
ON CERTAIN ALGEBRAS OF MEASURES

R. E. EDWARDS

1. Introduction and summary. Let G be a group, assumed locally compact

but not necessarily abelian. Elements of G are denoted by x% y, G will be

written multiplicatively, and e denotes the neutral element of G. E is a vector

space (under pointwise operations) of numerical functions f = f ix) on G, and

F is a vector space of Radon measures on G The following hypotheses are

assumed to hold:

(I) Every f G E is ίntegrable for every μ £ F.

(II) F is invariant under convolution,

(III) IffeE, μ£F, and g(x) = jGf (xy)dμ(y), thengβE.

(IV) F is total over E.

As illustrations we mention

Example 1. E the vector space of all continuous numerical functions on

G; F the set of all Radon measures on G having compact supports.

Example 2. E the set of all bounded (or locally essentially bounded) Haar-

measurable functions on G; F the set of all bounded Radon measures absolutely

continuous with respect to Haar measure. Strictly speaking, in order that (IV)

be fulfilled we must reduce E modulo functions which vanish locally a.e.

Example 3. Take G = R, the real line, E the set of all continuous functions

of polynomial order at infinity, and F the set of all "rapidly decreasing" mea-

sures on R A measure μ on R is said to be "rapidly decreasing if

f \x\kd\μ\(x) < + oo
R

for k = 0, 1, 2 , . . . .

Returning to the general situation, we agree to equip F with the weak to-

pology σ (F, E) defined by the duality set up by the bilinear form
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(l D (f.μ)-fcf(x)dμ(x).

In view of (II), F may also be regarded as an algebra with the ring product

defined as convolution.

This note is concerned with two separate questions. First, it is a matter

of experience that F is rarely a genuine topological algebra in so far as the

mapping (μ, v) —> μ * v of F * F into F generally fails to be continuous. These

cases are investigated in Theorem 1. In the second place, there is the question

of the existence of maximal and primary ideals in F9 and that of the analysis

of a general closed ideal in F in terms of these. No general results are forth-

coming in this paper. We shall merely draw attention to some results which

are given by L. Schwartz for the case of Example 1 with G = R and extend these

to the case of Example 3. This extension is given in Theorem 2. A few addi-

tional comments on this particular algebra of measures are given in § 4.

2. Weak continuity of the convolution. The extreme rarity of cases in which

continuity in the pair is attained is illustrated by

THE OR EM 1. In order that the mapping (μ, v) — > μ * v o f F x F into F be

continuous for the topology σ(FtE)f it is necessary and sufficient that each

f G E be a finite linear combination of coordinates of a finite-dimensional linear

representation of G which themselves belong to E.

Proof. We prove sufficiency first. Let / G E and suppose that there is a

finite-dimensional linear representation s —> M(s ) of G of degree n, say

for which scalars Cj y exist such that

(2.1) fM
hi

identically in x. In (2.1) we may suppose only those mq retained which are

linearly independent; and by hypothesis, these my £ E. We have then

jj j
i9j hi k i9jfk
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identically in x and y. If μ, v E F one has by definition of μ * v\

Putting

7 1 . • • /

it follows that

I(w,-A,μ>| < K"1 and |( m/£, v ) | < K'1 (l<i,j,k<n)

implies | ( / , μ * v)\ <^ 1, so that weak continuity is attained.

Turning now to the proof of necessity, let us write Nf( μ) = \{f9 μ) \ for

f G E and μ E F. If convolution is continuous in the pair, given f E E one can

find a finite family ( / Ί ' ) ι < ί < Λ of elements of E such that, for μ and i/ in F,

the relations

(2.2) s u p Nfm(μ) <l a n d s u p Nft(v)<l
1 £ ι S . n ι<.ΐS.n

imply the relation

(2.3) /V/(μ* i/) < 1.

