ON TWO THEOREMS OF PHRAGMEN-LINDELOF
FOR LINEAR ELLIPTIC AND PARABOLIC
DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

AVNER FRIEDMAN

1. Introduction. In Part I of this paper our main interest is to
generalize to elliptic equations the following theorem of Phragmén-
Lindelsf :

THEOREM 0. If f(2) >a as z— « along two straight lines, and
f(2) is regular and bounded in the angle between them, then f(z)—a
uniformly in the whole angle as 2z — .

A generalization of the classic Phragmén-Lindelsf theorem to elliptic
equations was given by Gilbarg [1] and Hopf [4]. A refined form of
that classic theorem, due to the Nevanlinnas [5], [6; 42-44] and Heins
[3], was generalized to elliptic equations by Serrin [8].

In generalizing Theorem 0 we shall make an extensive use of
the Gilbarg-Hopf results.

In Part II we generalize to parabolic equations both the classic
Phragmén-Lindelsf Theorem and Theorem 0.

In § 2, Theorem 0 is proved for elliptic equations defined in any 2-
dimensional domains (Theorems 1, 2). The case n>2 is treated in § 3,
for domains contained in a half space. In §4 we consider the behavior
of solutions in an angular neighborhood of the origin, and we obtain
results similar to those of §§2,3. In §§5, 6, generalizations to parabolic
equations are given: Theorems 7, 9 extend the classic Phragmén-
Lindel6f Theorem and Theorems 8, 10 extend Theorem O.

The results in Part I are somewhat analogous with Theorems 2, 3,
8" of Gilbarg-Serrin’s paper [2]. The similarity appears both in the type
of conditions imposed on the coefficients of the elliptic operator and in
the assertions. It is however important to note that our results cannot
be obtained by the Gilbarg-Serrin methods, since Harnack Inequalities
which play an essential role in their paper, do not hold uniformly in
open domains.
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PArT I

2. Consider the differential operator

U

0 ou
02,07 ;

0x;

=21, ***, )

(1) Lu= 3 @) -2+ 3 ba)

defined in a domain D. In this and the following chapter D is supposed

to be unbounded. We denote by 8D the boundary of D, and by D the
closure of D. We shall assume throughout Part I that L satisfies the
following conditions ([1], [4]):

(i) ;;, la;,(x)| is bounded in D, and, for all xe D, &; real,

%a“(x)&é,gacZS% a>0,
(ii) for all xe D, |x|=r,
(2) S @) < 90)

where p(r), defined for 0<r< oo, is monotone decreasing and
rp(r) dr<o .
0

Define a;(o)=lima,(x) as |x| > o (xe D), whenever the limit exists.
The matrix (a;,(x)) is said to be Dini continuous at infinity, if there
exists a monotone decreasing function ¢(r) with Smr’lgo(r) dr< o, such

that for xe D, |x|=r,
iZj |ass(@) —a; (o) = e(r) .

Let u(x) be defined in D and belong to C*D). In Theorems 1-6 the
function w(x) is also assumed to be continuous in D. Denote

mr)=__ ;g£l=ru(w) , )= meg}l{gﬂlu(w)l .

Let K, denote the n-dimensional cone with angular opening 3, 0<3<2r,
whose axis is the positive x,-axis and whose vertex is at the origin.

LEmMMA 1. Suppose DC Kz, n=2. Assume that L satisfies (i), (ii)
and that (a;;,(x)) s continuous at infinity with a;;(<)=0d;;. If Lu(x)=0
in the open set D, =DNlx|>ry, w(x)=0 on 0D,, and for some y'<y=n/B,

lim r5Ym(r;)=0 (ry—> o as k— x),

k—o0
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and if r, is sufficiently large (depending only on L,  and 1’), then u(x)=0
wm D,,.
By u(x)=0 on 8G we mean: lim infu(x)=0 as = tends to G (x € G).

