FORCES ON THE BOUNDARY OF A DIELECTRIC

G. PoweRr

1. Introduction. It has been shown [1, ch.VII] that the component parallel
to the axis of x of the resultant force on the matter inside any closed surface S,

drawn in a medium of specific inductive capacity K is given by

X=—/ (lPxx+mey +anz)dS,
Sy

where ([, m, n) are the direction-cosines of the normal to the surface,

K

Y2 32 72
Pow= g7 (XY -2%),
K xy
AT
K ——
sz=4_xz,
m

and X, Y, Z are given in terms of the potential by —d¢/dx, ~dd/dy, —dh/0 z,
respectively, provided the effect of electrostriction is neglected.
If any other surface S, is taken, surrounding S, and if
0Py Py 0Py,

+ + =0
ox dy dz

at all points between the surfaces, that is to say provided V2¢ = 0 at all such

points, then, by Green’s theorem,

X =- / (P, + mP, +nP,.)ds,
S

and similarly for the other components of the resultant force on the matter inside

S,.
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This method can be used to find the resultant forces caused by the refraction
of the lines of force at a surface of discontinuity separating one medium of spec-

cific inductive capacity X; from a second of specific inductive capacity K.

2. Two-dimensional fields. Instead of applying the foregoing method to two-
dimensional fields, we can best obtain the results by using the complex poten-
tial. Let

= XY
Q) = ¢, + ithy

be the complex potential of the field in the dielectric K,. The components of the

resultant force on the boundary C are then given by

K, 40, |2
Y (X = — / dz,
o " 8m J¢ dz ’

and the couple 1 is the real part of

Ko (dQD 2
- —_— zdz.
817 C dz

These results follow from the equations of the Introduction with Z = 0. The
details are omitted since the proof is identical with that of the well-known
theorem of Blasius [ 3, p.163; 2, p.91] in fluid flow. The substitution of

p cp—1ich © d,+idy \
Q = 2 - "4 E -z
0 - - - -

n=1 n=1

and

n=1 n=1

and separation into real and imaginary parts, yields the explicit forms

Ky Pt , K; p 1 o
(1a) X = 7 Z (dn Cn+l+dn Cn+1)— —5 Z: (bnan+l+bnan+1)’
n=1 n=1
KO p-1 Ki p'—l , .
(1b) vy = - > (dyer,y—drc, )~ - > (bpar, —bra ),
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) K, P K; p’
].C r I . ’ I . ’,
( 3 Z (cndn cndn) 5 Z (anbn a, bn).
n=1

n=1

CIRCULAR CYLINDER IN A GENERAL FIELD. If a circular cylinder of
radius a, filled with homogeneous dielectric of specific inductive capacity K, is
placed at the origin of coordinates in a two-dimensional field whose complex po-
tential is f(z) in air, having no singularities inside or on r = a, then the com-

plex potentials inside and outside the cylinder are respectively

Q. = ,
g (1+K) flz)
(2)
a (2) (1-K) ~(a2)
e TET S RRA &

It is assumed that there are no other boundaries present, and that the field is
caused by isolated singularities ( charges, dipoles, etc.). The result can easily
be obtained by considering the boundary conditions. Note that by putting K = 0
in Q, above we obtain the Circle Theorem [ 4, p. 34 ].

If the original real potential is taken to be

d(r,0) = 3~ +

n n
n=1

p (En ™ cos nf E} ™ sin m‘))
b4

then the potentials inside and outside the dielectric are

¢’L' = (;5(7‘, 0)

(1+K)

and

a0 0) (1-K) <a2 0)
Go = Stn Oy A\ 7))

Thus with the above notation we have

2F, ) 2E;

- ,a’ = ,b =b’ =0,
T AT ek T
(1-K) (1-K)
’ ’, 2 . _ ’
c, =En,c =En, dn = 0:5 a nEn,dn - 00 a?" En

Hence the resultant forces on the boundary are given by
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-k P2 g
Y=o = b v EDELLD,
n=1
(3) ] (1-K) p~1 .,
V=300 = By b By B
n=1
I =0.

Equations (2) can be extended in the form of infinite series to the case
where there is also present a conducting surface r= b (b < a). Infinite series
are also obtained when r = b is a line of flow. These two cases can then be used

to obtain results for a dielectric elliptic cylinder.

