MAXIMAL MEANS AND TAUBERIAN THEOREMS
L. A. RUBEL

Introduction. In this paper, we study two well-known mathematical
ideas that have hitherto been regarded as unconnected. It is our purpose
to show that they are closely related. The first idea is one developed
by Pélya in his theory of maximal density [3]. The second is the idea
of repeated differentiation introduced by Littlewood in Tauberian argu-
ments [2], [1].

Our account of the Pélya theory is virtually a direct translation of
certain sections of [3]. To apply his methods to bounded Lebesgue-
measurable functions in general requires only simple changes. Conse-
quently, we state only the results, leaving the proofs to the reader.

Then the idea of Littlewood is developed in a theory of Littlewood
means that compares closely, theorem by theorem, with the theory of
Pélya means. Thus, Theorems 1.1 and 2.1, Theorems 1.2 and 2.2, etc.,
should be compared. The theory of Littlewood means may be regarded
as the theory of the p-fold application of I"Hospital’s rule to a certain
class of indeterminate forms. The order p is not restricted to positive
integral values; indeed, p may be any real number between —1 and +oo.

But the connection between the two theories goes deeper than mere
analogy. Our principle result, Theorem 3.1, asserts that the Pélya
maximal upper mean, (1), is equal to the Littlewood maximal upper
mean, A(o), and that the minimal lower means are also equal to each
other. An immediate corollary of this theorem is the celebrated Tauberian
theorem of Littlewood that a bounded and Lebesgue-measurable function
has a Césaro average if and only if it has an Abel average.

Finally, in §4, we give an intrinsic characterization of the mean
(1) as the infimum of the averages of all Césaro-averageable functions
f* with f*(x) > f(x) for all z. This might be compared with the charac-
terization of the outer measure of a set as the infimum of the measures
of all measurable sets that cover it.

1. The Polya means. Let f(x) be a given bounded and Lebesgue-
measurable function on (0, ). For 0 < £ < 1 define

L reat,
x— Ex Jes
1(&) = lim inf (same) .
The quantities <~(0) and 1(0) are the ordinary Césaro lim sup and
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lim inf, respectively, of f. We define <~(1) = lim,.., < (§) and (1) =
lim,_, l(§), where the existence of the limits is guaranteed by Theorem
1.3. We call ¢©(1) the ‘‘maximal Pélya upper mean’’ and [(1) the
“minimal Pélya lower mean’’.

THEOREM 1.1. ~2(§) and U(E) are continuous functions of & for
0<EL1.

THEOREM 1.2. Z(£) > <P(€") and (&) < I(E") for each £,0 < E<1
and n=1,2,3, «--.

THEOREM 1.3. (1) = lim,,— (&) and I(1) = lim, ., U(§) ewist.

REMARK. It may happen that <~(€§) and [(§) fail to be monotone
functions. Nevertheless, we have the next theorem.

THEOREM 1.4. For all & 0<E£<1, (1) > £ > <(0) and
U1 < U8 < UO).

THEOREM 1.5. If there are numbers & and & with 0 <§ <1,
0 <& <1 for which U(&) > (&), then there is a constant, L, such
that (&) =UE) =L for all £,0 < &< 1.

2. The Littlewood means. Let f(x) be a bounded, Lebesgue-
measurable function on (0, ). The Abel averaging method studies the
behaviour of F'(x)/I(x) as x — 0 +, where F'(x) = rf ({t)e **dt and I(x) =

3 0
S e ®dt = x'. We regard F'(x)/I(x) as an ‘‘indeterminate form oo/co”’

0

at £ = 0. The Littlewood means arise by applying 1’Hospital’s rule p
times to the fraction F'(x)/I(x). Thus, we study also the ratios
F?(x)/[?(x) where

Foe) = (—.)”S:t”e‘“ F(tydt
and

I7(@) = (—)”S:t"e‘“dt = (=)~ (p + 1) .