Proof. Following the Gilbarg-Hopf method, it is enough to prove the
existence of functions vz(), 7 <R< «, with the following properties :

va(2)=0 it |z|=R, xzeoD,,

(3) .
ve(r)=1 if |z|=R, zeD, ,
(4) Log(x) <0 if |z|<R, xeD,,,
(5) for every z€ D, , R'vg(®) is bounded as R — oo .

Denote by A(z;, ;) the harmonic function defined in the semicircle
C’: x+a2<1, 2,>0, which takes the value 0 on the diameter and the
value 1 on the rest of the boundary. The transformation 2’ =2°, where
7' <0<y, ¥ =ax,+ix;, 2=u,+1x,, maps S=K;N [x[<1 onto a domain S'cC'.
The function k(x,, @,)=A(x], ;) is harmonic in S and takes boundary
values =0 on the radii and the value 1 on the rest of the boundary.
We shall find vg(x) in the form v,(x)= f,{k(%))
If we show, in addition to Lf,=<0, that

(6) f(0)=0, FfR)=1, 0=fp(k)<1 if 0<k=<1, and
(7) fe(k)=0(k"") uniformly in R, as k—0,

then (8), (4), (6) follow. Note, in proving (5), that Rsk(—;%) is bounded

as BE— «. The construction of fr proceeds as in Hopf’s proof [4], ex-
cept for the facts that property d) p. 421 and the inequality

|7 3()| C 0 1
(8) > |h’(m)|2< <la|<

do not hold for the corresponding k.

The image of K; under the mapping 2'=2’ is a 2-dimensional cone
K._. (¢>0) with opening 7—e and S'cK,_.. From Hopf’s proof it is
clear that instead of satisfying d), it is enough for %k to satisfy:

d’) along each equipotential arc k(x)=const.,

|k'(w)l=(2 (azﬂ)z)w =gk

2, o0z,

on the axis of @, (say at Z), H>0. Since the equipotential arcs of k(x)
is S correspond to equipotental ares of A(x’) in S, we have
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K (@)|= |7 ()]

@
dz 0,

> @) 5[9015'1:%(9?/) Sla 8-
0,

gEZ-%?_Z;?_,)Bla:/l(as—l)ls=Iiak(57) "
axz o0,

2

where %’ is the image of & and H>0. Here, in the case 6<1, we used
the inequality |o'|<H,|&'| (H,>0), noting that S'cK,_,.

The estimation of 3 a;()ki}(§) in Lk (see [4; p. 423]) has to be
modified, since (8) does not hold for k. Defining

(9) (@) =a;(x)—0y; , e(r)y= ezs)u|p|=r2 less(@)]
and using the harmonicity of %, we get

Be(r)

<AC )
=40+ 2|&P

where A and B are constants, and |¢]<1.
Using the inequality 2|&'|=4(&) ([1; p. 414]), we obtain

I<AC+Be(r)k" .

Define 7, to be such that if >, then Be(r)<1—7’/6. Then, the last
inequality for I shows that Hopf’s method can be applied to prove that
Lfr<0, provided that f, satisfy:

F)_ g 175 Pw) ,
a0 - AT T Hek@)en) | F@>0,

where £=(0, x,) (¥ is a monotone function of ).
Solving (10) we obtain,

(11) Fik)=Ek"P'exp (—ACk—P(z,)),  [fa(0)=0,

where
E-=( k" exp (~AC—P@)dk,  PO=H"|pt)dt.
0 0

The verification of (6), (7) is immediate and the proof is thereby com-
pleted.

LEmMMA 2. Suppose DC Ky, n=2. Assume that L satisfies (i), (ii)
and that (a;,(x)) is continuous at infinity with a;,(c0)=20;;. If 1, is suf-
JSiciently large, then there exists a function w(x), defined in D, , and
having the following properties :
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(@) w()=0 if xedD,,
(b) wx)=1 if xeD, |z|=r,
() Lw(x)=0 «f xeD, , and

(d) w(@)—>0 wuniformly in D, as |o|— o .

