
ON THE COMPLEX ZEROS OF FUNCTIONS

OF STURM-LIOUVILLE TYPE

CHOY-TAK TAAM

1. Let Q(z) be an analytic function of the complex variable z in a region

D. In the present paper only those solutions of

d a ) tf" + Q(z)n = o

which are dist inct from the trivial solution ( Ξ O ) shall be considered.

In this paper the following resul ts shal l be establ ished,

THEOREM 1. Suppose that the following conditions are satisfied:

(a) the circle \z\ <̂  R is contained in D9

( b ) W(z) is a solution of (1.1), W(0) £ 0 ,

( c ) n(r) is the number of zeros of W (z) in \ z \ < r$ r < R .

Then n(r) satisfies the inequality

(1.2) n(r) < ( l o g ( Λ r - ι ) ) " l [ l o g ( l + Λ | J r ( 0 ) | | I F ( 0 ) | - 1 )

+ ( 2 π ) ' 1 f2π fR ( R - t ) \ Q ( t e i Θ ) \ d t d θ ] .
Jo Jo

COROLLARY 1.1. Suppose that the following conditions are satisfied:

( a ) Q(z) is a polynomial of degree k,

(h) conditions (b) and (c) of Theorem 1 hold.

Then W ( z ) is an integral function of order at most k + 2. Furthermore, as

r —» oo,

(1.3) n(r) = O(rk+2).

Obviously the result of Theorem 1 is not good if r is close to R Also it
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does not apply to a solution which vanishes at the origin. The following theo-

rem is free of these restrictions.

THEOREM 2. Suppose that the following conditions are satisfied:

(a) S is a closed region contained in D,

(b) the boundary C of S is a closed contour,

( c ) the maximum value of \ Q ( z ) \ on C is M,

(d) S can be divided into n subregions such that each subregion has a

diameter not greater than πM~ι \ and for any two points Zγ and z2 of a sub-

region) the linear segment zιz2 lies in S {we agree that the common boundary

of two subregions belongs to both subregions)*

Ί hen

(e) if Q(z) is not a constant, the number of zeros of any solution W(z)

of ( 1 . 1 ) in S is not greater than n,

( f ) more accurately, if Q ( z ) is not a constant, each solution W ( z ) of

( 1 . 1 ) has a t most one zero in each subregion, and when it is known that W ( z )

has some zero z ι which belongs to n ι {nι > 1 ) different subregions, i = 1 , 2 ,

• , k, its total number of zeros in S is not greater than n + k — { n γ + 7 i 2 + β β +

rc/c),

( g ) if some solution of ( 1 . 1 ) has more than one zero in some subregion,

Q (z) must be a constant and \Q(z)\=M>0inD.

We may observe that if Q{z) is not a constant, M must be posit ive, ac-

cording to the principle of the maximum modulus. If Q{z) is a constant, the

problem is trivial as the distribution of the zeros is known.

2. To prove Theorem 1, we need the following known r e s u l t s .

LEMMA 1. Suppose that the following conditions are satisfied:

(a) f(x) and g(x) are real-valued functions, continuous and nonnegative

for x > 0,

(b) M is a positive constant,

( c ) f{χ) < M+ fX f{t)g(t)dt, x > 0 .

Then we have
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/Wj *>o.

This lemma is due to R. Bellman. For a proof of it see [1] or [5]

LEMMA 2. Suppose that the following conditions are satisfied:

(a) f{z) is analytic for \z\ < R , / ( 0 ) φ. 0 ,

( b ) the moduli of the zeros of f(z) in the circle \ z | < R are r l 5 r 2 , ,r/ ι

arranged as a nondecreasing sequence (α zero of order p is counted p times ) .

Then we have

log [Rk(rxr2 . . . r Λ ) - 1 ] = (2πYι P * log | f{R eiθ) \ dθ - log | f(0) \.
Jo

Lemma 2 is known as Jensen's theorem (see [ 4 ] ) .

