ON THE COMPLEX ZERGOS OF FUNCTIONS
OF STURM-LICUVILLE TYPE

CHoy-TAK TAaawm

1. Let Q(z) be an analytic function of the complex variable z in a region

D. In the present paper only those solutions of
(1.1) W+ Q(z)F =0

which are distinct from the trivial solution (= 0) shall be considered.

In this paper the following results shall be established.
THEOREM 1. Suppose that the following conditions are satisfied:

(a) the circle |z| < R is contained in D,
(b) W(z) is a solution of (1.1), W (0) # 0O,

(¢) n(r)is the number of zeros of W(z)in |z| <r,r <R.
Then n (r) satisfies the inequality

(1.2) n(r) < (log (RFY)) Hlog (L+R|W*(0)]| [W(0O)|™!)

+ (2m) f;"foR (R -1) | Q¢ e'®)| dedo].

COROLLARY 1.1. Suppose that the following conditions are satisfied:
(a) Q(z)is a polynomial of degree k,
(b) conditions (b) and (c) of Theorem 1 hold.

Then W(z) is an integral function of order at most k + 2. Furthermore, as

r—ow,
(1.3) n(r)=0(rk+2).

Obviously the result of Theorem 1 is not good if r is close to R. Also it
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does not apply to a solution which vanishes at the origin. The following theo-

rem is free of these restrictions.
THEOREM 2. Suppose that the following conditions are satisfied:

(a) S is aclosed region contained in D,
(b) the boundary C of S is a closed contour,
(c¢) the maximum value of |Q(z)] on C is M,

(d) S can be divided into n subregions such that each subregion has a
diameter not greater than wM~'/%; and for any two points z, and z, of a sub-
region, the linear segment zz, lies in S (we agree that the common boundary
of two subregions belongs to both subregions).

Then

(e) if O(z) is not a constant, the number of zeros of any solution W(z)

of (L.1) in S is not greater than n,

(f) more accurately, if Q(z) is not a constant, each solution W(z) of
(1.1) has at most one zero in each subregion, and when it is known that W(z)
has some zero z; which belongs to n; (n; > 1) different subregions, i =1, 2,
ook, its total number of zeros in S is not greater than n + k —(ny+ ny++ee+

ng),

(g) if some solution of (1.1) has more than one zero in some subregion,
(Q(z) must be a constant and | Q(z)| =M > 0in D.

%e may observe that if J(z) is not a constant, M must be positive, ac-
cording to the principle of the maximum modulus. If Q(z) is a constant, the

problem is trivial as the distribution of the zeros is known.

2. To prove Theorem 1, we need the following known results.
LEMMA 1. Suppose that the following conditions are satisfied:

(a) f(x) and g(x) are real-valued functions, continuous and nonnegative
for x > 0,

(b) M is a positive constant,

(¢) flx) 3M+f" f(2)g(e)de, x> 0.
0

Then we have



ON THE COMPLEX ZEROS OF FUNCTIONS OF STURM-LIOUVILLE TYPE 839

flx) < o £

This lemma is due to R. Bellman. For a proof of it see [1] or [5].

LEMMA 2. Suppose that the following conditions are satisfied:

(a) f(z)is analytic for |z| < R, f(0) # 0,

(b) the moduli of the zeros of f(z) in the circle |z| < R arery, ryye=,7j

arranged as a nondecreasing sequence (a zero of order p is counted p times ).

Then we have

log[Rk(rlr2 coerg) ] = (277)'1/0277 log | f(R eie)]de—log [f(0)].

Lemma 2 is known as Jensen’s theorem (see [4]).

3. Now we shall prove Theorem 1. Along a fixed ray radiating out from the

origin, z = r exp (i), equation (1.1) becomes

d2W . .
(3.1) — + €290 (re!) W = 0.

dr

Integrating (3.1) twice from 0 to r, we obtain
. . . h . .
(3.2) W(re“g)=W(0)+W'(O)e'er—ez‘efrf Q(teO)W (te*9) dtdh,
o Jo

where W’(0) exp(i6) is the value of dWW/dr at the origin. Integration by parts
of the integral in (3.2) gives

(3.3) W(rei9)=W(O)+W'(O)eier—-e”efr(r-—t)Q(teie)W(tem)dt.
0

For r < R, (3.3) yields

(3.4)  |W(rei®)| < |W(0)] +|W'(O)}R+/r(R—-t)lQ(teie)W(teig)]dt.
0

Applying Lemma 1 to (3.4), we have

R (rot)] 0o i€
(3.5) | W (Rei®)| < (|W(0)] +IW’(0)IR)ef° (R-0)] lee")|de.
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Let the moduli of the zeros of W (z) in the circle |z| < r < Rber,, ry,eee,rk,

arranged as a nondecreasing sequence. Then an appeal to Lemma 2 gives
k 1 [T / |6 ]
(3.6) log [R¥(ryryeeerg) 'l < (2a) f log | W (Re*®)| d8 —log | W (0)].
0

Clearly
(3.7) log [R¥(ry ry eee rp) 1) > log [R™(), 0]
= n(r) log (Rr), r <R,

where n(r) is the number of zeros of W(z) in |z| < r. On the other hand,
(3.5) gives

(3.8) /”10g |W (Re®)|d6 < 27 log [ | W (0)] + | W*(0)|R]
0

2T R 0
+/0' ./; (R-1¢)|Q(te*?)|de dO .

