
A CLASS OF GENERALIZED WALSH FUNCTIONS

H. E. C H R E S T E N S O N

1. Introduction. Let α denote a fixed integer, α >. 2, and put ω = exp (2τri/α).

DEFINITION 1. The Rademacher functions of order a are defined by

φQ(x) = cok if k/a <x < (k + l ) / α , k =0, . . . , oί - 1 ;

and for n >_ 0

DEFINITION 2. The Walsh functions of order α are defined by

ί land if n = aγ Cί l + + αm (X m where 0 < αy < (X and n\ > 712 > > n

then

For convenience we let Ψα denote the set of Walsh functions of order OC. We

may observe that Ψ2 * s ^ e orthonormal system of functions defined by Walsh

[4] . R.E.A.C. Paley's proof that Ψ2 i s orthonormal and complete in L (0,1) may

be modified by the reader to establish the same properties for Ψα, CC = 3, 4, .

[3; pp. 242-244].

It is the purpose of this paper to study Fourier expansions in the sets Ψα.

The results obtained here will include known results for ordinary Walsh Fourier

series, most of which are contained in a paper of N. J. Fine [ l ] . In fact, most
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18 H. E. CHRESTENSON

of the properties of Fourier expansions in Ψ 2 are shared by expansions in Ψ α .

The system Ψ α is in fact the character group of G α , the countable product

of cyclic groups of order CC, transferred to the unit interval. The operation + ,

introduced in > 2, is precisely the image of the group operation. Some of our

results and many of our methods readily admit interpretations in Ga, although

little mention of these will be made in the text. For example, in Lemma 1 we

prove that the Haar integral in the group corresponds to the Lebesgue integral

on ( 0 , 1 ) .

Using an obvious abbreviation, we summarize our most important resu l t s :

( i ) The WaFS of fix) converges to fix) a.e. if fix) is of bounded variation,

and the convergence te s t s of Dini and Dini-Lipschitz are valid. ( i i ) If fix)

has variation V and if c^ is the coefficient of ΨΛx) in the WaFS of fix), then

I ck I S. Vk'1 csc 77/CC. ( i i i ) The continuity of fix) is a sufficient condition

for the uniform ( C , 1) summability of the WaFS.

2. Notation and preliminary results. Define

\x'ka'n < X < ik 4- 1 ) θ Γ Λ },

k = 0, , Cκn — 1, n = 1, 2, . Then if φni x) is the rath Rademacher function

of o r d e r CX, φRix) = ωk i f x G ln + \tk

The term, CX-αΛc rational^ will denote any number of the form kd"n where k

and n are integers. Thus if x has the base α expansion

£ XJ of', 0 < XJ < a,

where the terminating expansion is taken in case x is an CX-adic rational, we see

that ψn(x) = ωXn + ι .

We introduce a binary operation, denoted by +, and defined as follows: If

0 < o < 1 and 0 <C x < 1, and if a and x have base (X expansions

^ ajCfi and ^

1 1

respectively, then a + x will denote the number
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oo

Σ Jj a~'
i

where y. = ay + XJ (mod ex), 0 < γ. < (X. If we agree to take the terminating ex-

pansions for (X-adic rationals whenever possible, it follows that for any fixed

a and all n >̂ 0 φ (a + x) = φ (a) φ (x), a.e. The exceptional values occur

when a + x is the infinite expansion of an Cί-adic rational. It is also true that

φ (a + x) — φ (a) φ ( x ) , a.e.

L E M M A 1. If fix) e L ( 0 , 1 ) then f (a + x) e L ( 0 , 1 ) and

P f(x)dx= fl f(a+x)dx.
Jo Jo

The reader will have no difficulty in modeling a proof after the proof in the

case α = 2 [1, p. 379].

I f / ( % ) G L ( O , l ) a n d i f

cn = / f(t)φ(t)dt
Jo n

we say that Σ o cn φn(x) is the WaFS of f (x). Let s^(x) denote the kth partial

sum of this series, so that

* k ( x ) = f ( t ) T φ A x ) φ λ t ) d t = f ( t ) D k ( x , t ) d t
JQ I I Jo

where the kernel Djt(x9 t) is defined accordingly. We will write D^it) = D ^ ( 0 , t).

Observe that for all k £ (jJ1, Dji{x9t)-Dj£{x\t^) provided only that x and

x' are in the same In r and that t and t' are in the same In Γ / .

