, α = ,4 = 0, 6 ± ^ 6 , t =<nϋ21β
_ Ί \\ l,n' s,n t \ | ι,n

SPHERE IN A GENERAL FIELD. If a sphere of radius α, filled with homo-

geneous dielectric of specific inductive capacity K, is placed in air, with its

center at the origin of coordinates in any electrostatic field whose potential

function is d){x, y, z) having no singularities inside or on r = α, then the poten-

tial inside and outside the sphere are respectively

(K-l) r i
Φi = : ΓT Φ(*,y,z) + ( V Ί . 2 Γ Γκ/iK+1) φ(xt,yt, zt) dt

(1 + A) ( Λ + 1) Jo

and

(K-l) a
φ0 = φ{x,y,z) - ( j , + i ) -φ{xχ, yιt

(K-l) a
ίzll 1 fι

\. 4- 1 ) r Jo
(X + l )

where

a2y

It is assumed that there are no other boundaries present.
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These results can be obtained either by the method of P. Weiss [ 6 ] , or by

expanding φ (x, γ, z) in harmonics and using the boundary conditions

ϋφi dφ0

on r = a.

If the original potential is given by

φ(x, y, z) = £ rn Sn,

where

C O SS = A P + y (A
n Q,n n Δ-/ v s,n

s = l

and if we assume the interference potential to be given by

1 ^-—' n + 1

Bs,n SΪn S ^ Pn

n = 1

where

W = a P + y {a cos s ω + b sin sω) Ps ,
n o,n n L^ s,n s,n n '

5 = 1

then, by using the above result, we get

0,n if n > p,

with similar expressions for α s > r t , 6S > W. The forces are thus

O,τz

n

- Σ
s = 1

S + 1)!
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n

s - 1

n - 1

s = l

^ s,n '' s,π s

s n + l s + l n

n - s .

( n + S + 1 ) 1

™ s > " + i ( n - s - l ) \

Y __

4

1 n(K-l)a2

(n + s + 2 ) !

s = l

(71+ 5 + D !

N = M = L = 0 .

The potential inside, being of the form

i- Σ ' * S n <
n = 1

contributes nothing to the forces.

The forces on bodies with surfaces r= a+ ePn ( £ small) can also be easily

evaluated.

As an example [ 1, p. 290, ex.3l], take a positive point-charge e at the point

(0, 0, c ), c > α. We have

0,n
= 0 ,

and so

y ^
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The resultant attraction between the sphere and point-charge may thus be written

e 2 α 3 α

2 c 3

where

2 c 2

(c2-a2) 2 \2

(1 + α )

( c 2 - α 2 )

c ( l - α 2 ) la

\c) Jo (l-x2

K-l
a = .

K+ 1

Equations ( 14) - ( 19) can be used for the forces on a body in a liquid moving

irrontationally and extending to infinity, simply by putting Ko = 4/7/9. Πementary

cases have been considered [5]
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