Proof. To prove the lemma, define 17(a:’)=-2— HN'), where Hz') is
T

the polar angle of the point &’ with (—;, ;) as a pole. Define also

v(x)=v(«’), where &’ is the image of « under the mapping 2'=2", where

r=n/p, Z=w,+1x, z=wx,+ix;. We try to find w in the form w=f(v).
(c) implies that

(12 70) Sa@) gl St (S g0+ S )s0.

Using the harmonicity of v(x) we conclude, after some calculations (see
[1; p. 414]), that (12) is a consequence of the inequalities:

(13) S"O) ¢ A(laf) ] 'z' Al ZL . rwy>o0,
f( ) To

where A4,, A, are proper constants and e(r) is defined by (g).
Taking 7, to be such that 24.e(r)+240p(r)<1—¢8 (0<6<]) if r>r,
(note that rp(r) —0), and using the elementary inequalities

7| <7 ctg & 2= 2r[B(2")
we conclude that if f(v) satisfies:
(14) O fw)=—1=0)v, >0,
then (13) follows. Solving (14) we find that the function f(v)=1’ satis-
fies (a)-(d).

THEOREM 1. Suppose DC Kg, n=2, and assume that L satisfies (i),
(ii) and that (a,(x)) is continuous at infinity with a;(c0)=0;;. If Lau(x)
=0 i D, and, for some 7,

(15) lim T’:/(:)n —0 (>0 if p#r, 7=0if f=n),

and if u(x)—>0 on 0D as |x|— o, then u(x)—>0 uniformly in D as
|| — oo

Proof. Given >0, there exists 7,>0 such that —e<u(x)<e for
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z€dD, |x|=r,. Denoting M0=rlnax |u(x)|, we can apply Lemma 1 (in the
:c|=7'0

case A=r we apply the Gilbarg-Hopf theorem) to the function v(x)=u(x)
+Muw(x)+e in the open set D, . We get v(x)=0 in D, . Taking r, to
be such that Mw(z)<e in D, , we conclude that w(x)>—2¢ in D, .
Similarly we get u(x)<2¢ in D, and the theorem is proved.

REMARK. Using a proper linear transformation we conclude that
the assumption a,,()=4d,;, can be dismissed if in (15) 2 is replaced by
F’, where (' is the angular opening of the image of K under the linear
transformation. The continuity assumption of the a,;,(x) at infinity can
be replaced by the weaker assumption that the oscillation of the a,,(x)
near infinity is sufficiently small.

We can reduce the case 0<A=<2r to the case f=x by the conformal
mapping ¢ =2"f, where z=x,+ix,, 2 =x,+1x;. Applying Theorem 1, we
get the following theorem after some calculation.

THEOREM 2. Let DcCKg, n=2, and assume that L satisfies (i), (ii),
that (a;;(x)) is Dini continuous at infinity with a,,()=20;;, and that
' Yp(r) (y=n|B) is monotone decreasing. If Lu(x)=0 in D, and

(16) 1im A" g ,

oo Tvt/ﬁ

and if u(@)—>0 on 0D as |xr|—> o, then u(x) >0 wuniformly in D as
] — .

As in Theorem 1, the restriction a;,()=4;;, can be dismissed, but
then in (16) and in »*~"p(r), B should be replaced by f’.

In analogue with Theorem 2, one can formulate an extension of
the Gilbarg-Hopf theorem to the case 0<f<2r. Serrin’s results [8] can
also be extended to domains Dc K, (0<f=2z) such that the image of
D under the mapping z'=z"f contains a half plane a;>c¢. In particular
we have the following.

If Lu<0 in D and w=0 on 8D, then lim r~"Pm(r) exists and is <0.

T->c0

3. In this section we consider the case n=3.

LEMMA 3. Suppose DcK,, = <pf<n, n=3. Assume that L satisfies
P 3

(i), (i) and that (a,,(x)) is continuous at infinity with a;()=40;. If
Lu(x)<0 in D,,, w(x)=0 on 8D, and, for some y'<y=rx|p,

lim 7" m(r,) =0 (ry—> o as k— ),

k—>co
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and if 1, is sufficiently large, then w(x)=0 in D, .