3. Three-dimensional fields. In spherical polar coordinates (r, 6, w), the

components of force are

Z =JJ(Fcos0 - Gsin6) dS,

(4) Y = JJ[(Fsing + Gcos @) sinw + H cos w] dS,
X =JJ[(Fsin® + Gcos ) cosw — Hsinw] dS,

where

F=Fi"Fo’G=Gi—Go’H=Hi"Ho’

F Ko (8960)2 ((9(250 )2 ( debo )2

° " gg or - rdé "\ / sin 0 do ’
Ko (3¢0) (8(;50)

G = = - )

° 47 ar rdf

K, (a¢0) ( dpo )
H = — '
0 4 or r sin 0 dw

with similar expressions for F;, G;, H;. As before, ¢, is the potential inside the

dielectric K. The integration is performed over the sphere of radius r.

The couple components are

N=/[[Hrsin6dS,
(5) M=/ [[Grcosw ~Trsinw cos ] dS,
L =/[[[Hrcoswcosh —Grsinw] dS,
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Considering components due to F,, G4, /1, only, and making the change of

variable
p=-cosf,dS=r"dody,
we obtain
877 Zo
(6)
K,

21 1 deho 2 1 ddo 2 dobo 2
- (5] (S2) - (57) e
-/; ./:1 {( K du * (1 -p2) dw ’ ar pw
27 L1 a‘ﬁo)(a‘f)o) )
-2,/(; [1(0r au (L=p®) rdodp,

and proceed similarly for X, Yo, Ng, Mg, L.

These integrals can be evaluated if the potential ¢, is expanded with the

usual notation [ 1, ch. VII, p. 239, and elsewhere], in the form

p (o]
(7) ¢O=Zr"5n+z ,

where
n
(8) S, = A, P+ > (As,n cos sw + Bs’n sinsw) P,
s=1
n
(9) W, = ag . Pn + Z (as’n cos sw + bs’n sin sw) P,sl,
s=1

and P satisfies the differential equation
dpP;,
©

N IPREN (n+1) )
— —_ = — n\n + - —_—— .
du SR (1-p) "

With the usual notation for associated Legendre functions of the first kind, we

have
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dSP 1 dn+s
P; - (1__‘12)5/2 n _ (1_“2)5/2 (1-12“1)”'
#S 2’1 n! d#ﬂ'fs
The potential ¢; has a similar expansion.
The recurrence and integral formulae used are
1
2 e s +1 s+1
(a) VU= Py = o (- P,
(b) (2n+3)uPn+1 (n+s+l)PS+(n-—s+2)Pn+2,
(c) QS‘uPnH Vv (1 =pu?) PS::+(n+s+l (n=s+2)y(1-p )P2+:’

(d) (n+s+1) Py =(n=s+1)pPS  +V(Q-p?) P10,

, dPjyy .
(e) (1-p )T (n+2)pPr, -(n-s+2)P,
=(n+s+l)P;—#(n+l)PZ+l-
=V {-p )Pi:t—sui’iﬂ
0 if n#n’,
1
(1) ﬁlP;PS
(n+s)! 2 ,
. n=n’,
(n—-s) (2n+1)
0 if n”>n or n—n" odd,
1 (n+s-=1)! 2
PS*L Pt dp = {4 - . if n=n’,
(&) ./:1 n n # (n—s-1)! (2n+1) nr=n
4s (n+s—-3)!
if n=n"+2,
| T s 1)

0 if n”#4#n+1,
1
i [ary s -
(n+s+1)! 2
(n—s)! | (2n+1)(2r +3)

if n"=n+1,
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fl PaPait 2(n+s)!

T dp= T
-1 1=p* : (n=s)!

(i) f \/1—_”11

0if n"#n+1,
1
(k)./:l vV 1—112 PZP;:l dyp =
2 (n+s+2)
. if n’=n+1,
(2n+1)(2n+3) (n—s)!

(n+s=1)! ,
—_— =n"+2,
s(n—-s—1)!
Ps. PSs,
(1) /‘Mduq
U(1-p?)

(n+s+1)! ,
_ if n=n"
sln-=s+ 1)!

Some of these formulae may be found in textbooks [ 1].