Here, p may be any real number in the range —1 < p < o« and we put
(—)? = €e'*>. When p is a positive integer, F'*'(x) is the pth derivative
of F(x) and I'”(x) is the pth derivative of I(x). We define

A(p) = lim sup F®(x)[ I (x)
Mp) = lim inf F*(2)/1”(x) .
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The quantities A(0) and \(0) are the ordinary Abel lim sup and Abel
lim inf, respectively, of f. We define A(c) = lim,.. A(p), M) =
lim, ... M»), A(—1) = lim,. ,; A(p), and M(—1) = lim,._,; M(p), where the
existence of the limits is guaranteed by Theorem 2.3. We call A(x)
the ‘“‘maximal Littlewood mean’”’ and M o) the ‘‘minimal Littlewood
mean.”’

THEOREM 2.1. A(p) and Mp) are continuous functions of p for
—1<p< oo,

Proof. We have
(2.1) A@) — Alp) = linzfl_EFp FOx) [9(x) — lir,fliup F o)/ I (x)
< lim sup {F/*(2)/1(2) — F " @)/I” @)}

— lim sup S:{uq/r(q 1) — wl(p + 1} f(ufx)erdu

x—0+

with a similar inequality in the opposite direction. Using now the fact
that |f(u/x)| is uniformly bounded, standard techniques of estimation
may be applied to the integral in (2.1) to show that lim,., A(q) = A(D).
The case p = —1 and p = « follow by definition.

THEOREM 2.2. A(p) is a non-decreasing function of p and Mp) is
a non-increasing function of p.

REMARK. Theorem 2.2 is clearly a stronger kind of statement than
Theorem 1.2. A direct analogue of Theorem 1.2 would state merely
that A(® + 1) > A(p) and Mp + 1) < Mp). It is interesting to note
that there is a special proof of this direct analogue, based on the fact
that F'*P(x) and I»*"(x) are the respective derivatives of F'”(x) and
I'"(x). We need only put (—)?g(x) = F"(x) and (—)?h(z) = I'"”(x) in
the following statement of one form of I’Hospital’s rule, after f(x) is
suitably normalized.

L’Hospital’s rule. If g(x) and h(x) are differentiable functions of
x for x > 0 and g(0+) = o and h(0+) = o then

lim sup g(x)/h(x) < lim sup ¢'(x)/A'(x) .
-0+ 20+

Proof of Theorem 2.2. The notation of x for Mellin convolution
will simplify our proof considerably. If A(x), B(z), C(x) and D(x) are
suitably restricted functions on 0 < & < o, we define

(4% B)w) = | A®B@H L,
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and see that
Ax(BxC)=(AxB)*C, and A*xB=Bx%xA.

Further, if C(z) >0 for all ¢ and (C*1)(x) = 1, where 1(z) = 1 for all
x, then lim sup,._.. (C * D)(x) < lim sup,_,.. D(x).
If we now suppose p < g and let

__xtte __ae® _ (1
Ko = poty K@=t 0@ =5(),

and

I'(g +1) 2?1 — x)rr? for x <1
K, (x) =1 '+ DI — p)

0 for x> 1
then we have
A(p) = lim sup (K, * g)(x)
A(g) = lim sup (K, * g)(z)

K,=K,xK,,
Ko >0
(K, * @) =1.

In accordance with the preceding remarks, it follows that A(p) < A(q),
and we are done.

THEOREM 2.3. A(o) = lim, ... A(®), M) = lim, . M), A(—1) =
lim,,,+ A(®), and M—1) = lim,,_,,\Mp) exist.

Proof. This is an obvious consequence of the monotonicity of the
bounded functions A(p) and \(p).

THEOREM 2.4. Forall p, —1 < p < o, A() > A(®) > A(—1) and
Meo) < Mp) < M—1).

Proof. Same as that of Theorem 2.3.

THEOREM 2.5. If there are numbers p, and p, with —1 < p, < oo,
—1 < p, < o for which Mp) > A(p,), then there is a constant, L, such
that A(p) = Mp) = L for all p, =1 < p < oo,

REMARK. As is shown in the example following the proof of this
theorem, the values p, = —1, p, = —1 must be excluded from the hypo-
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theses. This is in contrast to Theorem 1.5 where the values & =0,
& = 0 are not only included in the hypotheses, but play the most im-
portant role in the proof. In the example, f(x) = sinlogx, M(—1) =
A(=1) =0, but A(e«)=1.