Proof. The proof proceeds as in Lemma 1, if (following Hopf [4]),
we define

K(w):k(f’; wn) ’ P:]/w{-l_.. .+w%~1:-‘/,r2__x?@ , O<,r<1 ,

where % is the function defined in the proof of Lemma 1. The only
essential difference will be in estimating >} a,;(x)K;}(¢). Clearly,

> K@) =(n— 2)1 ok
‘0
and
S K@) < 4 1K+ A, —l 6’“| (I2l<1, 4>0, A,>0).

If we show that

(17) le?ﬁ/ws& and =B+ B,
p op k

where B, and B, are positive constants, then we can proceed as in the
proof of Lemma 1, and the proof of Lemma 3 will be completed.
To prove the first part of (17), we write J in the form

__ |zP*sin 88 1 lzl8 ‘eos (6—1)8 ok
sin & 'R POz[PC-D 8,0

1 [¢f~"'sin (6—-1)F A

— =J,+J,
2l sin @ |/ (2)P0)2* ¢~ B, +

where J; is the first term and 2'=2% z=ux,+ip, 2 =x,+4’, p=|z|sind,

etc.. Since 1 %}i, is bounded near p’=0, and since |[7'(z')] is bounded
p

from below by a positive constant, we get |/J,|<B,.

MZO and Si‘@%l)—’?go if 1<6<8 (since 1<7<83 we can
x;, sin

take 1<0<8), it follows that J,<0 and consequently, J<B;.
The second part of (17) follows from noting that |J,|=< 2

Since

s By
Tk

LEMMA 4. Lemma 2 is true also in the case n=3.

Proof. The function t(x)=ry*x> " satisfies (a), (b) and (d). We
shall find w(x) in the form f(¢). Condition (c) implies that
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(18) f//(t) 2 G/ij(x) ('n 2) xﬂ’ﬂ'a +f (t)(z a“(w) n(n 2){61:17]

| lm I ln +2

~Sa@ =2 - S TR <o
By our assumptions, 3 la;(x)—3d,|=Ze(lx])—>0 as |z —>0. Using the
harmonicity of [x[*-?, we find that if f(¢) satisfies
(19) @) < —(Bee(l@)+ Bulelp(lz)/t ,  f'©)>0,

where B, and B, are proper constants, then (18) follows. Now, if r, is
such that Be(r)+Byp(r)<1—46 (0<o<1) for »>r,, and if

(20) SO @=—0=0t",  f(©>0,

then (19) follows. Solving (20) we get the function f(¢)=¢’, which
satisfies (a)-(d). .

With Lemmas 2 and 38 at hand, we can use the argument used in
proving Theorem 1 and thus get the following.
THEOREM 3. Suppose DC Kp, % <pP=<m, n=3. Assume that L satis-

fies (i), (i) and that a,,(x)) is continuous at infinity with a,,(c)=20,,. If
Lu(x)=0 tn D, and for some 7,

lim £47) =0 (>0 if f#n, =0 if f=x),

7300 7"5

and if u(x)—>0 on 0D as |ax| > o, then u(x)—0 uniformly in D as
|| — oo

REMARKS. (a) The remark which follows Theorem 1, applies also
to Theorem 3.

(b) If we agssume in Theorem 3, that u(x)=0(r*"*%), >0 on 8D
then the same holds in D. This follows by applying the maximum
principle to functions of the form w(x)+ Ar*-"**+e, where A is a proper
fixed constant and >0 (compare [2; 324-325]).

4, Let D belong to the half space x,>0 and denote by C, the open
set DNjx|<r. We shall consider the behavior of solutions near x=0;

it is therefore assumed that 0e D.

We first observe that the construction of w(x) in Lemma 4, can be
easily modified to derive functions w,(x) defined in C;=C, N|x|>r for all
0<r<r,, and having the following properties :
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(@) w.(x)=0 if xedC,,

(b) wi(x)=1 if =zeC, , |x|=r,

(¢) Lw (x)<0 in C;, and

(d) there exists ¢ (0<d<1) depending on 7, (6 —1 as r,— 0), such that

lim 3¢, (2)=0 if weC,;

r-0

here, 7, is assumed to be sufficiently small, and, (a;,(x)) is assumed to
be continuous at =0 with a;,(0)=4,,.