Now, by (IV), F is separated for its weak topology. So, since one may plain-

ly assume that the /\ are linearly independent, measures φ. E F can be found

such that

Because (2.2) implies (2.3), whatever μ and v in F, the measure

r

is orthogonal to f If this expression is expanded, appeal made to the Fubini-

Tonelli theorem, and account taken of (IV), it results that / satisfies the func-

tional equation
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n

wJhere

ζAx)= I f(xy)dφΛγ)

belongs to E by (III). As a consequence, both the left and right translates of

/ generate finite dimensional spaces. This, as it is very easy to see, implies

that f satisfies the condition stated in the theorem. The proof is thus complete.

REMARKS. (1) The hypotheses ( I )-(IV) are clearly enough to ensure

that (μ f v) —> μ * v is continuous in each argument separately.

(2) In many cases E is equipped a priori with a locally convex topology and

F is a subset of the dual E ' of E. In such a situation it is well known that

there will usually be special subsets of F the mapping (μ,v)—»μ* v re-

stricted to these subsets will be continuous in each argument. A simple in-

stance arises when E is the Banach space of all continuous functions on G

which tend to zero at infinity, equipped with the norm

and F is the dual of E (the space of all bounded Radon measures on G). It is

then easy to show that the convolution, qua function of two variable measures,

is such that its restriction to each bounded subset of F x F is weakly contin-

uous.

3. Analysis of ideals. Throughout the rest of this paper we attach to E and

F the significance explained in Example 3 above. We recall that, for the situa-

tion described in Example 1 with G = /?, L. Schwartz ( [ 2 ] , §20) has demon-

strated the possibility of analysing all closed ideals in F in terms of their co-

spectra. In this section we aim to do the same thing for Example 3, the method

being based upon more recent work of Schwartz [ 3 ] .

To begin with we observe that it is possible to construct explicitly locally

convex topologies on E relative to which F is precisely the dual of £. We com-

ment briefly on this in §4, but it is irrelevant at the present stage since the

obvious such topology, namely σ (£", F ) , serves our needs equally well.

For μ € F we define the Fourier transform
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(3.1) μ(y) = J exp (2πiyx)dμ(x) = (exp (2πiyx), μ)
R

for y £ R. It is plain that μ is a function having bounded derivatives of all

orders given by

A/ X /d \ m

 A f
μ^m)(γ)= — μ ( y ) = / ( 2 TΓ Ϊ % ) m e x p ( 2 TΓ i y Λ; ) dμ{x )

\dy I JR

( 3 . 2 )

= {(2πix)m exp (2τr iy ίc) , μ )

for m = 0, 1, 2, . For any real Cί and any positive integer m, we denote by

M^m) the set of μ E F such that μ ( p ) ( α ) = 0 for 0 < p < m. This definition

is extended to the two extreme cases

m * oo: M^°} = ί μ 6 F : μ ( ^ } ( α ) = 0 for p = 0, 1, 2, . . . }.

We write Ma in place of M^ι\ Each M^m' is an ideal in F, plainly closed; the

Ma are the only closed maximal ideals in F, and the M^m with m > 0 the only

closed primary ideals.

We will now state and prove

THEOREM 2. /// is any closed ideal in F9 then

(3.3) I ( \

the intersection ranging over all the M^m containing I.

Proof. By the Hahn-Banach theorem, an equivalent assertion is this: if

/Έ E9 f is the weak limit of linear combinations of exponential-monomials

{2πix)P exp (2πiOLx) belonging to the weakly closed and translation-invariant

vector subspace of E generated by f. To see that this is indeed the case, we

imbed E in the space &' of temperate distributions over R and use Theoreme VI

of [3], This last tells us that the said approximation is possible in the sense

of the topology of J&' TO complete the argument we apply the following lemma,

which was suggested to the author by M. Schwartz.

LEMMA. Let H be a translation-invariant vector subspace of E. Then the
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weak closure of H in E is precisely the intersection of E with the closure of H

in

Proof. Let Hi and H2 denote respectively the closures of // in E and &'.

Trivially Hx CH2 (since σ(E$F) is finer than σ {&',&)) and so also Hx C

H2 n E. To prove that conversely H2n E C Hit we argue by contradiction. If

the assertion were false, there would be an fQ E {H2 n £ ) n CflΓ

ι. That / E CflΓ

1

would entail the existence of μ E F such that /* μ=0 for all / E // and / * μ ^ 0.