Let z = z (x,n) be that number satisfying

(2.1) x'+z=ΰ

except when this relation determines z as the nonterminating expansion of an

α-adic rational. In these cases let the first n digits in the expansion of z be

determined by (2.1), and let the remaining digits be zeros. For all k < Cίn we

have for almost all t
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k-l _ _ _

(2.2) D k ( x , t ) = Σ ψ ( x ) 0 ; . ( ί ) = Σ ψ ( z ) ψ ( t ) = Σ ψ . ( z + t ) = D k ( z + t ) .
o

If we use Lemma 1 we have the following useful result.

(2.3) s k ( x ) = f l D k ( z + t ) f ( t ) d t
Jo
f

o

[ D k ( x + z + t ) f ( x + t ) d t = [l D k ( t ) f ( x + t ) d t .
o Jo

Unless otherwise stated all functions will be assumed to be periodic and

integrable on (0, 1).

3. Convergence.

LEMMA 2.

*.,(.>-1 α"'"eI-
I 0 othenυise.

Proof. We have from the definitions

an-1 n-1

(3.1) D α B ( ί )= Σ ^ r ( ί ) = Π [ l + ^ Γ ( ί ) + + C ι ( ί ) l .
Γ=0 Γ=0

If t G IUf 0 each φr(t) = 1 , while if t ^ /^ 0

 a t l eas t one factor in the product

vanishes . ( T h e pth factor i s zero if φ it) j41 )

By translating under + we see that Lemma 2 has the following equivalent

form: If p - ρ(x$ n) is such that x G ln,p
 t n e n

α" if telntP,

0 otherwise.

As an immediate consequence we have

THEOREM 1. If f (x) G L (0, 1) ίΛerc lim^^cx) s a r i ( x ) = / ( Λ ; ) a.e. 7τι particu-

lar, saTl(x)—*f(x) at a point of continuity of f (x) and the convergence is

uniform in a closed interval of continuity. If x is an Cλ-adic rational then

s^nix) —> f {x) provided x is a point of right hand continuity of f(x)
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Additional usefulness of Lemma 2 is seen from the identity

2) A.U,)-£

where the base α expansion of n is given in Definition 2. To prove (3.2)

notice that

( 3 . 3 ) Dn(x,t)=D nι(x,t)+ £
r=0

By using (3.3) recursively we obtain (3.2).

The usual method of establishing convergence of the full sequence of partial

sums of the WaFS will be to reduce the convergence of sn(x) to that of s n ι ( * )

by showing that s rtl(%) - sn(x) —» 0 as n —>oc, where a**1 < n < α " ι + ι . In

the following lemma we use the notation of Definition 2, with the additional

convention of writing N for n\.

LEMMA 3. Let v be a fixed positive integer and let x E /y>y0. Then if σ ̂  p

(3.4) lim j [Dn(x,t)-DaN(x,t)]f(t)dt=O.

If also y E IVip
 and N > v9 then

(3.5) \J [Dn(x,t)-DaN(x,t)Ut < α,

and in case y = pθCv\ the integral (3.5) vanishes.

Proof. In proving ( 3 . 4 ) we may suppose N >_ v. Let r be chosen so that

nΓ >_ v > nΓ + i; in case nm >_ v take r = rn. By Lemma 2 all Dajc{x91) = 0 for

ί E / v > C Γ and h>_v. Thus Dn{x91) = Dn{x9t) - DaN (x9t) and by ( 3 . 2 ) this i s

a sum of m—r terms, each of which i s , for ί E / v > σ , a constant multiple of
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say. A careful inspection of ( 3 . 2 ) shows that the sum of the moduli of the

coefficients of ^ ( n ) ^ ι s bounded independent of n. Also, M(n)—> oc as

n —> oc. We have now reduced ( 3 . 4 ) to a theorem of Mercer [2 , p. 17],

The inequality ( 3 . 5 ) is proved by writing Iyyp as a sum of //v,s ^ n each

/yv>s the integrand i s a linear combination of φN it), 0 < b < Cί. On each com-

plete /yv 5 contained in (y, ( p + l ) c ί " v ) the integral vanishes. The remainder of

the interval of integration has length less than Oί" , and from (3 .3) we see that

the integrand is numerically less than (X

THEOREM 2. If fix) is of bounded variation and continuous from the right

on [0, 1), then as n —> cc, snix) —> f ix) at every point of continuity and at

every (X-adic rational. If x is an Cλ-adic irrational which is a point of discontin-

uity 9 snix) does not converge.