The Z force is given by

where Z, is given by (6) above with a similar expression for Z;. Consider, first,

dcbo | 2

27 1 5 0

= - — 4

./; f-l#(l : )(au) @ dp

2n UG A
f fu(l— Zr Sp+ 2 = | dedy,

= n=1 r

the integral

where, from (8) and (9),

P, n ar;
Sr: = Ao’n o + (As,n cos sw + Bs’n sin sw) o

and
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W 9 - ( b insw) o
= + a cos Sw + sin S w
n ao’n a# s;[ s,n S,n (3#

Now the integral has to be independent of r, so that

p-1

27 1 .
A =f ./ p(L=p?) 20 Sy Wy dodp
o Jo1 n=1
P-1 ., 0P,y 0P,
=27 Z /. 2/‘1 . a
= -1 [ o,ntl1 0,n+1 3# a#

n dPpyy 0Py
+ Z (As,n+1 s n+Bs,n+1 bs,n)

) p(l—p?) dp.
s=1 du 5#]

But

l aP5., P
(10) f p(1=p?) 4y
-1 du du

1 P, n+s+1 aP; n-s+2 aprsnz
=f (1-p?) < ) +( ) dy
-1 du 2n+ 3 du 2n+ 3 du
1 1
+(n—s+1)f Py P dp—(n+1)f pP> P, du(by (b),(e))
-1 -1
n+s+1 1 s?
=(——)f P* In(n+1) ~ ———|PS dy
2n+3 /00 m FIPERY

(n~s+2) fl ps lns ) 3) s? ps g
+ | —— 3) - ——— ‘
2n+ 3 R N mr (1=-p®)| ™+ #

(n+s+1)! 2
(n—-s+1)! ) (2n+3)

+(n=-s+1)

(n+s+1)! 2
(n-s)  (2n+1)(2n+3)

_ (n+s+1)n(n+1)/1PSPSd ~82‘/'1 w Py Phiy 4
(2fl+3) -1 n.n a -1 (1—'“2’) a

~(n+1)

(by (f), (£))

(n+s+1)! 2n

i (n-s) (2n+3)(2n+1)’
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which gives an expression for /.

In a similar manner,

) pdo du

2
- do
(D 12=f2 flrz(ao
o J-1 r
-1

=27 Z ("+1)2f [ZAO,nH ao,nPn+1Pn

n=1

n
s
+ Z (As,nﬂ as,n+Bs,n+1 s,n )Pn+1 p.du,
=1

27 1 6(;50)2 n
dod
./; f—l (aw (1=p?) @tk

(12) [3:
P s ps M
= am Z f Zs (4 sy,n+t %s,n + Bs,n+l bs,n)Pn+1 Pn (1 2) dp,
n=1 s=1 K
27 8¢0 a¢o
(13) I =f f (1-p2) dowdp
1 JdP
= Z (n+l)/ 2A0 n+t %,n - Pn+1
-1 ’ a”
aPs

n+1] (1-p?) dp

n
+ z (As,nﬂ as,n + Bs,n+1 bs,n)
=1

dPn 4y
_"Z (n+1)/ [ on+1ao,n Pn

n=1 ap.

" dPn ps )
+ Z (As,n+1 %s,n t Bs,n+1 bs,n) 9 n (1-p*) dp.
s =1 ®

We see that from (6),

)
=[1_12+13—214’
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from which, by using (10), (11), (12), (13), we get

(14)

2(n+1) 4 a

o,n+1 "0,n

K, p-t
2

M3

]
i
—

n
+ Z: (As,n+1 as,n+Bs,n+l b
s =1

S,n

(n+s+1)!

(n-s)!

This determines Z, for the component Z; can be written down in terms of the co-

efficients of the expansion of ¢;. In the same way, when the components Y, X,

Ng, My, Ly are determined then the components Y, X, N, M, L may be written

down.

By using the same method as for Z; above, the following results are obtained:

(16)

(17)

(18)

Ky Pt
Y0=—4— 2(n+1)(n+2)5’l’thl
n=1

(n+s+2)!

n
- Z (n—s)! (As+1,n+1 bs,n_

"l (n+s+ 1)
) AR DI S+1»n~Bs,n+1 Tuy,n) |
S =
Ky Pt
X0=—4 2(n+1)(n+2) Al,n+l ao’n——2n(n+]_)AO’n+1
n=1
n .
(n+s+2)!
* Z (n—s)! Ase,net s, T Psa,nn s,n)
s =1 :
"l (n+s+1)!
B (n—-s—1)! s,n+1 as+1,n+Bs,n+1 bs+1,n) ’
s=1
Ko P " os(n+s)!
N°=—2_ Z 2 (n-s)! (Bs’"as,”—[ls,n s,n)’
n=1 s=1
Ky P
Mo =z— Z 2n(n+1) (Ax,nao,n - Ao,nal,n)

s+1,n+1 %s,n

a0n~2n(n+ 1)4

o,n+1

)

b

a

1,n

1,n
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"l (pys+1)!
! m (Asﬂ,n as,n + Bsﬂ,n 63:” - AS’" aSﬂ’n - Bs’n bs+1,n
s =1
(19) L=
8 JO=T Z 2n(n+1)(1‘10’n bl,n—Bl,ﬂao,n)
n =1
Pl (e s+ 1)
+ Z m “s+1,n s,n+’1s,n bs+1,n—ds+l,n aS»”~BS’" aS“’n) '
s =1 '

