ON GROUPS OF ORTHONORMAL FUNCTIONS (I)

N. J. FINE

1. Introduction. Recently Civin [3,4] and Chrestenson [ 2] have considered
three specific systems of orthornormal functions on the unit interval which form
multiplicative groups. They have shown that (subject to further restrictions)
these systems are essentially characterized by their group structure. In this
paper we propose to remove the topological restrictions on the base space and

the group-theoretic restrictions on the system of functions.

Let (Q,3,m) be an abstract measure space !, with m a countably-additive
measure defined on the o-ring 3, and m(Q) = 1. We may, and shall, assume that

m is complete. Let

F=tf} (¢=0,1,2,...)
be a family of complex-valued measurable functions on Q, satisfying
(1) _/;)fafﬁdm=8a/3 (a, B> 0),
(2) f,fg €F (o, B > 0).

We shall prove the following theorem:

THEOREM 1. If (Q,3,m) and F are as above, then there exists a (unique)
compact Abelian group H, satisfying the second axiom of countability, and a
trans formation T defined almost everywhere on Q into H, such that

(3) the outer v-measure of Z =T(Q) is 1, and 7 is dense in H, where v

denotes the Haar measure on H with v(H) =1;

(4)  for every v-measurable set MC H, T"*(M) €3 and m(T""(M)) = v(M);

1For the general measure- and group-theoretic concepts considered here, see [6]

and [7].
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(5) the functions f, T-! are single-valued on Z, and may be extended to H to
form the character group of H.

The transformation T is onto if and only if
(6) for every sequence { «w,} € Q such that

flen) — vg (a>0),
there exists w € §} such that

fle) =vg (o >0).
The transformation T is one-to-one almost everywhere if and only if
(7)) for almost all w €9, f(w”) =f(«), (& > 0), implies «’ = .

In the examples considered by Civin and Chrestenson, Q =/, the unit inter-
val, and m is Lebesgue measure. In [3], the conditions on F imply easily that
it is isomorphic with the group of Walsh functions? H is then the dyadic group.
We have shown [5, § 2] that there is a mapping A of H onto / which is one-to-
one almost everywhere, measure-preserving, and carries the characters of H
into the Walsh functions. The combined mapping AT of I onto I therefore takes
F into the Walsh functions, is one-to-one almost everywhere, and (A7)"! pre-
serves measure, provided that (6) and (7) hold. This is exactly Civin’s Theo-
rem 3 of [3]. In [2], F is isomorphic to ¥,, the group of generalized Walsh
functions of order « defined in [1]. H is then the c-adic group, the countable
direct product of cyclic groups of order ¢. A mapping A similar to that mentioned
above obviously exists, and Chrestenson’s result in [2] follows. In [4], F is
infinite cyclic, so H is the group of reals mod 1, which we can map onto / in
an obvious way. The character group of H is generated by exp (27ix), and if
fl(x) is the generator of F, our results show that

fi(x) =exp (27ic(x)), 0 <eclx) <1,

almost everywhere, and that ¢ (x) is equimeasurable with x.

This last result of Civin’s shows that the distribution of f,(x) is uniform
on the unit circle in the complex plane. We may also consider the joint distribe
ution of the f, in the general framework of Theorem 1. We shall prove the follow-
ing result:

2For a treatment of the Walsh functions and for further references, see [5]
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THEOREM 2. Under the conditions of Theorem 1, if f,,---,f €F satisfy
no relations of the form

(8) f{nl 2m2 cee fnmn =1 (almost everywhere)

other than the obvious ones imposed by their orders, then they are statistically
independent functions. The marginal distribution of f, is uniform if f has in-
finite order, and assigns measure 1/r to the rth roots of unity if f, is of finite
orderr.