Proof of Theorem 2.5. Suppose p;, = p,. Then Mp,) = Mp,) and
hence Mp,) = A(p). If, on the other hand, p, < p,, then A(p)) = A(®))
and hence Mp,) = A(p). It is therefore enough to show that if there
exists a p, > —1 such that Mp) = A(p,), then Mp) = A(p) = constant.

Now the following familiar lemma will be enough to show that if
Mpo) = A(p) = L, say, then Mp, + 1) = A(p, + 1) = L. By repeating
this argument, we deduce that M o) = A(w)= L. But since, for all
P, M) < Mp) £ Ap) < A(), we have the desired result.

LEMMA. Let g(x) be a differentiable function for x>0 and let
g'(x) be a mon-decreasing function (or a non-increasing function) there.
If, for some a0 < 0, L = lim,_,, g(x)/x® exists, then lim,_,, 9'(x)/ax*" also
exists and equals L.

Proof. Fix 6 > 0. Then g(x + 6x) — g(x) > 0xg'(x). But
lima~*{g(x + 6x) — g(@)} = L{1 + )" — 1} .
Hence lim sup,_. 9'(x)/2* < L7 {1 + 0)* — 1} and we may now let
0 — 0 to get limsup,.,. ¢'(x)/2"* < aL. A similar argument shows that
lim inf__,, g'(x)/2*"* > aL and we are done.
ExAMPLE. Let f(t) = sinlogt. Now
I + A®) = lim sup | "¢7e* sin (log (t/o)dt
= liril_i}_lp {(cos log x)S:t”e‘” sin log tdt
— (sin log x)S:t”e'” cos log tdt}
- ]S:t"e“‘ exp (i log t)dt( = |I'(p +1+79)].
Hence

_| ' +1+79)
A®) ECES

’

and similary

_ | I'p+1+9)
Mp) = ’ e+ 1
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In particular, since, as p— —1,I'(p +1) > o and I'(p + 1 + 1) - I'(3),
we have M—1)= A(—1)=0. On the other hand, A(e«) =1, and
M) = —1, by Stirling’s formula.

3. The main theorem.

THEOREM 3.1. (1) = A(e) and (1) = Mo).
The following Tauberian theorem of Littlewood is an immediate
corollary of this result.

COROLLARY. The bounded Lebesgue-measurable function f is Abel-

averageable, if and only if it is Cesaro-averageable, and then av(f: C) =
av(f: A).

Proof. We must prove that [(0) = <2(0) if and only if M0) = A(0).
Suppose M0) = A(0). Then Moo) = A(ee) (Theorem 2.5). But M) =1(1)
and A(e) = (1) (Theorem 3.1) so (1) = .<(1), and hence [(0) = .<~(0)
(Theorem 1.5). This is the proof of the hard part of the result. The
other part follows directly from the inequalities

(3.1) 10) < M0) < A(0) < (0)

that are derived by a familiar integration by parts in the Laplace trans-
form of f; ol f@eat = |7 r@)ylte ar.
0 0 0

Proof of Theorem 3.1. We prove here that (1) = A(e), and
first that <~“(1) > A(e). An easy roundabout proof would be by way
of Theorem 4.1 in which we construct a bounded measurable function
fH®), f*(x) > f(x), and av(f*:C) = <(1). But the same sort of in-
tegration by parts that yields inequalities (3.1) tells us that A(oo: f*) =
(1). Since f*(x) > f(x), A(: f*) > A(), and thus (1) > A().

It is important to give a direct proof, because, in certain generali-
zations of this theory, the analogue of Theorem 4.1 may be false, but
the analogue of the present theorem is always true.

To prove directly that (1) > A(ew) it is enough to show that
(1) > A(p) for each finite positive p. We make normalization
0 < f. = 1. Keeping p fixed, for any ¢ >0 we choose R so large that if

0 < A< R, then for all »

Fo(x) _ 1 S
I”@  I'(p+1)

- Pp—t __1__ e pp—t
R SAt et £(t/2)dt .