With the aid of w.(x) we can prove an analogue of the Gilbarg-Hopf
theorem.

If Im=<0 in C,, u=0 on 9C, and
lim P¥®=Dm(r)=0 (0<o<]),

70
and if r, s sufficiently small (depending on 9), then u=0 in C, .

We can now use the method used in proving Theorem 1, noting
that the role that w(x) played in that proof is now given to the function
fro(k(rﬁ» of Gilbarg-Hopf. The following theorem is thus proved.

0

THEOREM 4. Let D belong to the half space «,>0, n=3. Assume
that L satisfies (1), (ii) and that (a,,(x)) s continuous at x=0. If Lu(x)
=0 e D, and, for some positive e,

lim r*~*=2u(r)=0,
-0
and if w(x)—0 on 8D as |x| =0, then u(x) — 0 uniformly in D as |x| — 0.

The continuity assumption on the a,,(x) at =0, can be weakened.
The case n=2 can be treated in a similar manner. Note that now,
instead of modifying Lemma 4, we rather modify Lemma 2 and thus

8
obtain w,(x) in the form (E Iz, w;)> , where (z;, x;) is the image of
T

(x,, ®,) under the mapping z’=2z"%. We have the following.

THEOREM 5. Let DCK,, n=2, and assume that L satisfies (i), (ii)
and that (a,(x)) is continuous at x=0 with a;(0)=0;;. If Lu(x)=0 in
D, and, for some positive e,

lim »*f=¢ u(r)=0,

70
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and if w(x)—0 on 0D as |x| — 0, then u(x) — 0 uniformly in D as |z| — 0.

Another way to treat the case n=2, is to reduce it to Theorem 1,
using the mapping #=2""f, We thus get the following.

THEOREM 6. Let DC Ky, n=2, and assume that L satisfies (i), (ii)
and that (a,(x)) s Dint continuous at x=0 with a;;(0)=0,;. Assume
Surther that r***®*p(r) is monotone increasing. If Lu(x)=0 in D and

lim »*® p(r)=0 ,
-0
and if u(x)—>0 on 8D as |x| —> 0, then u(x) — 0 uniformly in D as |x|— 0.

By using the same mapping 2’=2""#, we can derive theorems analo-
gous with the Gilbarg-Hopf ([1], [4]) and Serrin’s ([8]) theorems, provided
that L satisfies the assumptions of Theorem 6.

In the case n=3, B=<m, such theorems can also be obtained, by
using the transformation z;=x,/|z|* (¢:=1, ---, n).

Part II

5. Let x=(w,, +--,a,) and denote X=(x, t), |X|=(z|>+¢*)'*. Con-
sider the operator

0™ 2 ou ou
b(X)———,
0x,0x, + t=zl (&) ox, 0t

(1) Luzéla“(X)
defined in an unbounded domain D. We shall assume that L satisfies
the following conditions :

(i) zZJ‘, la;,(X)| is bounded in D, and, for all Xe D, ¢, real,

S ay(X)egza 8 (@>0),
(ii) for all Xe D, |X|=R,
(2) IS (X =p(R) ,

where p(R) (0<R< =) is bounded and p(R)— 0 as R— .
Beside the functions m(R), #(R) defined in Part I, we introduce the
functions

m/(R)=infw(X),  #'(R)=sup|u(X),
Xery XeTy

where T,=Dn|x*+[t|=R.
Let K, denote the cone with angular opening 3, whose axis is the
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positive t-axis and whose vertex is in the origin. In what follows,
w(X) is assumed to belong to C*D). In Theorems 8, 10 u(X) is also
assumed to be continuous in D.

THEOREM 7. Let D belong to the haolf space t>0, and assume that
L satisfies (i), (i)). If w(X)=0 orn 0D, Lu(X)<0 wn D, and if

(3) limﬂgfi)zo (R — o as k— o),

koo %

then w(X)=0 in D.