The general situation is only slightly more complicated. We have:

THEOREM 3. Under the conditions of Theorem 1, for any set of functions
fiseoesf, €F, there exists a statistically independent set fal, .. -,[ane F

such that almost everywhere

(9) =T 1Y

3 (O(:l,u-,n).
=

The matrix (c&j) has integer elements and determinant 1. It can be constructed
as soon as all the relations of the form (8) are given.

2. Proof of Theorem 1. First we show that |[f («)| =1 for almost all « € (.
By (2), |fa!2 €F, so lfa|2" €F (n=1,2,...). Hence, by (1),

/Q|fa14"d'"=1 (n=1,2---).
Therefore
miw:|f ()] >1}=0.
If
A=to:|fla)] =1},
then

l=fdm+/
A Q

-

|14 dm —sm(4),
A

so m(A) =1. We redefine the f so that |f (w)] =1 everywhere. Now the
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function (say) f,=1€F, so for every S8,
f’.gl =?ﬁ =fof73€F'
Hence F is a multiplicative group.
Now define an equivalence relation on by
(10) @y~ 6y = f (wy) =f (&) (all &).

Let X denote the set of equivalence classes x, and let p be the natural mapping

of Q on X. Define
d={A:ACX, pt(4)€},

and for 4 € 3, set u(A4) =mp ' (A). Then (X, B, 1) is also a complete measure-
space, with u(X) =1. Every function f on Q which is constant on each equiva-

lence class yields a function g on X, defined by

glx) =f(pt(x)),

and conversely. If one is measurable so is the other, and

(11) _/(;f(a:)dm=‘£g(x)dy.

In particular, the system
G =tg =110

satisfies (1) and (2) with respect to (X, 3, 1), and G and F are isomorphic.

In addition, G separates X; that is,
(12) Xy # %y => ga(x‘) # ga(xz) for some .

This follows directly from (10). We assign to G the discrete topology.

Now let H be the character group of G. Since G is discrete and countable,
H is compact and satisfies the second axiom of countability. To each x € X

there corresponds in H an element b = ¢ (x), defined by
(13) h(g,) =g, (x) (a>0).

The mapping ¢ is one-to-one, in view of (12). If we assign to X the topology
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defined by neighborhoods
(14) (U,]) =tx:x€X, g (x) €U for €]},

where U is an open set on the unit circle in the complex plane, and J is a finite

set, then ¢ becomes a homeomorphism of X into //. We denote by 77 the image

¢(X). If w is a continuous function on ¥, then w, defined by

w(x)=w(d¢(x)),

is continuous on X. We shall now show that w is measurable and that

(15) /ﬁdﬂ:/‘wdv,
X H

where v is the normalized Haar measure on [/,

By the duality theorem, G is isomorphic with the character group of #, the

correspondence g <X, being given by
X, (W) =h(g,), hoeH.

We observe that §a= g, Now the continuous function w may be approximated

uniformly by linear combinations of characters:
n
Pa(h) = 3 € x (b)) —w ().

a=0

Hence, by the orthonormality of the X,

(16) cf)”’=/ P,,(h)du.awa(h)dv.
H
But
Pu(x) = 3 g () > (x),
a=0

~ . .
also uniformly. Therefore w is measurable on X, and

(17) ‘4ﬁn(x)d#——>_4$(x)d#.
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Since the g, are orthonormal on X, the left side of (17) is Cg"). Our assertion
(15) then follows from (16) and (17).

We shall now prove that ¢~'(M) € & for every v-measurable set M C H, and
that

v(M) = p(g ().

Suppose first that M is closed. There exists a decreasing sequence {V,} of
neighborhoods of the identity e, with intersection {e }. The open sets MV, have
M as their intersection, and

v(MV,) — v(M).

The set C, = H —~ MV, is closed and disjoint from M. By Urysohn’s lemma, there

exists a continuous function w,, satisfying
wp(h) =1, hel,
=0, heC,,
0 <wy(h) <1, hEH.
The corresponding function w, satisfies
wp(x) =1, x € ¢ (M),
=0, x €¢ HCy),
0 <wplx) <1, x€X.