It can be shown that the field becomes two-dimensional if

L 2(n—s)! 2n!
S even, bsn = Bs,n =0, as,n = T— ao,n’ s,n m “o,n’
(20 ( )! ( )!
n-s)! +1)!
sodd, a. =A_ =0, b = — T , B = — )
sn s,n s,n (n—l)' 1,n S,n (n+s)! 1,n

SPHERE IN A GENERAL FIELD. If a sphere of radius q, filled with homo-
geneous dielectric of specific inductive capacity K, is placed in air, with its
center at the origin of coordinates in any electrostatic field whose potential
function is &(x, y, z) having no singularities inside or on r = a, then the poten-

tial inside and outside the sphere are respectively

2 (K-1) 1
b, = —— d(x,y,2) + —f ¢ 7K/ KA w(xt, oyt 2t) di
T R o (K+1)% Js Slxty
and
(K=1) a ,
by = d(x 0y, 2) - 0 - olx, ¥y, 2,)
(K-1) a Uk,
-K/(K+1)
+ —_— t (x.t, vy t, z t)dt
(K+1)2r./; PLah Y b 2,8t
where
azx (12_’}/ azz
= T = =0, 2 =" and r2=x2+ 2+22.
xl r2 yl T2 1 r y

It is assumed that there are no other boundaries present.
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These results can be obtained either by the method of P. Weiss [6], or by

expanding ¢ (x, ¥, z) in harmonics and using the boundary conditions

: i dido
QL“_‘(;{)O!K‘a_r—'—‘ 37 onr =a.
If the original potential is given by
p
d)(x, Y Z) = Z rn Sn’
n=1
where
n
Sn = Ao,n Pn + 2 (As’n cos sw + Bs’n sin sw) sz’
s=1

and if we assume the interference potential to be given by

i

o0
d)l:Z n+1’
n=1 T

where

n
W =a P +Z(a8ncossw+bs

s =1

: S
, sin sw) Pn ,

then, by using the above result, we get

M Q2ntl g if n<p,
n(l+K)+1 0.

a =

o,n 0 if n>p,

with similar expressions for a; ,, bs . The forces are thus

1 p-1 n(K_l)a2n+1

7 _ — l2(n+ 1) 4 A
2 n=1 n(K+1)+1 proenn
n (n+S+1)!
+ z (As,nAs,nH + Bs,n Bsr"“ _m)'— ’

s =1
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( 1 pi n(K~1)a?"*!
=7 n(K+1)+1

n=1

-2n(n+1) 4

A :
o,n " i,ntt 1,n 4o,n+1

[2(n+1)(n+2)A

n (n+s+2)!

+ Z (As,n ‘uls+x,n+1+8s,n Bs+1,n+1 (n-s)!

s=1
n-! , (n+s+1)!
_sgx (As+1,nAs,n+1+Bs+x,n S ST
1 P71 p(K-1)a*"*! 5
=Zn=l_TH—Z(,LJFI)(TLJFH)AO’”B"”‘ 2n(n+1)A0n+181,n

n (n+S+2)!
- Z (Bs,nAs+1,n+1_A5y” stLAALT T (p o)l

n 1 (n+s+1)!
- Z (Bsﬂ,n As,n+1 - Bsyn” 143“’" (n—-—s—-_l)—'- ’
s=1

N=M=L=0.

The potential inside, being of the form

p
= Z r" Sn’

n=1

contributes nothing to the forces.

The forces on bodies with surfaces r=a+ €P, ( € small) can also be easily
evaluated.

As an example [ 1, p. 290, ex.31], take a positive point-charge e at the point
(0,0, ¢), ¢c>a. We have

o,n el
and so

o0 D (K -1 2n+1
zn(“ ) ), @ , Y=0 X=0.
n=1 n(K+l)+1 czn’+3
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The resultant attraction between the sphere and point-charge may thus be written

e?ada 2¢? (1+a) c(1l-a?) (a)al '/'a,/c x2 e y
+ - - —_— dxt,
2c8 (c? - a?)? (c? —a?) a® c 0 (1-=x%)
where
K-1
a = .
K+1

[Equations (14) - (19) can be used for the forces on a body in a liquid moving
irrontationally and extending to infinity, simply by putting K, = 47p. Flementary

cases have been considered [5].
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