Proof. T o p r o v e c o n v e r g e n c e i t i s s u f f i c i e n t to s h o w t h a t for / ( ί ) m o n o t o n i c

sn{x)-3 N(x) = f1 [Dn(x,t)~DaN(x,t)]f(t)dt —»0.

Write this integral as

r
[Dn(x,t)-DaN(x9t)]f(t)dt=Jι +/2 ,

where C denotes the complement taken with respect to (0,1) . By the second

theorem of the mean, there is y €lvtp such that

my
Jι =fipav + 0 ) / [Dn -DaN Ίdt

iparv

+ fiip + I)a-v-0) I [Dn -DaN]dt.

By (3.5)

( 3 . 6 ) | Λ | < θ i \ f ( ( p + l ) c Γ v - 0 ) - f ( x ) \ + O L \ f ( x ) - f ( p o C v + 0 ) \ < e/2

for v s u f f i c i e n t l y l a r g e a n d for n >_ O,V, s i n c e / ( Λ + 0 ) = / ( Λ ; ) = / ( Λ ; - 0 ) . If
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x is an Cί-adic rational, first choose v large enough so that pa"v - x, so that

only right hand continuity is involved in (3.6). With v fixed, J2 —> 0 as n—> oc

by (3.4).

Notice that for convergence at x, the hypothesis of bounded variation is

needed only in a neighborhood of x.

The proof of the second part of Theorem 2 will be omitted, except to note

that it is sufficient to consider the WaFS of fix), fix) = 0 if 0 < x < a9

fix) = 1 if a < x £ 1, where a is an α-adic irrational. The partial sums of the

WaFS of fix) may be explicitly written in terms of the digits in the base a ex-

pansion of a, and the assertion follows directly.

Lemmas 2 and 3 provide a direct proof of the theorem of localization for

WaFS.

THEOREM 3. If fix)=gix) a.e. for a - e < x < a + e, then the WaFS of

fix) and gix) are equi convergent at a. If a is an Cί-adic rational it is sufficient

that fix)=gix) a.e. for a < x < a + e.

LEMMA 4. The kernel Dkix,t) satisfies

(3.7) / l Dkiχ,t)dt = 1,

and for 0 < t < 1

(3.8) \Dkit)\ < OL/t.

Proof. The first assertion is obvious.

For a proof of (3.8) the reader is referred to Fine's paper [1; pp. 391, 392],

THEOREM 4. If for a fixed x,

E ί / f x - δ , x + δ) for some S > 0,
t - x

then snix) —> c.

Proof. Suppose the base (X expansion of x does not end in an infinite se-

quence of ones. Let z be determined by (2.1). Then we have, using (2.2) and

(3.7)
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[fit)-c]Dn(z +
t-x\<h<h

| ί - * | > Λ

One may verify that

(3.9)

Thus, with (3.8), we have

, ί
\t

\h\ < α 2 / , u -{ - d t < e

for h sufficiently small. With h fixed, J2 —> 0 by Theorem 3 and the remark be-

low equation (3.6).

In case x is of the form excluded in the argument above, the proof must be

modified. We put z =z(x,n) where z(x9 n) is defined in § 2 . Inequality (3.9)

may not be satisfied on a set Fn C (x - δ, x + δ). One may show that Fn is a

subset of an interval of length a"n, so

| / i I < C ( 2 / , * ~ , C | dt +n f \f(t)^c\dt=J{ + / / ' .
'\t-x\<h \t~x\ JFn

 ι ι

J i < 6 as before, and with h fixed,

/. " < ι»α-n / —, r- dt —> 0
1 - JFn \t-x\

and J2 —> 0 as n —> oc.

Lemma 1 and equation (2.2) provide a proof that

[l \Dk(x,t)\dt= Γ \Dk(t)\dt for a l l a 6 ( 0 , 1 ) .
Jo Jo

We put Lk = fQ

l \Dk{t) \dt, the A th Lebesgue constant of the system Ψ α .