One could then choose a function φ with derivatives of all orders and with a

compact support such that f * μ * φ = 0 and fQ * μ * φ £ 0 Since then μ * <̂> E J&,

one would conclude that /*0 E C / / 2 , the desired contradiction. This proves the

lemma and, with it, the theorem also.

To make possible a more direct comparison with the results of [2] , it is

necessary to rewrite (3.3) in the form

(3.4) /£

where on the right one has products, rather than intersections, of ideals. The

passage from (3.3) to (3.4) is not completely trivial and we proceed to indicate

how it may be effected.

Since the product of an infinite set of ideals is by definition the intersection

of all finite partial products, the identity of the right members of (3.3) and (3.4)

will follow once it is shown that

(3.5)

for any finite selection of real numbers (Xi, , Ctfc and of integers mi, , m^.

The nij are, a priori, possibly infinite, but it is once again enough to deal with

the case in which each mj is finite.

As a first step we will show that

( 3 fk\ Λ>f(m) u m

v a a

for any (finite) integer m. This is trivial (by definition of each side) when

m = 0, so we may assume that 0 < m < oo. On the one hand, if μ E M™, μ is

the limit of finite sums of measures vx * * vm with each i^ E Ma Each such

convolution has a Fourier transform which is divisible by (y - α ) m ; hence the

same is true of any finite sum of such convolutions, and finally the same is
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true for any limit in F of such finite sums since the convergence in F implies,

according to (3.2), the pointwise converge of the Fourier transform and of each

of its derivatives. Thus it follows that M™ C M^ . Conversely assume that

μ(γ) is divisible by (y - α ) m . Now consider the measures of the form

(3 7) λ - ( ά έ - α Γ * ' * -

where the φ. range separately over all functions with derivatives of all orders

and with compact supports. If / E E is orthogonal to all measures (3.7), then,
A A

since these form a translation-invariant set, λ ( y ) / = 0 in the sense of dis-

tributions. This means that

for all φχ, , φm. Since (y - a)m divides μ(y), it follows easily that μ(y)

f = 0 also. By the Hahn-Banach theorem this shows that the finite sums of

measures of the form (3.7) are dense in M^m . However, since we can write

with each square bracket on the right enclosing a member of Ma (since it has

a transform divisible by (y - Cί)), it results that M™ is dense in M^m\ But

M™ is closed by definition. Hence M™ D Ml

a

m) and so the proof of (3.6) is

complete.

The proof of (3.5) may now be finished, starting from (3.6), by exactly the

same methods as used in the proof of (3.6) itself.

We remark also that in the case dealt with by Schwartz in [ 2 ] , the relevant

α are generally complex and all the m are forcibly finite; in the present case

the α are forcibly real and the m may be infinite. Further, the case dealt with

by Schwartz has never been extended to more than one dimension; in the present

case there appears to be no barrier in the path of such an extension, save per-

haps increased complexity.

To close this section, we may observe that it may be proved quite easily

that Mα consists precisely of those μ € F having a representation

ni
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for a suitably chosen vEF, the derivative being in the sense of distributions.

4. The duality between E and F. At least a minor interest attaches itself

to the determination of the finest topology r(E$F) on E compatible with the

duality between E and F, since this allows one to estimate just how strong will

be the approximation theorems established by a direct application of duality

theory. The determination of τ{E$F) is equivalent, according to a theorem of

Mackey-Arens, to that of characterising all the weakly compact and circled

subsets of F.

A numerical sequence σ = (σn)™ will be termed "rapidly decreasing" if

If μ is a bounded Radon measure, we define

| |μ | | -8up \fRfdμ\

for f continuous, having a compact support, and such that | | / H^ <. l If A is

a Borel set, the restriction μΛ of μ to A is defined by

= JΛfdμ

for f continuous and with a compact support. If A is open,

S UP

for / continuous, | | / H^ < 1, and the support of / being contained in A.