3. Now we shall prove Theorem 1. Along a fixed ray radiating out from the

origin, z - r exp (iθ)f equation (1.1) becomes

d2W
(3.1) + e2iθQ(reiθ)W = 0.

dr2

Integrating (3.1) twice from 0 to r, we obtain

(3.2) W (reiθ) = W ( 0 ) + W ' ( 0 ) eiθr - e2iθ Γ [* Q(teiθ)W (teiθ)dtdh,
Jo Jo

where ^ ' ( 0 ) exγ>(iθ) is the value of dW/dr at the origin. Integration by parts

of the integral in (3.2) gives

(3.3) W ( r e i θ ) = W ( 0 ) + W ' ( 0 ) e i θ r - e 2 i θ Γ ( r - t ) Q ( t e i θ ) W ( t e i θ ) d t .
Jo

For r < R, (3.3) yields

(3.4) \ W ( r e ί θ ) \ < \ W ( 0 ) | + | W'{0) \ R + Λ (R - t ) \ Q ( t e i θ ) W ( t e i θ ) | dt.
Jo

Applying Lemma 1 to (3.4), we have

• a fR (R-t)\Q(teiθ)\dt

(3.5) \ W ( R e ι θ ) \ < ( \ W ( 0 ) \ + \ W ' ( 0 ) \ R ) e J ° ' ' .
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Let the moduli of the zeros of W ( z ) in the circle \ z \ < r < R be rί9 r2,
 β ,

arranged as a nondecreasing sequence. Then an appeal to Lemma 2 gives

( 3 . 6 ) log[Rk{rιr2 -τk)-1] < (2πYι f ^ log \ W (Reίθ) \ dθ - l o g | W ( 0 )

Clearly

( 3 . 7 ) log [Rk{rt r2 -.*rkY
ι] > log [ Λ » ^ ) Γ - π ( r ) ]

= ^ ( r ) l o g ( ^ r - 1 ) , r < R,

w h e r e n(r) i s t h e n u m b e r of z e r o s of W ( z ) i n | z | < r . O n t h e o t h e r h a n d ,

( 3 . 5 ) g i v e s

( 3 . 8 ) f2π log \W{Reiθ)\dθ < 2π l o g [ | W ( 0 ) | + | V''(0) 1 R]
J

I (R-t) \Q{teιθ)\dtdθ
Jo

C o m b i n i n g ( 3 . 6 ) , ( 3 . 7 ) , and ( 3 . 8 ) , we h a v e

( 3 . 9 ) n(r) log {Rr~l) < log [ | IF ( 0 ) | + | W'{0) | R] - log | W ( 0 ) |

2π)'1 / / {R-t) \Q(teiθ)\dtdθ
Jo Jo

for r < R. But (3 .9) is equivalent to ( 1 . 2 ) , so that this completes the proof

of Theorem 1.

If Q(z) is a polynomial of degree k9 then W(z) is analytic except at in-

finity and, from ( 3 . 5 ) ,

\W(Reiθ)\ =θ(eA R k + 2 ) , R - » oo ,

where A is a constant. Hence W (z) is an integral function of order at most

k + 2. Final ly if we set R = 2r in ( 3 . 9 ) , it is clear that

Λ ( r ) = 0 ( r Λ + 2 ) .

This proves Corollary 1.1.
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4. To prove Theorem 2, we need the following known result. On the real

axis, equation (1.1) becomes

d2W
(4.1) + Q(x)W = 0 ,

dx2

w h e r e x i s t h e r e a l p a r t of t h e c o m p l e x v a r i a b l e z. D e n o t e b y q (x) t h e r e a l

p a r t of Q ( x ) .

LEMMA 3. Let W(x) be a solution o/(4 .1) , ff(0) = 0. Suppose that one

of the following conditions is satisfied.

( a ) m a x q (x) = m > 0 in [ 0 , a], 0<a<πm'ι/2

9 and Q{x) φ m in

[0, α] ,

(b) qχ(x) < 0 in [ 0, α] .

ThenW(x) £ 0 in (0, a].