Proof. The function vx(X)=(la>+(+K)*/R* (K>0) has the follow-
ing properties:
(@) vx(X)=0 if XeoD, |X|ZR,
(b) vx(X)=1 if XeD, |X|=R,
() Lwg(X)<0 in Cr=DnN|X|<R, if K is sufficiently large, and
(d) Rwg(X) is bounded, for every X, as R— oo,

The function %(X)=u(X)—o(R)vx(X), where o(R)= min (0, m(R)), is non-
negative on 8C, and Lu(X)<0 in C,. Applying the (weak) minimum
principle [7], we conclude that #(X)=0 in C,. Taking R=R,— « and
using (3), we get u(X)=0.

REMARK. It is clear that the same proof holds under weaker as-
sumptions on L: (ii) may be replaced by > 2b,(X)<H, where H is a
constant, and in (i), the boundedness of 3} |a;,(X)| in D may be replaced

by the boundedness of > @;(X) in D and the boundedness of > |a;,(X)I
in each Cg.

LEMMA 5. Let D belong to the half space t>0, and assume that L
satisfies (i), (ii). If R, is sufficiently large, then there exists a function
w(X) defined in Dpy=DN|X|>R,, and having the following properties:

(@) wX)=0 if XedDg,

(b) wX)=1 4f XeD, |X|=R,,

() Lw(X)=<0 in D, , and

(d) w(X)—0 uniformly in Dg, as |X|—> .

Proof. Define
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X)= o .
RS exp( t+1 ) (C>0, >0, H>0)

Since W(X)>0 if |X|=R,, t=0, we can choose C such that (b) is satis-
fied. Since (a) and (d) are also satisfied, it remains to verify (c).

AHz. 2H , ¢ _ Hlal
Lw= aa Ds—— - )
w{z Y1y 2 “t+1 s (t+1)2}

consequently, if
(4) 4H > o, e, <|xl*, 2H > a,+2H >\ b, =€,
then Lw=0. Obviously we can choose H and ¢ such that (4) is satisfied.

With Theorem 7 and Lemma 5 at hand, we can now proceed as in
the proof of Theorem 1 and get the following.

THEOREM 8. Let D belong to the half space t>0, and assume that
L satisfies (i), (ii). If Lu(X)=0 in D and

(5) lim B —¢ |

R->c0

and if w(X)—>0 on 0D as |X|— o, then w(X)—0 uniformly in D as
| X| — oo

Theorems 7, 8 are not true for domains D in the half space ¢<0.
As an example take D to be the whole half space {<0, and take u(w, ?¢)
=t where m is an odd positive integer. Then

1

u=0 on t=0, Lu=—=¢tm™1<0 if t<0,
m

im 2B o i <o,
R RE m
but #(X)<0 if ¢<0, and lim u(X) does not exist as [X|— o, t=0.

6. THEOREM 9. Let DCK,, 0<f<2r, and assume that L satisfies
(), (). If Lu(X)<01in D, w(X)=0 on 0D, and of

(6) lim 7 () _ g

R, — as k— ,
o R (R At )

then w(X)=0 in D.
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Taking v(X)=2(|x|*+Bt+ C)/R* (B and C are proper constants), we
proceed as in the proof of Theorem 7. Details will be omitted. The
remark that follows Theorem 7 applies also to Theorem 9.

Lemma 5 can also be generalized to the case DcCKj, 0<p<2x.
Indeed, the function w(X) may be defined as follows:

C Hlz|* .

—~__exp|— if ¢t>—R

w(X)=] C+EB) o t+Ro) '
O if té_Ro.

Proceeding as in § 5, we get the following theorem.

THEOREM 10. Let DCKg, 0<f3<2r, and assume that L satisfies (i),
(). If Lu(X)=0 in D and

’

im P R) _
(7) lim ?—0

R

and if w(X)—0 on 0D as |X|— o, then w(X)—>0 uniformly in D as
| X[ — .

Note that (7) can be replaced by the stronger assumption

(7) lim A%) _g |
R R
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