The set ¢ '(M) is measurable in X, since its characteristic function is the

limit of w,, and similarly for ¢-'(C,). Also,

v(M) =lim_/wna’v,
H

y(gs-‘(nz)):limfandp.

The equality of these measures follows from (15). Thus our assertion is true
for closed sets, hence for all Borel sets. If M is now any measurable set in /],

there exist Borel sets 4 and B, such that

ACMCB and v(4)=v(B),
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by the regularity of Haar measure, Hence

dHA)C M M) CHHB) and p(¢='(4)) = u(¢Y(B)).

The measurability of ¢='(M) follows from the completeness of , and the equal-

ity of the measures is then obvious.

If we take for ¥ any measurable set containing Z, then we have

v(M) = p(¢ ' (M) = p(X) =1.

Hence the outer measure of Z is 1. Since a nonempty open set in H has positive
measure, it follows that Z is dense in H. The condition that Z =/ is equi-
valent, therefore, to the compactness of X. Recalling (14), we see that this
condition may be expressed in terms of the f by (6). Condition (7) is equi-
valent to the mapping p being one-to-one almost everywhere. llence, if we put
T = ¢p, and recall that ¢ is one-to-one, we see that Theorem 1 is proved. (The
uniqueness of H follows from (5) and the duality theorem.)

If (6) and (7) are satisfied, we can say somewhat more about 7. Since ¢ is
now a homeomorphism onto H, the image of a Borel set is also a Borel set, and
therefore belongs to MM, the class of v-measurable sets. If J¢ is the o-ring of
Borel sets in X, and p1) is the completion of the restriction of u to 3o, then ¢
is a measure-preserving transformation from (X, So,ﬁo) to (H,M,v). If 3y is
the least o-ring for which all the f, are measurable, and mq is the completion
of the restriction of m to_go, it is easily verified that p is a measure-preserving
transformation from (g, SO;EO) to (X, go,ﬁo ). Finally, T is a measure-preserv-

ing transformation from ((, 3oy mo) to (H, M, v).

2. Proofs of Theorems 2 and 3. Let f, ,---,f satisfy the conditions of
Theorem 2. By Theorem 1, it is sufficient to consider the distribution of the

corresponding characters X, +«+, X, Writing
X (h) =exp (2mids(h)),
where the A4(%) are reals mod 1, we see that the combined mapping
A(h) = (A (R)yw-v, A (R))

is a homomorphism of # into the n-dimensional torus T", realized as n-tuples
(Xyy+++,Xp), the X, being reals mod 1. The image #’=A(H) is a closed sub-

group of 7", and is therefore definable by a system of relations
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n
(18) 2 braXa =0 (mod1),
a=1

where the bk, are integers. The corresponding relations, with X, replaced by

Aq(h), must hold on H. By assumption, the only such relations are of the form

(19) Z deAo(h) =0 (mod 1),

a=1
where the d, are multiples of the orders p, of x,, if finite, and O otherwise.
Thus H’ decomposes into a direct product of copies of T' and cyclic groups of

order p, > 0, given by

(20) pyXa=0(mod 1).

The normalized Haar measure on H” is the product measure v”, It is easily ver-
ified that vA~! is also a normalized Haar measure on H’. By the uniqueness

theorem, we have v4A~' = v*, and Theorem 2 is proved.

The proof of Theorem 3 is exactly the same up to (18). But now nontrivial
relations may exist. Equations (18) may be brought to canonical form (see
[7,.$61) by an integral unimodular substitution carrying the coordinates {X,}
into { ¥; }, say:

(21) dejEO(modl),

where
n

(22) Yi =3 ejaka (j=1,--+,n).
a=1

The corresponding functions

(23) fo =TT 17 (j=1,m2sm)
a=1

satisfy the conditions of Theorem 2 and are therefore statistically independent.
If (¢q;) is the inverse of the matrix (eja), equations (9) hold, and Theorem 3

is proved.
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