LEMMA 5. The Lebesgue constants satisfy Lk=0 ( l o g k ) , where the 0

depends upon OC.
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Proof. By Lemma 4, \Dk(t) \ < min ( α / ί , k). Thus

k k d t

In the statement of the next theorem, W{8;f) is the modulus of continuity

oif(x);

W(δ;f)= sup | / ( * + Λ ) - / U ) | .
| Λ | < S , o < % < i

T H E O R E M 5 . If f i x ) s a t i s f i e s W ( δ f ) = o ( ( l o g S " 1 ) " 1 ) o s δ — * 0 , ί A e ^

sw( Λ; ) —> / (x ) uniformly.

P r o o f . F o r t h i s p r o o f , w r i t e n = a a k + k ' w h e r e 0 < α < ( X , 0 . < A ; ' < α .

S i n c e

it is sufficient to show that 5 t —> 0 and 5 2 —> 0 uniformly. By using Lemma 2

and (3.3) we obtain

where p is chosen so that x £lktp Since f (x) is uniformly continuous, S2 —• 0

as k —> oc. Again using (3.3 ),

Replacing ί by ( + 6a"*"1, we have

Sι = 6 j ' α

so by subtraction

- ω
ab) ) = φftx) f1 Dk>(x,t)tf(t)[f(t) - f {t i bak ι)]dt

a | > 3 2 thiIf 6 is chosen so that | 1 - ωa | >_ 3 2, this becomes
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\S1 | 3 X <W(a'k;f) Lk'

where we have used Lemma 5.

4. Fourier coefficients.

THEOREM 6. //

then

f{a+x)
0

vhere dn = cn φ ( a ) .

Proof. This is a consequence of Lemma 1 and the relation φ {a + x) =

φAa) φn(x), a.e.rn rn
By using Theorem 6 and the scheme from the proof of Theorem 5 we may

establish the following.

T H E O R E M 7. //

oc

fix) ~ Σ, ci Ψj
0

then

cn I <3

There is a similar result with W replaced by the integral modulus of con-

tinuity.

As a corollary to Theorem 7 there is the following.

THEOREM 8. If fix) ehip(η), then cn =Oin'v) where the 0 depends

upon Cί.

For the next lemma we define
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Jo ^ ( ί ) r f ί

and we write n = aQkk + k', where 0 < a < a, 0 < k ' < ak.

LEMMA 6. For n > 0 and all x9

Unix) I < n'1 csc π/a.

Proof. If x ^lk,p w e have, from elementary properties of φ ix),

(4.1)
fx
I φ I

Jpa-k Ψ»
(t)dt >ipak)(X ψ?it)dt

Jpa-k k

If r i s defined by the relation x € / ^ + i ,r» w e have by a direct calculation

lit)dt < max -

< max

fpa

- & - 1

-/c
φa

k(t)dt

1 -

v-A-i

< α " * " 1 csc 77/α < n'1 csc 77/α.

T H E O R E M 9. If fix) has total variation V then

1 -

. Since/Λ(0)=/Λ(l)=0,

(4.2)
Jo

and the theorem is now seen to be a consequence of Lemma 6.

For CC = 2, Theorem 9 was proved by N. J . Fine [ l , p . 3 8 3 ] and in this case

csc π/a = 1 . That this factor is necessary when α > 2 is seen from the follow-

ing example. For an arbitrary positive integer k define n ~ (X ι — 1. Let β

denote the integral part of Oί/2 and put ζ^βa'k"1 and ξ= ζ+ β/a. Let fix)

represent the characterist ic function of the interval [ ζ, ξ). By using ( 4 . 1 ) and

( 4 . 2 ) we may calculate c^. It turns out that
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\ck\ =[B(a)/2]2 a'n'1 esc π/a V,

w h e r e B ( α ) = m a x Q < b < a | 1 - ωb | s o t h a t 3 ^ < B (a) < 2.

5. ( C , 1 ) summabi l i ty. L e t ^ ( Λ ; ) r e p r e s e n t t h e A:th ( C$ 1 ) m e a n of \sn(x) },

and d e f i n e t h e k e r n e l ,

k
Fk{χ9t)=kml ^Dr(x,t).

1

We will write Fk(0,t) = Fk{t).

LEMMA 7. For k > 1, /o

ι Fk(x,t)dt = 1, and /or 0 < ί < 1, | F ^ ( i ) | < a/ ί .

Proof. These properties follow directly from the corresponding properties

of Dk(χ91).