This lemma was proved in [3; Theorems 5.1, 5.2]. Part (b) is also covered

by a theorem of Iiille [2, p. 512 ff. ]• Its proof remains valid even if Q(x) is

assumed only to be a continuous (complex-valued) function of a real variable

x; consequently the lemma remains true under such an assumption on Q (x)

We first prove (/) of Theorem 2.

Let Si be one of the subregions of S with a diameter not greater than

πM~ί/2. Suppose that B'•'{z) is a solution of (1.1) which vanishes at a point

2 0 , say, of Si Consider a fixed ray radiating out from zθ9 z — z0 — r exp(iθ).

Along this ray, equation (1.1) becomes

d2W
(4.2) + e2iθQ(zo+reίθ)W = 0 .

dr2

By virtue of the principle of the maximum modulus, we have

\e2iθQ{z)\ = \Q(z)\ <M

for any point z of 5 on this ray. Hence on a segment of this ray between z0 and

any other point of Sj (by assumption, this segment l ies in S) the maximum

value m, say, of the real part of exp (2iθ)Q(z) is not greater than M. If m is

posit ive, then πm'ι/2 > πM'i/2. Since Q(z) is not a constant, exp (2iθ) Q{z)φ

m on this segment. By virtue of the fact that the diameter of S t is not greater
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than πM"ι/2 and Lemma 3, it is c lear t h a t W(z) d o e s not v a n i s h aga in on t h a t

part of the ray in S;, r e g a r d l e s s of the s ign of m. R e p e a t i n g t h i s p r o c e s s for

each ray r a d i a t i n g out from z0, we s e e c lear ly t h a t W (z) cannot v a n i s h aga in

in S f . S ince S; is an arbitrary subreg ion, W(z) can vani sh a t most a t one point

of each s u b r e g i o n .

On the other hand, if W(z) h a s a zero 2; which be longs to Π( (π( > 1 )

different s u b r e g i o n s , then W(z) cannot v a n i s h aga in in any of t h e s e n( sub-

reg ions , a s the foregoing proof s h o w s . If it is known that there are k s u c h

z e r o s 2 j , each z; be longing to zij s u b r e g i o n s , i - 1, 2, , k, i t i s c l e a r t h a t

the tota l number of zeros of IF ( z ) in 5 is not greater than n + k — (nι + n2 + '

+ nu)-

To prove ( g ) , l e t W(z) be a so lu t ion of ( 1 . 1 ) hav ing two z e r o s , s a y z0 and

2 l f in some subregion S L e t the argument of zx — z0 be θ. T h e n a l o n g the

l inear s e g m e n t z o z l 9 equat ion ( l . l ) b e c o m e s ( 4 . 2 ) . According to Lemma 3,

the maximum va lue m of the real part of exp (2iθ) Q {z) on the l inear s e g m e n t

z Q z i must be p o s i t i v e . Fur ther , s i n c e

(4.3) l * ι - * o | < rτM'ι/2 <πm-ι/2,

z0 and z t can both be the zeros of If' {z ) only if

(4.4) e2iθQ(z) EE m

on the linear segment z0 z ί9 by Lemma 3 again. But if (4.4) is true, the general

solution of (4.2) is Λ sin (m l /^2 r + B), A and B being constants. If a solution

of (4.2) has two zeros, the distance between them must not be less than

77m"1/2. In other words, the equality signs in (4.3) must hold. That is, M = m.

From (4.4), we have exp (2iθ)Q (z ) = M on the linear segment zozί. Since

Q{z) is an analytic function and constant on the linear segment zozt, Q{z)

is a constant in D. Obviously | ( ? ( z ) | = A/; and since m is positive, so is M

This proves (g)

Clearly (e) follows from (/), and this completes the proof of Theorem 2.

5. Added in proof. The author is indebted to a referee for calling his

attention to the fact that, in connection with Corollary 1.1, an entire function

which satisfies a linear differential equation with coefficients which are

rational functions of 2 is always of finite rational order and of perfectly regular
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growth. (See G. Valiron, Lectures on the theory of integral functions, Toulouse,

1923, p. 106 ff.)
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