Now, for 0 < £€<1, we put o,= R, n=1,2, ..., and choose N =
N(R, &) so that oy < R7'. Let
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M, = max t?e”’ for g,,, <t <ag,.
We then have

N-1

SR tre~ £(t/w)dt = 25 tre—t £ (t/x)dt gN% M,,S"" Ftjz)dt .

+

We may then conclude that
limsup |" et ftln)dt < L O Muon = o) -
20+ oN n=0
Since (€) < &~ (1) we may write

A <e+ o(/(l)[,(p—l_*_l)—g‘oMn(an — Opia) -

We now let £ — 1—so that >, M, (6, — G,11) — Sﬁt”e“dt, then let R —
0

and then ¢ — 0 to get A(p) < <.

We now prove that A(w) > <°(1). Our proof depends on the fact
that when p is large, the function t*¢~* has a single and very sharp
maximum. We fix R > 0, then a positive integer N, and consider, for
p > R? the dissection of the interval p — RBp'? <t < p + Rp'? into the
2N subintervals of equal length, », <t < N\, where —N <k < N.
For convenience of notation, we put g, = N,.,. We see that )\, =
p + kdp'* where § = R/N. Finally, we put &€ = M_y/Ay, and &, = N/ .

We choose 0 < ¥ < 1 and then (for reasons that appear in the proof
of Lemma 3.1) choose 7 so that vy <7< 1 and v < 7' —2N(r7' — 77).
We again make the convenient normalization 0 < f(x) < 1.

Since, for fixed R and N and each k,lim, . & =lim, .&=1, we
choose p, so that for » > p, we have &7 (&) > 7.°(1) and < (§) > 7. (1).

We now choose a sequence of z tending to oo for which

1 Ay > .
(3.2) mgtw FO)dt > .28 > P (1)

and for which

1 H® 1 _, 1
(3.3) S Bt S L@ < L)

LEmMA 3.1. For x in the sequence described above

1 Hg®
- - > 1).
M — N Sxkxf(t)dt =7=()

Proof.
Jf =" st =3[ s

7=
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Applying 3.2 and 3.3, we have

S“"” FOt = T0ws — 1) Z (1) — ;—Z;Q)-(ymx — )

= (e — xkx)g(l){-i— — 2N<% — 12>} ,
since

#k_xk:ﬂm—xm:%()"N'—)"—N)'

But v was chosen to make the expression in brackets exceed v, and
the proof of the lemma is complete.

Continuing with our proof of the theorem, we put y = 1/x for « in
the sequence described above, so that y — 0+ through some set of
values. Now

S:tf’e—wf(t)dt > S:I_V;t”e—wf(t)dt =5 S”"” + Nig =3+ Sh.

=—N )‘k’” k=0 )\kx
In each of the integrals in >, the variable ¢ of integration lies in the
range where t?¢~* is increasing, so that for — N <k <0
Snkztpe—wf(t)dt > (X"w)pe—k"g%lf(t)dt ’
Ag®

Apo

and applying Lemma 3.1, we have
| tre-up (it = arvir o Orte s — N
Az
Similarly, for 0 < k < N, we get

| “e-ptyae = arorze e, — )

k
Thus, for p > p,,

‘Y,g(].) < Dp—Ap _ & Doty _
A®) > ————F(p ) {REN oo™ w( Ne) + kEIJO e ey ;uk)} .

We apply Stirling’s formula, taking p, also so large that for p > p,.
I'(p + 1) < v 'pPe?(2mp)®. Hence

A(p)zfyti”(l)v%{ 5 (1 %)”exp(—kawﬁ )

+ i (1 + (k;T_l)S) exp (—(k + 1)51/17)} .

Since
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1}1}2 <1 + 1/15—%>p exp (—k8Vp ) = exp <— il_céBX) ,

we let p — o above to get

A(o) > 'YZZ(I)l—/l—Z_}{ngsexp <_ (_lc})
+ N’%B exp (— ((k_'*‘zyslﬂ .