The set ίί of all continuous functions with compact supports forms a vector

space, and it is known that K may be formed into an (LF )-space in such a way

that its dual K' is precisely the vector space of all Radon measures on R see

for example, Bourbaki [ 1 , Exercise 1, p. 64].

The main theorem of this section is

THEOREM 3. Let ΩL be a bounded open neighbourhood of [-1,1] and let

Ωn (π > 2) be a bounded open neighbourhood of the set of real x satisfying

n - 1 £ \x I <. n. For any rapidly decreasing sequence σ- ( σ n ) , let Mσ denote

the set of measures μ E F satisfying the system of inequalities

\\μ<n\\<σn ( n - 1 , 2 , . . . ) .
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As σ υaries9 the Mσ form a base for the set of weakly compact subsets of F.

An almost immediate corollary is the following.

COROLLARY. The topology r(E9F) is that defined by the seminorms

with σ — (on) ranging over all rapidly decreasing sequences.

For the proof we shall require the

LEMMA. If M cK' is such that

s u p II μ Q II < + oo (τι = 1, 2,. • ) ,

(Ωn) being any sequence of bounded open sets covering R, then M is weakly

relatively compact in JC'

Proof. Let pn > 0 be defined by

1

- - S U P I I ^ Q J I -
Pn μEM

Then M is contained in the polar set U° in !v of the set U cK defined by

U = \feK: s u p p o r t o f fCQn9 a n d \\f W^ < p j .

This set U is a neighbourhood of 0 in the (LF)-space K and so, by a general

theorem, U° is weakly compact in &'

Proof of Theorem 3. First we will show that every set of the form Mσ is

weakly compact in F. For this we must show that if σ is given rapidly decreas-

ing, and if Φ is any filter on Mσ9 then there is a filter Φ' , finer than Φ, and a

measure vGtf σ such that Φ ' converges weakly to IΛ Since Mσ is plainly weakly

closed in F, it is enough to produce a v G F with the said properties.

Now by the lemma, there is a filter Φ ' finer than Φ and a measure I / G K '

such that Φ ' converges to v weakly in K' , that is,

lίm / /tfμ= / fdv
μEΦ' J R JR
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for e a c h / G K T h i s i m p l i e s a l r e a d y t h a t | | V Q | | < σn a n d h e n c e t h a t v G F.
Ίϊ

It remains to show that Φ ' converges to v weakly in F.

Let f G E be given and fix an integer k so that

a β sup (1 + \x \Yk \f(x) I < + oo.

Clearly, for each n one can find a function f G K, coinciding with f on Ό71-. ΩΓ,

and such that

everywhere. Then, if μ G Mσ one has

1 Σ /Ω I f - / J r f | μ l < α Σ ( l + » ) * σ m f
m>n m m>n

which tends to 0 as n —>co. Thus, given 6 > 0, one can find n = n( β) such that,

uniformly for μ G Mσ,

There is a set A of the filter Φ ' such that μ E 4 implies

Hence for μ £ A.

ί f fdv\ < 3 e .\ί fdμ-f

Since e is arbitrary, this shows that Φ ' converges to v weakly in F and thus

completes the proof that Mσ is weakly compact in F.

To finish the proof of the theorem it is required to show that if M C F is

weakly compact, then U C Mσ for some rapidly decreasing sequence σ. We will

in fact show that this follows already from the apparently weaker hypothesis that

M is merely weakly bounded in F. For, let E^ be the subspace of E formed of

those f for which
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N k ( f ) = s u p ( 1 + | * | ) - * \ f ( χ ) \
xER

is finite, k being an integer >̂  0, £/<., equipped with the norm /V̂ , is a Banach

space. If M is weakly bounded in F, it is a fortiori weakly bounded in the dual

of Efr for each h. Thus for each k there is a finite mk such that

/ •
\x\Vd\μ\(x) 1

for all μ G M A fortiori, for each n:

Thus, if σn = S U P U ^ ^ II FQ Us then π σ^ < m^ for n, /c = 1, 2, . . This shows

that σ - (σn) is rapidly decreasing and that M C Mσ.
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