Combining (3.6), (3.7), and (3.8), we have

(3.9) n(r) log (Rr') < log [|W(0)| + [W’(0)|R]~1log |W(0)]

+ (20) fomfoR (R 1) |0 (tei®)|dr do

for r < R. But (3.9) is equivalent to (1.2), so that this completes the proof
of Theorem 1.

If Q(z) is a polynomial of degree k, then W (z) is analytic except at in-
finity and, from (3.5),

. k
1Wf(Re‘9)\=0(eA°R +2), R—w,

where A is a constant. Hence W (z) is an integral function of order at most
k + 2. Finally if we set R = 2r in (3.9), it is clear that

n(r) = 0(*%2),

This proves Corollary 1.1.
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4. To prove Theorem 2, we need the following known result. On the real

axis, equation (1.1) becomes

d2W
(4.1) — + Q(x)V =0,

dx

where x is the real part of the complex variable z. Denote by ql(x) the real

part of Q0 (x).

LEmmA 3. Let W(x) be a solution of (4.1), W (0) = 0. Suppose that one

of the following conditions is satisfied.

(a) max ql(x)=m >0 in [0,a], 0<a< am Y2 and Q(x) # m in
[0, al,

(b) q,(x) <0in[0,al
ThenW(x) # 0 in (0, al.

This lemma was proved in [3; Theorems 5.1, 5.21. Part (b) is also covered
by a theorem of llille [2, p.512 ff.]. Its proof remains valid even if Q(x) is
assumed only to be a continuous (complex-valued) function of a real variable

x; consequently the lemma remains true under such an assumption on () (x).

We first prove (f) of Theorem 2.

Let S; be one of the subregions of S with a diameter not greater than
aM~'/2. Suppose that W (z) is a solution of (1.1) which vanishes at a point
2y, say, of S;. Consider a fixed ray radiating out from z¢, z — z¢ =7 exp (i0).

Along this ray, equation (1.1) becomes

d2W
dr?

(4.2) + e290 (2 +ret)W = 0.

By virtue of the principle of the maximum modulus, we have

[€290(2)] = |Q(2)] < M

for any point z of S on this ray. llence on a segment of this ray between z, and
any other point of S; (by assumption, this segment lies in S) the maximum
value m, say, of the real part of exp (2i0)Q (z) is not greater than M. If m is
positive, then 7m~1/2 > #M~'/2. Since ) (z) is not a constant, exp (2i0) Q(z)#

m on this segment. By virtue of the fact that the diameter of S; is not greater
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than 7 M~ 1/2

and Lemma 3, it is clear that W (z) does not vanish again on that
part of the ray in S;, regardless of the sign of m. Repeating this process for
each ray radiating out from z,, we see clearly that IV (z) cannot vanish again
in S;. Since S; is an arbitrary subregion, W (z) can vanish at most at one point

of each subregion.

On the other hand, if W (z) has a zero z; which belongs to n; (n; > 1)
different subregions, then W (z) cannot vanish again in any of these n; sub-
regions, as the foregoing proof shows. If it is known that there are k& such
zeros z;, each z; belonging to n; subregions, i =1, 2, ..., k, it is clear that
the total number of zeros of W' (z) in S is not greater than n + k — (ny + ny+---
+ 7).

To prove (g), let W (z) be a solution of (1.1) having two zeros, say z, and
zy, in some subregion S;. Let the argument of z; — z4 be 0. Then along the
linear segment z4z,, equation (1.1) becomes (4.2). According to Lemma 3,
the maximum value m of the real part of exp (2i0)(Q(z) on the linear segment

zy z; must be positive. Further, since
(4.3) lzy — zo| <aM V2 < am1/2,
zo and z, can both be the zeros of W (z) only if

(4.4) e290(z) = m

on the linear segment z, z,, by Lemma 3 again. But if (4.4) is true, the general
solution of (4.2) is 4 sin(m'/2r+ B), A and B being constants. If a solution
of (4.2) has two zeros, the distance between them must not be less than

"1/2, In other words, the equality signs in (4.3) must hold. That is, ¥ = m.

mm
From (4.4), we have exp(2i6)Q(z)= M on the linear segment z,z,. Since
Q(z) is an analytic function and constant on the linear segment zy 2z, Q(z)
is a constant in D. Obviously |Q(z)| = M; and since m is positive, so is M.

This proves (g).
Clearly (e) follows from (f), and this completes the proof of Theorem 2.

5. Added in proof. The author is indebted to a referee for calling his
attention to the fact that, in connection with Corollary 1.1, an entire function
which satisfies a linear differential equation with coefficients which are

rational functions of z is always of finite rational order and of perfectly regular
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growth. (See G. Valiron, Lectures on the theory of integral functions, Toulouse,

1923, p. 106 ff.)
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