LEMMA 8. There is a constant M such that for all k >_ 0

Proof. Write n in the form n = aak + k ' where 0 < a < a and 0 < k ' < ak.

By a somewhat tedious calculation involving repeated use of (3.2) we obtain

(5.1) nFn(t) = [1 + ••• + φ£-ι(t)]akFak(t) + φ£(t)k'Fk'(t)

If we take k' = (X and a - Cί - 1 in (5.1) we obtain

(5.2) α A + ι F α A + 1 ( < ) = ^ ( ί ) α Λ F α f t ( ί ) + ^ ( ί ) α / c / ; > α , ( ί )

where

OC if φΛt) = 1,
(5.3) J ? Λ U ) = .

0 otherwise ,

and
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" if A ( ί ) l
(5.4) ( ) ( )

α /(1 - ^ ( ί )) otherwise .

By applying a simple induction argument to (5.2) we obtain

(5.5) ak+ιFak+ι(t)=Qk(t)akDak(t)

k
+ £ Rk{t)Rk.ιU) "RrU)Qr.ι(t)ar-ιDar.ι(t)

Γ = l

k

+ Π Rr(ί)
Γ = 0

Let

α-l

S = £ | l - ω r | - 1 ,
Γ = l

then equations (5.3)- (5.5) enable us to show that

ίι k

^ + 1 / l * U + ι ( * ) | ώ < c c Λ [ ( α - l ) / 2 + S ] + l + [ ( o t - l ) / 2 - S ] £ α M ,

from which the lemma follows.

Observe that by setting k = 0 in (5.2) we see that for (X > 2 the kernels

Fak(t) are not positive. Fine showed that in case α = 2, Fak{t) > 0 [ l , p. 396].

LEMMA 9. // ί is woί of the form t = da~m, m > 1, 0 < d < CX,

0.

Proof. Let ί be given and choose n so that C("Λ < t < CΓ"+ l. Write A:=pC("

where 0 < 7 < an. Then

Γ=0 s = l

One can show that O r αn+ S ( ί )=Z) α J ί )D r (a n i ) + ψr(ant)Ds ( ί) . This gives
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so that

kFk(t) = anFan(t)Dp(ant) + ψpia
nt)qFqit).

Put b equal to the integral part of oJ11. Since 0 < QLn t - b < 1, we have by

Lemma 4

| D p ( α " ί ) | < aiant-bYι.

Using Lemma 7 we obtain

\kFkit)\ < an'2t-ι(ant-b)'1 +qat'1,

from which the conclusion follows.

T H E O R E M 1 0 . // f i x ) i s c o n t i n u o u s t h e n σ

a k ( χ } — * f ( x ) u n i f o r m l y .

Proof. It follows from ( 2.3) and Lemma 7 that

(5.6) σ n ( x ) - f { χ ) = [ l F n ( t ) [ f ( x + t ) - f ( x ) ] d t .

By applying Lemmas 7-9 together with a standard argument we can show that

\ F

a k ( t ) \ \ f ( x + t ) - f ( x ) \ d t - + 0 u n i f o r m l y .

T H E O R E M 1 1 . If f i x ) i s c o n t i n u o u s t h e n σ n i x ) — » f i x ) u n i f o r m l y .

Proof. Let the base (X expansion of n be given in Definition 2. From (5.1)

we obtain the estimate

m Y

(5.7) \nFnit)\ < T \ara
nr\F n U ) | + - ar iaΓ + 1 ) c Λ O Λ ( ί ) } .

* ^ α Γ 2 α Γ

L e t 6/f = βkix) r e p r e s e n t the larger of

Γ \ F a k ( t ) \ \ f ( x + t ) - f ( x ) \ d t
Jo

and
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Γ
Jo

D k U ) \f(x + t ) - f ( x ) \ d t ,

s o t h a t by T h e o r e m s 1 a n d 10 6^ — » 0 uniformly. U s i n g ( 5 . 6 ) and ( 5 . 7 )

m

\σn(x) -fix) I .< α Σ ar&nr n'1 eUr = δn, s a y .
r = l

One may readily verify that the transformation which sends { e^ ! into j 8n j is

regular, so that 8n —> 0 uniformly, and the theorem is proved.

It is interesting to note that by virtue of a well known consequence of the

Banach-Steinhaus theorem [5,p. 99] , Theorem 11 implies that /Q

ι \Fn{t) \dt <^M.
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