But the expression in brackets is simply an approximating Riemann sum

~

for S exp (—2%/2)dx. Letting first N — o and then R — o, we have
R

1
V2

Since ¥ < 1 was arbitrary, we let ¥ — 1 to complete our proof.

A=) 2 P2 W exp (~a2)de = 72)

4. The Cesaro outer and inner means. Let C be the class of
Césaro-averageable functions, i.e. those for which _<~(0) = 1(0), and
denote the common value by av(f:C). Let C*(f) be the class of all
funetions f* e C for which

f*(@) > f(x) for all »
and
fH(@) < supf() -
We define
Z* = inf av(f*: C), f*e C*(f)

and call &o* the ‘‘Césaro outer mean’ of f. The inner mean I, is
similarly defined.

THEOREM 4.1. &* = <»(1) and 1, = l(1). Moreover, there exists
an f*eC*(f) with av(f*:C)= (1) and there exists an f, € C.(f)
with av(f,: C) = I(1).

Proof. That <o* > <~(1) is obvious, since, if f*(x) > f(x) then
L1 f* > 21), LA f*) = av(f*: C) by Theorem 1.5, and therefore
av(f*: C) > <2(1). We must now construct our minimizing f* e C*(f).

Let {¢,} be a sequence tending to 0, and {\;} a sequence decreasing

to 1. For each )\, there is an x, > k such that

1 A 1
= —} + < 1) + ¢
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for all x > x,. We shall define a sequence S, S, S,, --- of finite geo-
metric progressions, and denote by S =s, s, s,;, --- the sequence of
numbers we get when we write first all the terms of S,, then those of
S,, those of S;, and so on.

Let S, = z\,, ¢\, « -+, A1, where, if we write the last term as
M, = 2 )™, we choose m, large enough to make M, > x,. We also write
M, = x,. In general, S, = M\, M\;, «++, M\%%, where M., = M \x,
and 7, is chosen to make M,,, > ;...

The important properties of S are

(4.1) 5, — oo
4.2) i R |
Sn
(4.3) —I——Ssnﬂf(t)dt < )+ 5, ,
Sp+1 — Sp Isn

as n — o. Here {§,} is the sequence whose first n, terms are ¢,, whose
next n, terms are ¢, and so on, so that §, — 0.

We now define f*(x). For 0 < x < M2, put f*(x) = f(x) and then
define f*(x) in each of the intervals s, < x < s,,; by

sup f(y) for s, <oz <s,+ U,
f*(x) — 0<y <o
f(x) for s, + tt, < x < 8,41,

where we choose p = ¢, in the interval 0 < ¢ < 8,4, — 8, so that

L1 =8, <k < Q1) +3,,
where
h() = __1___Ss"+lf*(t)dt :
n+1 — Sp JSn

To see that such a choice of £ is possible, we first note that if
r0) > (1) — 5, then we may choose ¢ =0, since by (4.3), h(0) <
<) + 6, But if r(0) < <¥(1) — 6,, we observe that h(y) is a con-
tinuous function of p with

0<y<oo
and we may therefore choose p to make h(y) = (1) — 3,.
Our construction of f* is now complete and it remains only to show
that lim x‘lsw f*@®)dt = <~ (1). But it is easily verified that because of
0
(4.1) and (4.2) we need only show that
sig ")t — (1) .

S1
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Now
1_5 FHOdE = *‘ZS“ ()
Sn S1 sn k=1Js;,

= Sl ::Z:ll(y(l) + 04)(Sk+1 — Si)

- y(l)(l _ i) + —1-:2__18,6(%“ — s,

n n

with a similar inequality in the opposite direction. Now s,/s, — 0, and
an easy estimate shows that

n-1
Z 81{,(815 S Slc) — 0.
S, k=1

Hence av(f*: C) = <2(1) and we are done.

REMARK. We could similarly define A™*, the outer Abel mean, and
A, the inner Abel mean, and prove the analogue of Theorem 4.1, namely
that A* = A(e) and N\, = M(). The proof would use Theorem 4.1,
Theorem 3.1, and its corollary. It would be interesting to find a direct
proof that A* = A(c) without either using these results or essentially
reproving them.
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